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Digital holographic microcopy is a thriving imaging modality that attracts considerable research interest due to its
ability not only to create excellent label-free contrast but also to supply valuable physical information regarding
the density and dimensions of the sample with nanometer-scale axial sensitivity. Three basic holographic record-
ing geometries currently exist, including on-axis, off-axis, and slightly off-axis holography, each of which enables a
variety of architectures in terms of bandwidth use and compression capacity. Specifically, off-axis holography and
slightly off-axis holography allow spatial hologrammultiplexing, enabling one to compress more information into
the same digital hologram. In this paper, we define an efficiency score to analyze the various possible architectures
and compare the signal-to-noise ratio and the mean squared error obtained using each of them, thus determining
the optimal holographic method. © 2018 Optical Society of America

https://doi.org/10.1364/JOSAA.99.099999

1. INTRODUCTION

Digital holographic microcopy yields excellent label-free contrast,
even for samples that appear transparent in standard microscopy,
while also supplying valuable physical information regarding the
density and thickness of the sample with nanometer-scale axial
sensitivity. This is possible due to an interferometric recording,
which is able to capture the phase difference between two wave-
fronts. The phase difference is a valuable physical quantity [1–3],
which quantifies the extent to which light was delayed when
transpassing one path relative to another, and is proportional
to the optical path delay (OPD) as follows:

φ�x, y� � 2π

λ
OPD�x, y�, (1)

where λ is the illumination wavelength.
An image hologram captures the phase difference between a

beam passing through a sample (sample beam) and a beam that
does not (reference beam) by recording their interference pat-
tern (which is the digital hologram or interferogram) [3–6].

Three basic holographic recording geometries currently
exist: on-axis, off-axis, and slightly off-axis holography, each of
which enables a variety of architectures in terms of bandwidth
use and compression capacity. In Section 2, we review these
methods. Then, in Section 3, we discuss the most efficient
architectures for each of the recording geometries and analyze
them mathematically. In Section 4, we present a numerical sim-
ulation quantifying the quality of the reconstructed image in

the presence of shot noise for the various holographic architec-
tures discussed in Section 3. Finally, in Section 5, we conclude
the discussion with practical considerations regarding the
optimal holographic method.

2. PRINCIPLES OF HOLOGRAPHIC PHASE
IMAGING

A. On-Axis Holography

In on-axis holography [3,4], the two interfering beams are pro-
jected onto the camera at the same angle, such that the digital
hologram recorded by the camera is given by the following
expression:

Ion-axis�x, y� � jEs�x, y� � Er j2
� jEs�x, y�j2 � jEr j2
� jEs�x, y�jjEr j exp�j · φs�x, y��
� jEs�x, y�jjEr j exp�−j · φs�x, y��, (2)

where j denotes the imaginary unit, Es�x, y� and Er are the
sample and reference complex waves, respectively (the latter
assumed to be of constant amplitude and phase), and φs�x, y�
is the phase difference between them.

The first two terms in Eq. (2) represent the sample and
reference intensities, also referred to as zero orders, DC com-
ponents, or autocorrelation terms. The last two terms in Eq. (2)
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are the complex conjugate cross-correlation (CC) terms, each
containing the complex wavefront of the sample (amplitude
and phase profiles).

In order to isolate one of the CC terms, enabling the
reconstruction of the phase difference φs�x, y�, at least three
phase-shifted digital holograms are needed, as can be achieved
using wave plates or piezo mirrors in the path of either the sam-
ple beam or the reference beam. Once three such phase-shifted
holograms are acquired, each with 120° relative delay, we have
three equations with three unknown variables—the DC terms,
the positive CC term (CC1), and the negative CC term (CC−1)—
allowing the isolation of each of the CC terms using the three
measurements, as follows:

CC1 � I 1 � I 2 · exp
�
2πj
3

�
� I 3 · exp

�
−2πj
3

�
, (3)

where I 1 is the hologram acquired with no phase shift, I2 is the
hologram acquired with a 2π∕3 phase shift, and I 3 is the holo-
gram acquired with a −2π∕3 phase shift [7].

A schematic illustration of the spatial-frequency domain
(SFD) of an on-axis hologram is provided in Fig. 1(a).

B. Off-Axis Holography

In off-axis holography [8–10], one of the interfering beams is
tilted relative to the other beam at a small angle, creating a lin-
ear phase shift that allows separation of the field intensity from
the two complex-conjugate wavefront terms in the SFD. This
enables reconstruction of the complex wavefront from a single
off-axis digital hologram. An off-axis hologram recorded by a
camera can be mathematically expressed as follows:

I off -axis�x, y� � jEs�x, y� � Er · exp�j · φo�x, y��j2
� jEs�x, y�j2 � jEr j2

� jEs�x, y�jjEr j expfj · �φs�x, y� − φo�x, y��g
� jEs�x, y�jjEr j expf−j · �φs�x, y� − φo�x, y��g,

(4)

where φo�x, y� is the off-axis phase, induced by titling one of
the beams (the reference beam here) in respect to the other.
The off-axis phase is given by

φo�x, y� �
2π

λ
�x sin�θx� � y sin�θy��, (5)

where θx is the angle between the projection of the reference
wave illumination direction on the x–z plain and the z axis,
and θy is the angle between the projection of the reference
wave illumination direction on the y–z plain and the z axis,
assuming light propagates in the z direction. This linearly
space-dependent phase is translated into a shifted Dirac delta
function in the SFD, causing the CC terms that are multiplying
it to shift from the center. This can be seen in Fig. 1(b) and
in the following mathematical expression:

FT fI off -axis�x, y�g � FT fjEs�x, y�j2g � jEr j2 · δ�u, v�
� jEr j · FT fjEs�x, y�j exp�j · φs�x, y��g

� δ

�
u� 2π

λ
· sin�θx�, v �

2π

λ
· sin�θy�

�

� jEr j · FT fjEs�x, y�j exp�−j · φs�x, y��g

� δ

�
u −

2π

λ
· sin�θx�, v −

2π

λ
· sin�θy�

�
,

(6)

where (u, v) are the spatial-frequency coordinates and δ�u, v� is
the Dirac delta function. As can be seen in Eq. (6), the DC
terms remain centered in the SFD, while the CC terms are lin-
early shifted to opposite spatial frequencies according to their
tilt angles, due to the convolution with shifted delta functions.
The relation between the tilt angle and the desired shift can be
formulated as follows:

u0 �
2π

λ
· sin�θx� ⇒ θx � sin−1

�
λ

2π
· u0

�
,

v0 �
2π

λ
· sin�θy� ⇒ θy � sin−1

�
λ

2π
· v0

�
, (7)

where u0 and v0 express the shift on the u and v axes in the SFD,
respectively, expressed as fractions of the respective cutoff angu-
lar frequencies ωc,u and ωc,v [defined in Eq. (13)]. For example,
in order to create the architecture presented in Fig. 1(b), we
should choose u0 � 0.75ωc,u and v0 � 0, which positions the
CC terms marked as 1 and 1* without overlap with the DC terms.

For optically recorded holograms, the parameters of the
optical setup dictate the SFD layout. A higher cutoff frequency
can be obtained by using a smaller sampling unit. Equivalently,
a lower SFD occupancy by the CC terms can be obtained by
increasing the magnification of the optical system. However,
the former is limited by the camera pixel size, and the latter
comes at the cost of wasting camera pixels and decreasing the
imaged field of view (FOV) or, alternatively, decreasing the
framerate of the camera (because using a larger FOV reduces
the maximal framerate). Thus, we aim for the SFD occupancy
to be as efficient as possible.

Nevertheless, if the spatial bandwidth is too narrow, the
shifted CC terms may exceed the cutoff frequency and overlap
with themselves in the SFD due to the cyclic property of the
discrete Fourier transform (DFT), causing information loss.
Thus, higher minimal sampling requirements must be used
for off-axis holography relative to on-axis holography, poten-
tially leading to wasteful bandwidth use.

The empty space in the SFD can be used for compressing
additional information to a single hologram containing the

Fig. 1. Schematic illustrations of the SFD for the three typical holo-
graphic recording geometries. (a) On-axis holography. (b) Off-axis
holography. (c) Slightly off-axis holography. DC denotes the autocor-
relation terms, illustrated by an orange circle. Red circles illustrate the
CC terms, where the coinciding complex conjugate CC terms are
denoted by a number and an asterisk.
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same number of pixels as in each of the original holograms,
by effectively placing additional nonoverlapping CC terms in
the SFD. This procedure is called hologram spatial-frequency
multiplexing or multiplexed holography [11,12]. The nonover-
lapping CC terms can contain additional information on the
sample, such as different temporal events, different imaging
areas, different color images, etc.

An ideal multiplexed hologram can be expressed by the sim-
ple summation of N off-axis holograms with different off-axis
angles, given by

Imultiplexed�x, y� �
XN
k�1

jEs,k�x, y� � Er,k · exp�j · φo,k�x, y��j2:

(8)
The SFD of this ideal multiplexed hologram can be mathemati-
cally formulated as follows:

FT fImultiplexed�x, y�g

�
XN
k�1

�FT fjEs,k�x, y�j2g � jEr,kj2 · δ�u, v��

�
XN
k�1

jEr,kj · FT fjEs,k�x, y�j exp�j · φs,k�x, y��g

� δ

�
u� 2π

λ
· sin�θx,k�, v �

2π

λ
· sin�θy,k�

�

�
XN
k�1

jEr,kj · FT fjEs,k�x, y�j exp�−j · φs,k�x, y��g

� δ

�
u −

2π

λ
· sin�θx,k�, v −

2π

λ
· sin�θy,k�

�
, (9)

such that all DC terms remain centered in the frequency do-
main, while the multiple CC pairs are shifted to opposite spatial
frequencies respective of their tilt angles, ideally without over-
lap in the SFD.

1. Optical Multiplexing

In optical multiplexing [11–30], multiple sample and reference
beam pairs with different θx and θy combinations are projected
onto the digital camera simultaneously, each of which creating
an off-axis hologram with a different interference fringe direc-
tion that positions one wavefront in the SFD without overlap-
ping other terms.

The simultaneous projection of all beams on the camera
may create unwanted interference between nonmatching pairs.
This situation can be avoided by either using a different wave-
length for each sample and reference beam pair, coherence gat-
ing, or different polarization states [22]. Using these methods
allows optical recording of an ideal multiplexed hologram, as
described by Eq. (8).

Various basic architectures have been demonstrated for op-
tical multiplexing. These include multiplexing two holograms
by positioning two complex wavefronts in two orthogonal di-
rections [11–21], which can be generalized to multiplexing
three [22–25], four [26–28], five [29], or even six holograms
[30], all without SFD overlap.

The possible applications for optical multiplexing are count-
less; Lohmann was the first to apply this idea [11], multiplexing

the two polarization components of the electrical field in the
hologram plane, thus allowing complete recording of the elec-
trical field. This technique was later generalized by Ohtsuka
and Oka and Colomb et al. [12,13]. Kühn et al. and Turko
and Shaked multiplexed two [14,15] and three [25] holograms
of the same scene with different wavelengths, for the purpose of
calculating a new hologram with a much larger synthetic wave-
length, preventing the phase ambiguity problem. Girshovitz
and Shaked, Frenklach et al., and Rotman-Nativ et al. multi-
plexed two [16,17,19] and three [22] different fields of view,
creating a larger imaging area. Wu et al. used a complex optical
system that multiplexes four fields of view using two wave-
lengths [26]. Chowdhury et al. [23] and Nygate et al. [18]
multiplexed a digital hologram with regular fluorescence
microscopy, allowing a completely registered combination of
the two imaging modalities. Wang et al. [24] multiplexed a
series of three consecutive holograms of an ultrafast event of
the femtosecond order. Wolbromsky et al. multiplexed four
slices within a thick sample, allowing multiple-depth imaging
in a single acquisition [27]. Tian et al. [28] multiplexed four
low-resolution images created by different LED illumination
patterns for Fourier ptychography. Finally, Dardikman et al.
[20] multiplexed two angular views of the same scene over time
to enable 4D phase unwrapping, and Kostencka et al. [21] mul-
tiplexed two angular views for reducing the data-acquisition
time in tomographic phase microscopy.

2. Digital Multiplexing

Digital multiplexing of off-axis holograms refers to the multi-
plexing operation performed not by the optical setup but rather
implemented in the computer. It is used mainly for speeding
up hologram reconstruction, by applying simple arithmetic
operations in the hologram domain to compress multiple
wavefronts into a single hologram, from which the SFD of
all wavefronts can be retrieved with a single 2D DFT [31–35].

The multiplexed holograms synthesized digitally do not
consist of any unwanted interference between nonmatching
pairs, as is assumed in Eq. (8), because each recording is done
separately. However, the concept of hologram summation is
further generalized from the one described in Eq. (8), to a com-
plex-weighted summation. In digital multiplexing, the off-axis
phase φo�x, y� is typically identical for all holograms; thus, the
desired shift in the SFD is usually achieved by multiplying each
hologram by a different complex exponent in the hologram
domain prior to summation [32,34,35], as can be seen in the
following equation:

Imultiplexed�x, y� �
XN
k�1

exp�j�x · us,k � y · vs,k��

· jEs,k�x, y� � Er,k · exp�j · φo�x, y��j2, (10)

where us,k and vs,k express the shift on the u and v axes in the
SFD, respectively, for the kth hologram, expressed as fractions
of the respective cutoff angular frequencies ωc,u and ωc,v.

Note that the shift achieved here is uniform for both the DC
and CC terms, and is not of opposite directions, as this multi-
plication is equivalent to convolving the entire hologram with
a shifted Dirac delta function in the SFD:
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FT fImultiplexed�x, y�g

�
XN
k�1

δ�u − us,k, v − vs,k�

�
�
FT fjEs,k�x, y�j2g � jEr,kj2 · δ�u, v�

� jEr,kj · FT fjEs,k�x, y�j exp�j · φs,k�x, y��g

� δ

�
u� 2π

λ
· sin�θx�, v �

2π

λ
· sin�θy�

�

� jEr,kj · FT fjEs,k�x, y�j exp�−j · φs,k�x, y��g

� δ

�
u −

2π

λ
· sin�θx�, v −

2π

λ
· sin�θy�

��
: (11)

An alternative way of performing digital multiplexing includes
summing the original hologram with a 90°-rotated hologram,
placing the CC terms on the orthogonal axis, thus preventing
overlap in the SFD [31], yet this is limited to multiplexing two
holograms. Nevertheless, this idea can be further generalized to
rotating multiple holograms in small angular increments prior
to summation, as has been demonstrated for up to five holo-
grams [29]. In order for this to be relevant for speeding up
reconstruction, however, fast image rotation must be imple-
mented on dedicated hardware.

A third approach is to create a complex synthetic hologram
that contains one hologram in its real part and a second holo-
gram in its imaginary part [33], as follows:

Imultiplexed�x, y� � I 1�x, y� � j · I 2�x, y�: (12)

In this manner, the CC terms of both holograms spatially over-
lap in the SFD, yet are completely separable. If the first over-
lapping CC term is CC1 � j⋅CC2 (where CC1 is attributed to
I 1 and CC2 is attributed to I 2), then, due to the linearity trait
of the Fourier transform, its counterpart equals CC�

1 � j⋅CC�
2 .

Thus, by taking the complex conjugate of the latter, we obtain
CC1 − j⋅CC2, enabling the lossless retrieval of both CC terms.
Note that, even though we refer to I 1 as the real part and to I 2
as the imaginary part, both holograms can actually be complex.
Either way, as long as the aim of the digital multiplexing is
speeding up reconstruction, the multiplexed hologram can con-
tain complex values.

The most efficient digital multiplexing architecture, recently
suggested by us, includes multiplexing 16 wavefronts into a
single complex hologram [35], but can only be applied to
DC-free holograms. The most efficient architecture that does
not mandate DC-free holograms was suggested by Sha et al.
and allows multiplexing of eight wavefronts into a single com-
plex hologram [34]. Both approaches use a combination of the
complex exponent multiplication method [Eq. (10)] and the
complex encoding method [Eq. (12)].

C. Slightly Off-Axis Holography

Slightly off-axis (SOA) [6,36] holography is a combination of
on- and off-axis holography. In this method, the off-axis con-
cept for shifting the CC terms in the SFD by tilting one of the
beams is still used. However, here the tilting is smaller, such
that the CC terms overlap with the DC term, but not with each
other [see Fig. 1(c)]. Thus, the spatial bandwidth requirements

are lower than those of off-axis holography, and only two phase-
shifted holograms (rather than three in on-axis holography) are
needed for reconstruction. This can be achieved because the
sign of the CC terms in the second hologram, which is π
shifted, is opposite to their sign on the first, such that the over-
lapping DC term can be discarded by simple subtraction of
the two holograms. Once the DC term is eliminated, one
can easily isolate one of the nonoverlapping CC terms from
the SFD.

Similarly to off-axis holography, SOA holography leaves free
space in the SFD that can be used for either optical or digital
multiplexing; Min et al., for example, optically multiplexed two
slightly off-axis holograms of the same scene with different
wavelengths for the purpose of calculating a new hologram with
a synthetic wavelength, preventing the phase ambiguity prob-
lem [37]; and Zhong et al. presented multiple digital multi-
plexing architectures for speeding up reconstruction in SOA
holography [38].

3. SPATIAL BANDWIDTH EFFICIENCY ANALYSIS

A. Sampling Theory

According to the Nyquist–Shannon sampling theorem, the cut-
off frequency of the SFD is half the sampling frequency. Thus,
if the detector resolution in the x and y directions is Δx and Δy,
respectively, the coinciding cutoff angular frequencies are
given by

ωc,u �
2π

2Δx
� π

Δx
, ωc,v �

2π

2Δy
� π

Δy
: (13)

Practically, the pixel is usually a square (Δx � Δy); thus, the
minimal cutoff frequency requirement on any axis applies to
both axes.

In this analysis, we assume optical coherent in-focus acquis-
ition of dense samples (such as biological cells), such that the
frequency content of the sample employs the entire range.
Assuming that the sample maximal spatial angular frequency
defined by the optical setup is ωs on both axes, each of the
CC terms occupies a bandwidth of 2ωs (as the reference beam
is assumed to contain only the zero frequency), and the auto-
correlation terms occupy a double spatial bandwidth of 4ωs.

The maximal spatial angular frequency of the sample that
can be realized by the optical setup is defined by

ωs �
2π

M · d
, (14)

where M is the optical magnification and d is the diffraction
limited spot diameter, defined by the Abbe’s criterion in coher-
ent imaging as the ratio between the illumination wavelength
and the numerical aperture [39,40]:

d � λ

NA
: (15)

B. Efficient Holographic Imaging Architectures

1. On-Axis Holography

In on-axis holography, the autocorrelation terms and the CC
terms are all centered around the zero frequency [Fig. 1(a)].
Thus, in order to capture the full frequency range of the
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CC terms, a cutoff frequency of only ωc � ωs is needed on
both axes. Since the maximal frequency of the DC term is
twice that of the CC terms, the DC term does not fit in the
SFD with a cutoff frequency of ωs and is split on the two sides
of the SFD according to the cyclic property of the DFT, as can
be seen in Fig. 2(a). Nevertheless, since the DC term is usually
not of interest, this is not significant.

2. Off-Axis Holography

A few architectures have been previously suggested for effi-
ciently optically multiplexing several off-axis holograms while
maintaining the full frequency content of all samples without
overlap.

Tahara et al. [41] proposed the space-bandwidth capacity
enhanced (SPACE) architecture for the efficient recording of
a single hologram, where each of the CC terms is split on the
two sides of the SFD, using the cyclic property of the DFT.
This method, as illustrated in Fig. 2(b), uses a cutoff frequency
of only ωc � 2.5616ωs by choosing the CC shifts as u0 �
0.6096ωc and v0 � ωc . By choosing u0 � v0 � 0.6796ωc ,
the CC terms can be placed on the diagonal [41], enabling
the compression of up to two holograms with the use of a
slightly higher cutoff frequency of ωc � 3.1213ωs. This archi-
tecture is illustrated in Fig. 2(c).

Recently, we have suggested six-pack holography (6PH)
[30], in which six off-axis holograms with six different fringe
orientations are multiplexed on the same camera plane. This
architecture uses a cutoff frequency of ωc � 4ωs, as illustrated
in Fig. 2(d). 6PH represents the optimal bandwidth consump-
tion when the DC terms are present.

We have also suggested multiplexing eight holograms (8PH)
[35] by utilizing the space occupied by the DC terms. This
architecture is illustrated in Fig. 2(e). The 8PH architecture
can be applied optically in the general case by removing the
DC terms, as can be done by acquiring two phase-shifted holo-
grams [6,35], similarly to slightly off-axis holography.

3. Slightly Off-Axis Holography

In slightly off-axis holography [6], the CC terms are slightly
shifted such that they do not overlap with each other, but each
of them overlaps with the DC terms, as demonstrated in Fig. 1
(c). Thus, in order to capture the full frequency range of the CC
terms, a cutoff frequency of ωc � 2ωs is needed on the u axis,
and a cutoff frequency of ωc � ωs is needed on the v axis.
However, assuming that the detector pixel size is identical
on both axes, as is usually the practical case, the effective min-
imal cutoff frequency is ωc � 2ωs for both axes. For that case,
by placing the CC terms on the diagonal, two holograms can be
efficiently multiplexed, as shown in Fig. 2(f ).

C. Quantitative Spatial-Bandwidth Efficiency
Comparison

We now compare the efficiency of the spatial-bandwidth
consumption for the different architectures discussed in
Section 3.B and illustrated in Fig. 2. We define the spatial-
bandwidth efficiency score as follows:

Ef � ωs

ωc
·
Nw

Na
, (16)

where ωc is the cutoff angular frequency required for the
method, ωs is the maximal angular frequency of the sample,
Nw is the number of wavefronts encoded in the method, and
Na is the number of acquisitions needed for reconstruction.
This score expresses the ratio between the effective number
of wavefronts per acquisition (Nw∕Na) and the relative cutoff
angular frequency required for capturing the full frequency
range of all samples without overlap (ωc∕ωs). The calculation
of the spatial-bandwidth efficiency score for each of the archi-
tectures is given in Table 1.

As shown in Table 1, the 6PH architecture is the most
efficient holographic method in terms of number of wave-
fronts per bandwidth, whereas the optimal on-axis holography
is the least efficient. Nevertheless, other considerations should
be noted.

In order to compare the different methods, we assumed that
two acquisitions are needed for reconstruction both in 8PH and
in diagonal SOA multiplexing. Practically, though, acquiring
these two phase-shifted frames can be achieved simultaneously
by using both exits of a Mach–Zehnder interferometer [35],

Fig. 2. Schematic illustrations of the SFD power spectra for various
spatial-bandwidth-efficient holographic imaging architectures, includ-
ing bandwidth calculations, assuming the same number of camera pix-
els. (a) Optimal on-axis holography. (b) SPACE. (c) Diagonal off-axis
multiplexing. (d) 6PH. (e) 8PH with the DC terms removed.
(f) Diagonal slightly off-axis multiplexing with the DC terms removed.
DC denotes the autocorrelation terms, and the numbered circles around
it denote the CC terms, where coinciding complex conjugate CC terms
are denoted by the same number with and without an asterisk.
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rather than by placing wave plates or a piezo mirror and sequen-
tially acquiring additional images, as is usually the case with the
three frames needed for on-axis holography. This is an impor-
tant consideration when imaging dynamic samples because, in
this case, the cost of multiple acquisitions may be an unwanted
change in the sample during acquisitions; thus, one should pre-
fer to use methods that require only a single acquisition, such as
SPACE, diagonal off-axis, or 6PH. However, because we can
simultaneously acquire two phase-shifted holograms using two
synchronous cameras, effectively acting as a single acquisition
(if we ignore camera registration problems), 8PH could be con-
sidered to be the most efficient method for dynamic samples,
with an effective spatial-bandwidth efficiency score of 2. Note
that, even if we consider a simultaneous acquisition implemen-
tation for on-axis holography, such as the one suggested by
Awatsuji et al. [7], effectively acting as a single acquisition,
we would still obtain an effective efficiency score of only 1, still
placing on-axis holography as considerably less bandwidth-
efficient in comparison with 6PH and 8PH.

Another consideration is the reduction in SNR when spa-
tially multiplexing several holograms, due to sharing the dy-
namic range of the camera gray-scale levels. This is discussed
in detail in the following section.

4. RECONSTRUCTION QUALITY ANALYSIS

To quantify the quality of the reconstructed image in the
presence of shot noise for the various holographic architectures
discussed, we conducted numerical simulations. We assumed
the wavelength to be λ � 633 nm, the camera pixel size to
be Δx � Δy � 5.2 μm, and the objective numerical aperture
to be NA � 1.4.

Neglecting diffraction, the OPD profile is equal to the in-
tegral of the refractive index (RI) profile of the sample across its
thickness. Thus, we defined a 3D RI test target, as can be seen
in Fig. 3(a). This test target, meant to imitate a biological cell
suspended in water, has a major axis radius of 6 μm and a minor
axis radius of 3 μm.

For each of the architectures, the proper magnification
was calculated from the defined optical parameters using
Eqs. (13)–(15) to achieve the precise ratio between the sample
bandwidth and the cutoff frequency, as shown in Fig. 2. Then,
the respective phase and amplitude profiles were calculated.
The sample phase profile [Fig. 3(b)] was calculated from the
3D RI distribution as follows:

φ�i, j� � 2π

λ
Δk

XN
k�1

n�i, j, k�, (17)

whereΔk is the grid element length in the k dimension,N is the
grid size in the k dimension (N � 256 here), and n�i, j, k� is
the 3D RI distribution. The sample amplitude profile [Fig. 3(c)]
was estimated from the phase profile by normalizing the phase
values and subtracting them from a constant matrix, followed by
replacing the object outer edge value with a lower constant, to
imitate diffraction effects. Next, the sample wavefront was con-
structed using the above amplitude and phase profiles and fil-
tered in the SFD using a low-pass filter with a suitable cutoff
frequency ωs [Eq. (14)], to account for the diffraction limit
present in an actual optical recording due to the optical setup.
The final phase and amplitude profiles used as the ground truth
for comparison were then extracted from this filtered wavefront,
as shown in Fig. 3(d) and Fig. 3(e), respectively.

The reference wavefront, which is assumed to have con-
stant phase and amplitude, was calculated by inputting a matrix
of ones as n�i, j, k� to Eq. (17). The holograms for all architec-
tures discussed in Section 3.B were then generated using
Eqs. (2), (5), (7), and (8), with their simulated SFDs shown

Table 1. Comparison of Various Digital Holography
Architecturesa

ωc∕ωs N w N a Ef

Optimal on-axis 1 1 3 0.33
SPACE 2.56 1 1 0.39
Diagonal off-axis 3.12 2 1 0.64
6PH 4 6 1 1.5
8PH 4 8 2 1
Diagonal SOA 2 2 2 0.5

aωc is the cutoff angular frequency required, ωs is the maximal angular
frequency of the sample, Nw is the number of wavefronts encoded, Na is the
number of acquisitions required for reconstruction, and Ef is the spatial-
bandwidth efficiency score defined in Eq. (16).

Fig. 3. Numerical simulation inputs. (a) 3D RI distribution of si-
mulated biological cell. Yellow indicates an RI value of 1.35, and red
indicates an RI value of 1.37. (b) Original phase image. (c) Original
amplitude image. (d) Filtered phase image. (e) Filtered amplitude image.
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in Fig. 4. In architectures that include multiplexing several
wavefronts, the same wavefront was used numerous times.

After the holograms were generated, they were all stored in
an 8-bit image format, assuming an ideal 8-bit detector that can
set the lowest intensity value to 0 and the maximum value to
255. To simulate a realistic recorded intensity, shot noise
(Poisson type) was then introduced on each image. The final
holograms are presented in Fig. 5.

In order to understand the characteristics and pitfalls of the
6PH and 8PH architectures, we also implemented a simulation
imitating standard off-axis holography, without multiplexing,
as shown in Fig. 1(b), with a layout of ωc � 4ωs.

The phase and amplitude profiles were then reconstructed
from the off-axis and slightly off-axis holograms using the
Fourier filtering method [31] and from the on-axis holograms
using simple arithmetic operations applied on the three phase-
shifted holograms in the image domain [Eq. (3)]. In the cases of
diagonal SOA holography and of 8PH, the two phase-shifted
holograms were subtracted prior to applying the reconstruction
algorithm, to eliminate the overlapping DC components.

In the Fourier filtering method, we first apply 2D DFT on
the hologram; then, we locate and crop the relevant (noncon-
jugate) CC terms in the SFD, each with a window size of
2ωs × 2ωs, and apply an inverse 2D DFT to each of them;
finally, we decompose each extracted wavefront to amplitude

and phase profiles, where the phase profile undergoes 2D phase
unwrapping for solving 2π ambiguities using an algorithm
based on sorting by reliability following a noncontinuous path
[42]. Once this process is complete, all reconstructed profiles
are resized back to the original image dimensions of 256 × 256
pixels by interpolation. In the cases where several wavefronts
were multiplexed, all were reconstructed.

Figures 6 and 7 present the reconstructed amplitude and
phase profiles, respectively, relative to the corresponding
ground truths.

As shown in Fig. 6(a), the quality of the reconstruction
clearly degrades due to multiplexing numerous wavefronts,
attributed to the limited dynamic range of the camera.
Generally, the reconstruction of amplitude obtained from holo-
grams that contain only one wavefront, including the on-axis
holography [Fig. 6(b)] and SPACE [Fig. 6(c)] seems superior to
the one obtained from holograms that contain two wavefronts,
including the diagonal off-axis [Fig. 6(d)] and slightly off-axis
[Fig. 6(e)] holographic architectures.

In order to quantify the quality of the reconstructed phase
images relative to the ground truth phase images, we used two
types of metrics; the first and most naive one is the mean squared
error (MSE), whereas the second one is the signal-to-noise ratio

Fig. 4. Numerical simulation of the SFD power spectra for
various spatial bandwidth-efficient holographic imaging architectures.
(a) Optimal on-axis holography. (b) SPACE. (c) Diagonal off-axis
multiplexing. (d) 6PH. (e) 8PH. (f ) Diagonal slightly off-axis multi-
plexing. For (e) and (f ), the final SFD, obtained after subtracting the
two phase-shifted holograms, is presented.

Fig. 5. Simulated holograms for the various architectures.
(a) Optimal on-axis holography. (b) SPACE. (c) Diagonal off-axis
holographic multiplexing. (d) 6PH. (e) 8PH. (f ) Diagonal slightly
off-axis holographic multiplexing. For (a), (e), and (f ), several
phase-shifted holograms were generated as needed for reconstruction,
but only one is shown. Red rectangle shows a close-up image of the
interference fringes. Note that different magnifications were required
for the different spatial bandwidth-efficient architectures, for optimal
usage of the spatial bandwidth.
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(SNR), based on computing the ratio between the summed
squared magnitude of the ground truth phase image to that of
the noise, given by the absolute difference between the ground
truth phase image and the reconstructed phase image.

Both metrics were used to estimate the phase reconstruction
results obtained by using all discussed holographic architectures.
In order to account for samples with low amplitude modula-
tion, such as most biological cells in vitro, a scenario of uniform

amplitude modulation was also considered. The results of both
scenarios are given in Table 2 and in the second and fifth col-
umns of Fig. 7, with the corresponding ground truths in the first
and fourth columns. The difference in the ground truth phase
profile with and without amplitude modulation is due to the
low-pass filter applied on the sample wavefront to simulate the
resolution limit of the optical system. Note that, in order to make
the comparison between the different architectures as fair as
possible, each image was cropped to contain only the minimal
rectangular bounding box surrounding the object prior to the
calculations, such that architectures with low magnifications
(and thus many background pixels) will not get a disproportion-
ate advantage over those with large magnifications. All results
were also averaged over 150 simulations each, with the noise pro-
file randomly generated for each simulation. For architectures
where multiple wavefronts are multiplexed, the final values
per simulation were calculated as the average.

As shown in Table 2, the standard off-axis architecture takes
the lead when an 8-bit detector is used, both in terms of SNR
and MSE, either with or without amplitude modulation. For
both cases, the 6PH and 8PH methods present the worst re-
sults, presumably as a result of the dynamic range shared by the
multiple wavefronts.

Comparing the two simulated scenarios, it is visible that,
without amplitude modulation, the reconstruction quality im-
proves for all architectures, which is in agreement with recent
research [43], stating that, for multiplexed off-axis holograms,
the phase error is more dominant in areas where the amplitude
value is low (i.e., areas with higher amplitude modulation).

It is interesting to note that 8PH presents slightly better re-
sults than 6PH both in terms of SNR and MSE, where 8PH is
actually expected to be worse due to multiplexing more wave-
fronts. This may be attributed to the subtraction of phase-shifted
holograms needed for reconstruction, possibly causing some of
the error factors to be eliminated, thus improving reconstruction.
This innate advantage, also relevant to diagonal SOA holography
and on-axis holography, can also be noticed visually in Fig. 4,
presenting the SFD for all architectures prior to introducing shot
noise. Indeed, Figs. 4(e) and 4(f), presenting the SFDs of sub-
tracted holograms, clearly show a cleaner signal than all others.

Note that the different magnifications, required for the dif-
ferent architectures due to the constant detector bandwidth

Fig. 6. Amplitude reconstruction results for an 8-bit ideal detector.
(a) Various off-axis holographic architectures using ωc � 4ωs ; top left:
ground truth; top right: reconstruction from nonmultiplexed off-axis
holography; bottom left: reconstruction from 6PH; bottom right:
reconstruction from 8PH. (b) Optimal on-axis holography; left:
ground truth; right: reconstruction. (c) SPACE; left: ground truth;
right: reconstruction. (d) Diagonal off-axis holographic multiplexing;
left: ground truth; right: reconstruction. (e) Diagonal slightly off-axis
holographic multiplexing; left: ground truth; right: reconstruction.
For architectures where several wavefronts are multiplexed, only the
first reconstruction is displayed.

Table 2. Phase Reconstruction Quality Estimation for an
8-bit Ideal Detectora,b

With Amplitude
Modulation

Without Amplitude
Modulation

SNR
[dB]

MSE
[rad2]

SNR
[dB]

MSE
[rad2]

Optimal on-axis 12.55 0.0429 19.88 0.0077
SPACE 18.00 0.0120 21.34 0.0053
Diagonal off-axis 15.13 0.0228 17.96 0.0117
Standard off-axis 19.93 0.0074 22.00 0.0046
6PH 9.98 0.0737 11.28 0.0543
8PH 10.77 0.0613 11.72 0.0491
Diagonal SOA 13.66 0.0338 18.51 0.0103

aAveraged over 150 simulations each.
bThe best method in each column is bold, and the worst is italic.
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assumed, may also affect the results due to numerical errors,
possibly degrading reconstruction quality in methods using
lower magnifications, such as on-axis holography.

To verify that the low SNR and high MSE obtained using
the 6PH and 8PH architectures is indeed a result of dynamic
range limitations, we also ran this simulation for an ideal 16-bit
detector, with the results shown in Table 3 and in the third and
sixth columns of Fig. 7.

As shown in Table 3, when using a camera with a larger bit
depth, the image corruption caused by multiplexing several
wavefronts becomes negligible. This is demonstrated by the fact
that the result obtained by using standard off-axis holography is
nearly identical to those obtained using either 6PH or 8PH.
Interestingly, in this case, the reconstruction quality using most
architectures is similar, excluding on-axis holography, which
takes the lead above all others.

Although on-axis holography defeated all other holographic
methods in reconstruction quality for the 16-bit detector, this
simulative comparison did not consider other possible error
factors in on-axis holography, such as sample change between
acquisitions (which is relevant for sequential acquisition) and
errors caused by inaccurate phase shifts between the holograms.
These additional error factors may also exist in 8PH and in
diagonal SOA. To assess the influence of such error factors on
the final reconstruction, we introduced a 10% error in phase-
shift for on-axis holography, 8PH, and diagonal SOA, with the
results presented in the bottom three lines of Table 3. As can be
seen from these results, the apparent relative advantage of
on-axis holography over the other methods is quickly lost by
a 10% deviation in the experimental phase shift, while 8PH
and diagonal SOA are barely affected.

Finally, note that, while this analysis shows the general trend
in SNR, it does not consider many real-life phenomena affect-
ing hologram optical acquisition, such as speckle noise caused
by the high coherence length of the laser, readout noise, or
some practical problems of a nonideal detector.

5. CONCLUSIONS

In this paper, we reviewed the most efficient possible architec-
tures for digital holographic imaging considering SFDmultiplex-
ing and analyzed them both in terms of spatial bandwidth
efficiency and of reconstruction quality. All architectures ana-
lyzed here assume optical in-focus acquisition of dense samples,

Fig. 7. Phase reconstruction results. (a) Optimal on-axis holo-
graphy. (b) SPACE. (c) Diagonal off-axis holographic multiplexing.
(d) Nonmultiplexed off-axis holography. (e) 6PH. (f ) 8PH. (g) Diago-
nal slightly off-axis holographic multiplexing. First column to the
left: ground truth without amplitude modulation. Second column:
reconstruction without amplitude modulation for an 8-bit ideal detec-
tor. Third column: reconstruction without amplitude modulation for a
16-bit ideal detector. Fourth column: ground truth with amplitude
modulation. Fifth column: reconstruction with amplitude modulation
for an 8-bit ideal detector. Sixth column: reconstruction with ampli-
tude modulation for a 16-bit ideal detector. For architectures where
several wavefronts are multiplexed, only the first reconstruction is
displayed. The phase maps we chose to present here have MSE values
close to the average, as seen in Tables 2 and 3.

Table 3. Phase Reconstruction Quality Estimation for a
16-bit Ideal Detectora,b

With Amplitude
Modulation

Without
Amplitude
Modulation

SNR
[dB]

MSE
[rad2]

SNR
[dB]

MSE
[rad2]

Optimal on-axis 37.57 1.32 × 10−4 43.43 3.41 × 10−5
SPACE 21.88 0.0049 25.51 0.0020
Diagonal off-axis 22.04 0.0046 24.61 0.0025
Standard off-axis 21.97 0.0046 23.80 0.0030
6PH 21.78 0.0048 23.55 0.0032
8PH 21.82 0.0048 23.58 0.0032
Diagonal SOA 22.27 0.0046 27.21 0.0014
Optimal on-axis with
10% error in phase shift

21.25 0.0057 21.30 0.0056

8PH with
10% error in phase shift

21.76 0.0049 23.57 0.0032

Diagonal SOA with
10% error in phase shift

22.26 0.0046 27.19 0.0014

aAveraged over 150 simulations each.
bThe best method in each column is bold, and the worst is italic.
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such that the frequency content of the sample employs the entire
range, thus not using any sparse representations that could pos-
sibly improve the compression ratio [44].

For the spatial bandwidth consumption analysis, we defined
an efficiency score, based on the ratio between the effective
number of wavefronts per acquisition and the relative cutoff
frequency needed for capturing the full frequency range of
all wavefronts without overlap, and used it to analyze the vari-
ous possible holographic architectures and compare their effi-
ciencies. Based on this score, we found that the off-axis 6PH
architecture is the most efficient method and the optimal on-
axis holography is the least efficient. We noted that this score is
imperfect, as it is unable to consider the fact that, when only
two phase-shifted holograms are needed, they can be acquired
simultaneously by using both exits of a Mach–Zehnder inter-
ferometer and thus may be effectively considered as a single
acquisition, placing 8PH as the most efficient method. If two
simultaneous acquisitions are allowed, 8PH would obviously
also be favorable in a scenario where multiple dynamic wave-
fronts need to be captured simultaneously.

For the reconstruction quality analysis, we performed com-
prehensive numerical simulations imitating all discussed archi-
tectures in the presence of shot noise and compared the quality
of the results both in terms of MSE and SNR. In this analysis,
we found that, for an 8-bit detector, the most bandwidth-
efficient methods—6PH and 8PH—supply the lowest quality
reconstructions, presenting a clear tradeoff between efficiency
and quality. Nevertheless, when using a 16-bit detector and
considering additional error factors, this issue becomes negli-
gible, and all architectures present similar reconstruction qual-
ity. Thus, we conclude that, in cases where spatial-bandwidth
efficiency is of high priority, 6PH and 8PH are good choices, as
long as a detector with a large bit depth is used.

Funding. H2020 European Research Council (ERC)
(678316); Tel Aviv University Center for Light-Matter
Interaction.
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