Feedback Communication Setting

\[X_n = g_n(\Theta_0, Y^{n-1}) \]

\[P_{Y|X} \]

\[Y_n \rightarrow \Delta_n(Y^n) \subseteq (0, 1) \]

Message point \(\Theta_0 \sim \text{Unif}(0, 1) \)
Feedback Communication Setting

\[X_n = g_n(\Theta_0, Y^{n-1}) \xrightarrow{P_{Y|X}} Y_n \xrightarrow{\Delta_n(Y^n)} (0, 1) \]

- Message point \(\Theta_0 \sim \text{Unif}(0, 1) \)
- Transmission scheme *achieves* a rate \(R \) if
 \[P_{\Theta_0|Y^n}(\Delta_n|Y^n) \to 1, \quad \left| \Delta_n(Y^n) \right| = O\left(2^{-nR}\right) \]
- Possibly under input constraints
 \[\lim_{n \to \infty} n^{-1} \sum_{k=1}^{n} \eta(X_k) \leq \Gamma \quad \text{a.s.} \]
- Implies standard achievability
The Posterior Matching (PM) Scheme [Shayevitz & Feder ’07,’08]

- For any input/channel pair \((P_X, P_{Y|X})\)

\[X_{n+1} = F_{X}^{-1} \circ F_{\Theta_0|Y^n}(\Theta_0|Y^n)\]

- Simple and sequential, achieves \(R < I(X; Y)\) under general conditions, within input constraints encapsulated in \(P_X\)
The Posterior Matching (PM) Scheme [Shayevitz & Feder ’07,’08]

- For any input/channel pair \((P_X, P_{Y|X}) \)

\[
X_{n+1} = F_{X}^{-1} \circ F_{\Theta_0|Y^n}(\Theta_0|Y^n)
\]

- Simple and sequential, achieves \(R < I(X; Y) \) under general conditions, within input constraints encapsulated in \(P_X \)

- Specifically, holds for (minus issues immediately discussed)
 - DMC
 - \(P_{XY} \) with a sufficiently smooth p.d.f.

- Horstein & Schalkwijk-Kailath are special cases

- Stochastic control formulation [Coleman ‘09]
PM scheme recursive representation [Shayevitz & Feder ’08]

\[\Theta_1 = \Theta_0, \quad \Theta_{n+1} = F_{\Theta|Y}(\Theta_n|Y_n) \]

\[F_{\Theta|Y}(\cdot|\cdot) \] is called the **PM kernel**

Posterior c.d.f. evolves by function composition with PM kernel

\[F_{\Theta_0|Y_n}(\cdot|Y^n) = F_{\Theta|Y}(\cdot|Y_n) \circ F_{\Theta_0|Y^{n-1}}(\cdot|Y^{n-1}) \]
The PM kernel has a fixed-point at θ_f if

$$F_{\Theta|Y}(\theta_f|y) = \theta_f, \quad \forall y \in \mathcal{Y}$$

Claim: If the PM kernel has a fixed point, then the PM scheme is not ergodic and cannot achieve any positive rate.
A Necessary Condition for Achievability

- The PM kernel has a fixed-point at θ_f if

$$F_{\Theta|Y}(\theta_f|y) = \theta_f, \quad \forall y \in Y$$

- **Claim:** If the PM kernel has a fixed point, then the PM scheme is not ergodic and cannot achieve any positive rate

- For a DMC, maximal number of fixed-points is $|\mathcal{X}| - 2$

- No fixed point for a binary input alphabet
A Necessary Condition for Achievability

- The PM kernel has a fixed-point at θ_f if

$$F_{\Theta|Y}(\theta_f|y) = \theta_f, \quad \forall y \in Y$$

- **Claim:** If the PM kernel has a fixed point, then the PM scheme is not ergodic and cannot achieve any positive rate
PM kernel comprised of two quasi-linear functions

Suppose there is a fixed point, i.e., $F_{\Theta|Y}(\theta_f|0) = F_{\Theta|Y}(\theta_f|1) = \theta_f$
3×2 Example

$F_{X|Y}(1|0)$

$F_{\Theta|Y}(\theta|y)$

$y = 1$

$y = 0$

$F_{X|Y}(0|0)$

θ_f

1

θ
3×2 Example

\[F_{\Theta|Y}(\theta|y) \]
3×2 Example

$F_{\Theta|Y}(\theta|y)$

Diagram showing $F_{\Theta|Y}(\theta|y)$ with shaded area indicating the posterior distribution for θ_0 and θ_f. The diagram includes axes labeled θ and 1, with points marked for reference.
3×2 Example
3×2 Example

The diagram illustrates the posterior distributions $F_{\Theta|Y}(\theta|y)$ and $F_{\Theta_0|Y^n}(\theta|Y^n)$ for a 3×2 example. The distributions are shown with respect to the parameters $\theta_0, \theta_f, \tilde{\theta}_0,$ and θ.
Example – What can we do?

- Two invariant intervals

- Idea I:
 - Decode two messages
 - Resolve (e.g. via repetition)
Two invariant intervals

Idea I:
- Decode two messages
- Resolve (e.g. via repetition)

Problems:
- Rate per invariant interval can be $< I(X; Y)$
- Non-ergodic chain, input constraints not necessarily satisfied
Example – What can we do?

- Two invariant intervals
- Idea II:
 - Map message to "best" interval
 - $R \geq I(X;Y)$
3×2 Example – What can we do?

- Two invariant intervals
- Idea II:
 - Map message to "best" interval
 - $R \geq I(X; Y)$
- Equivalent to PM with a different (binary) input distribution
- Related to the observation that when $|\mathcal{X}| > |\mathcal{Y}|$, using $|\mathcal{Y}|$ input symbols suffices to achieve the unconstrained capacity [Shannon '57]
Two invariant intervals

Idea II:
- Map message to "best" interval
- \(R \geq I(X; Y) \)

Equivalent to PM with a different (binary) input distribution

Related to the observation that when \(|\mathcal{X}| > |\mathcal{Y}|\), using \(|\mathcal{Y}| \) input symbols suffices to achieve the unconstrained capacity [Shannon '57]

Problem: Input constraints not satisfied
3 × 2 Example – How Common?

- Choose P_{XY} uniformly over the simplex
- Let $F_{\Theta|Y}$ be the corresponding PM kernel
- How likely is a fixed-point for $F_{\Theta|Y}$?
3 × 2 Example – How Common?

- Choose P_{XY} uniformly over the simplex
- Let $F_{|Y}$ be the corresponding PM kernel
- How likely is a fixed-point for $F_{|Y}$?
- Claim: $\mathbb{P}(F_{|Y}$ has a fixed point $) = \frac{1}{3}$
3 × 2 Example – How Common?

Proof:

- Define $\delta_k = P_{X|Y}(k|1) - P_{X|Y}(k|0)$, $k = 0, 1, 2$
- $\sum \delta_k = 0$
- Suppose $|\delta_0| \leq |\delta_2| \leq |\delta_1|$, hence $\delta_1 = -(\delta_0 + \delta_2)$
- The c.d.f’s must intersect
Example – How Common?

Proof:

- Define $\delta_k = P_{X|Y}(k|1) - P_{X|Y}(k|0)$, $k = 0, 1, 2$
- $\sum \delta_k = 0$
- Suppose $|\delta_0| \leq |\delta_2| \leq |\delta_1|$, hence $\delta_1 = -(\delta_0 + \delta_2)$
- The c.d.f’s must intersect
3 × 2 Example – How Common?

Proof:

- Define $\delta_k = P_{X|Y}(k|1) - P_{X|Y}(k|0)$, $k = 0, 1, 2$

- $\sum \delta_k = 0$

- Suppose $|\delta_0| \leq |\delta_2| \leq |\delta_1|$, hence $\delta_1 = -(\delta_0 + \delta_2)$

- The c.d.f’s must intersect

- $\mathbb{E}(F_{\Theta|Y}(\theta|Y)) = F_{\Theta}(\theta) = \theta$

- Intersection is a fixed point
3 \times 2 \text{ Example – How Common?}

Proof:

- Define $\delta_k = P_{X|Y}(k|1) - P_{X|Y}(k|0)$, $k = 0, 1, 2$
- $\sum \delta_k = 0$
- Suppose $|\delta_0| \leq |\delta_2| \leq |\delta_1|$, hence $\delta_1 = - (\delta_0 + \delta_2)$
- The c.d.f’s must intersect
- $\mathbb{E}(F_{\Theta|Y}(\theta|Y)) = F_{\Theta}(\theta) = \theta$
- Intersection is a fixed point
- Can always permute/relabel the input so that δ_k satisfies this
- Fixed point obtained also for mirror case
- 2 out of 6 permutations \Rightarrow fixed point
- Result follows from symmetry
A Systematic Solution

- Note the glass is $\frac{2}{3}$ full..
- Relabeling the input s.t. $\delta_0 \geq \delta_1 \geq \delta_2$
A Systematic Solution

- Note the glass is $\frac{2}{3}$ full..

- Relabeling the input s.t. $\delta_0 \geq \delta_1 \geq \delta_2 \Rightarrow$ no fixed points!
A Systematic Solution

- Note the glass is \(\frac{2}{3} \) full.
- Relabeling the input s.t. \(\delta_0 \geq \delta_1 \geq \delta_2 \Rightarrow \) no fixed points!
- For any DMC with \(I(X;Y) > 0 \)
 - \(\exists y_1, y_2 \in \mathcal{Y} \) s.t. \(P_{X|Y}(\cdot|y_1) \neq P_{X|Y}(\cdot|y_2) \).
 - Find an input permutation \(\sigma \) sorting the \(\delta_k \), for which
 \[
 F_{\sigma(X)|Y}(\cdot|y_1) < F_{\sigma(X)|Y}(\cdot|y_2)
 \]
- Consider PM for the equivalent input/channel pair \((P_{\sigma(X)}, P_{Y|\sigma(X)}) \)
- No fixed points, achieves \(I(X;Y) \) within input constraints
The General Case

- Beyond permutations: A bijective function \(\mu : (0, 1) \mapsto (0, 1) \) is called \emph{uniformity preserving} if

\[
\Theta \sim \text{Unif}(0,1) \Rightarrow \mu(\Theta) \sim \text{Unif}(0,1)
\]

- The \(\mu \)-variant of the PM scheme is

\[
X_{n+1} = F_{X}^{-1} \circ \mu \circ F_{\Theta_0}|_{Y_n}(\Theta_0|Y^n)
\]

- \(\mu \)-variant kernel

\[
\mu \circ F_{\mu^{-1}(\Theta)|Y} (\cdot|y) \circ \mu^{-1}
\]

- \(\mu \) eliminates fixed points, \(I(X;Y) \) achieved under input constraints

- For DMC, \(\mu \) was a permutation of intervals that correspond to the discrete input alphabet
Summary

- With fixed points, PM fails to achieve capacity
- PM variants can eliminate fixed points, achieving capacity
- Many variants achieving capacity, some “closer” to having a fixed-point than others
- What is the “best” variant, minimizing error probability for a given input/channel pair?