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We present a theoretical framework for recording and reconstructing incoherent correlation holograms of real-
existing three-dimensional scenes observed from multiple viewpoints. This framework is demonstrated by gen-
erating and reconstructing a modified Fresnel hologram as well as a new correlation hologram called a pro-
tected correlation hologram. The reconstructed scene obtained from the protected correlation hologram has a
significantly improved transverse resolution for the far objects in the scene compared to the modified Fresnel
hologram. Additionally, the three-dimensional information encoded into the protected correlation hologram is
scrambled by a secretive point spread function and thus the hologram can be used for encrypting the observed
scene. The proposed holography methods are demonstrated by both simulations and experiments. © 2008 Op-

tical Society of America

OCIS codes: 090.1760, 090.1995, 100.6890, 110.6880.

1. INTRODUCTION

Since the work of Li et al. [1], several types of multiple-
viewpoint projection (MVP) holograms have been pro-
posed. The list includes Fourier holograms [1,2], Fresnel
holograms [3,4], and Fresnel-Fourier holograms [4]. All
these holograms are generated by first acquiring multiple
projections of a three-dimensional (3D) scene from vari-
ous viewpoints and then digitally processing the acquired
projections to yield a digital hologram of the scene. In con-
trast to the composite hologram [5], the MVP hologram is
equivalent to a single optical hologram of the same scene
recorded from the central point of view. The recording
process is performed by a regular digital camera and un-
der an incoherent white light illumination, where no ex-
treme stability of the optical system or powerful highly co-
herent laser source are required, as is usually necessary
with conventional coherent holography techniques.

This study presents a theoretical framework for gener-
ating and reconstructing MVP holograms synthesized by
spatial correlation between the 3D scene, incoherently il-
luminated, and broadband spatial functions. Figure 1 il-
lustrates a possible optical system for acquiring the MVPs
of the 3D scene. In this scheme the digital camera moves
and acquires a different projection of the scene from each
position. Instead of shifting the camera mechanically, we
have also proposed the use of a microlens array for acquir-
ing the entire viewpoint projections in a single camera
shot [6]. Alternatively, one can acquire a small number of
extreme projections simultaneously and predict the
middle projections digitally by using the view synthesis
algorithm [7]. Spatial multiplexing of several digital cam-
eras is also possible.

Following the acquisition stage each projection is mul-
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tiplied by the same two-dimensional (2D) broadband com-
plex function (which should have a phase-only Fourier
transform, as defined in Section 2), and the sum of the in-
ner product is introduced into the corresponding pixel of
the 2D hologram of the 3D scene. Alternatively, it is also
possible to generate a one-dimensional (1D) hologram of
the scene. In this case, each projection’s row is multiplied
by the same 1D broadband complex function and the col-
umn sum of all the inner products from each projection is
introduced into the corresponding column in the holo-
gram matrix. Since each projection is multiplied by the
same spatial function, this process is actually a spatial
correlation between the observed scene and a point
spread function (PSF) and the resulting matrix is termed
an incoherent correlation hologram. However, in contrast
to other correlation holograms [8,9], the present holo-
grams are produced from real-existing 3D objects illumi-
nated by incoherent white light. The digital reconstruc-
tion of the incoherent correlation hologram is usually
performed by convolving the hologram with the complex
conjugate of the original generating PSF, scaled according
to the reconstruction distance. Alternatively, the incoher-
ent correlation hologram can be digitally converted to a
known type of hologram (Fresnel, Fourier, etc), so that the
3D scene can also be optically reconstructed by illuminat-
ing the hologram with a coherent light. Another possibil-
ity is to reconstruct the hologram optically using an opti-
cal correlator [9].

The presented framework enables one to propose new
types of digital holograms with certain advantages over
the known holograms simply by choosing different PSFs.
Recently [10], we have proposed a new incoherent corre-
lation hologram called the digital incoherent modified
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Fig. 1. Optical system for acquiring MVPs of the 3D scene along
the horizontal axis.
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Fresnel hologram (DIMFH), in which the 3D scene has
been correlated with a PSF of a quadratic phase function.
The DIMFH has been generated by processing the MVPs
directly rather than by the previous indirect method [3,4],
in which a Fourier hologram had been computed first, and
only then was a Fresnel hologram generated from the re-
constructed image of the first hologram. Therefore, redun-
dant calculations and digital errors during the various
transformations are avoided by using the DIMFH. Fur-
thermore, this direct Fresnel holography method is not
limited to small angles, in contrast to the MVP Fourier
hologram and the indirect MVP Fresnel hologram, and
hence the hologram reconstruction is more accurate.

In this study, by choosing a new broadband, space-
limited, and secretive PSF, we also present a new incoher-
ent correlation hologram called the digital incoherent pro-
tected correlation hologram (DIPCH). This hologram has
a higher resolving power than the DIMFH, as well as the
ability to encrypt the observed 3D information.

Following the presentation of the proposed framework
in Section 2, we mathematically confirm its correctness in
Section 3. Then, we show in Section 4 how to use this
framework in order to propose two types of correlation ho-
lograms, the DIMFH and the DIPCH mentioned above.
Sections 5 and 6 present simulation and experimental re-
sults, respectively, in which we demonstrate the genera-
tion and reconstruction of the DIMFH and the DIPCH
and compare between them. Section 7 introduces some
concluding remarks.

2. GENERATING AND RECONSTRUCTING
INCOHERENT CORRELATION
HOLOGRAMS

As mentioned above, by choosing different PSFs various
types of incoherent correlation holograms can be gener-
ated from the acquired MVPs. For every hologram type,
1D or 2D holograms can be synthesized depending on the
nature of the MVP aquisition. In case the MVPs are ac-
quired only horizontally (as illustrated in Fig. 1) or along
a different transverse axis, a 1D incoherent correlation
hologram is generated. When the MVPs are acquired on a
2D grid of positions on the transverse plane, a 2D inco-
herent correlation hologram is generated. The 1D holo-
grams are easier to produce because the projections are
acquired along a single axis only. However, the 2D holo-
grams have the advantage of encoding the 3D information
into both axes. This advantage can be demonstrated with
the following example. Assume that we record a 1D holo-
gram of an object with the shape of a thin long horizontal
line, where the camera moves along the long dimension of
this line-shaped object. The axial location of the object is
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actually lost in the hologram and the reconstructed image
is in focus along a long axial range. On the other hand,
the 2D hologram contains the axial information, no mat-
ter what the recorded object shape is, and the image of
the line-shaped object in the example above is in focus
only in a single well-defined transverse plane, as it should
be.

Next, we present the theory of generating and recon-
structing 2D incoherent correlation holograms, where the
theory of 1D incoherent correlation holograms (used in
[10], for example) can be straightforwardly derived from
the general 2D case.

The 2D incoherent correlation hologram is synthesized
from 2K+1 horizontal by 2K+ 1 vertical projections of the
3D scene. We number the projections by m and n, so that
the middle projection is denoted by (m,n)=(0,0), the
upper-right projection by (m,n)=(K,K), and the lower-left
projection by (m,n)=(-K,-K). The (m,n)th projection
P, n(x,,y,) is multiplied by a PSF and the product is
summed to the (m,n)th pixel in the following complex
matrix:

HZ(man) = f f Pm,n(xp’yp)EZ(xp7yp)dxpdyp7 (1)

where Ej(x,,y,) represents the generating PSF of the 2D
hologram. This PSF is given by

E2(xp7yp) =AQ(bxp’byp)exp[ig2(bxp’byp)]5 (2)

where Ay and gy are functions depending on (x,,y,) and
may be chosen differently for each type of incoherent cor-
relation hologram, and b is an adjustable parameter (with
units that preserve the arguments of Ay and g, as unitless
quantities). Additionally, the function Ej(x,,y,) has the
property that its Fourier transform is a phase-only func-
tion. As we show in the following this condition is neces-
sary to guarantee that the generated hologram can be re-
constructed properly. The process manifested by Eq. (1) is
repeated for all the projections, so that in the end of this
digital process the resulting 2D complex matrix Hy(m ,n)
represents the 2D incoherent correlation hologram of
the 3D scene. The validation of this process is given in
Section 3.

The reconstructed planar image sq(m,n;z,), located at
an axial distance z, from the 2D hologram, is obtained by
digitally convolving the hologram with the reconstructing
PSF as follows:

SZ(myn;zr) = |H2(m7n) *RZ(m’n;Zr)|’ (3)

where * denotes a 2D convolution and Ry(m,n;z,) is the
reconstructing PSF of the 2D hologram. This PSF is given
by

mAp nAp mAp nAp
R2(m’n;zr) =A2 ) exp _igZ ) 5

z, 2 z, 2

4)

where Ay and g4 are the same functions used for the gen-
erating PSF of Eq. (2) and Ap is the pixel size of the digi-
tal camera.

Similar theory can also be applied for generating and
reconstructing 1D incoherent correlation holograms [10].
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However, in this case each row in the mth projection
P, (x,,y,) is multiplied by the same 1D PSF E(x,)
and the result is summed to the mth column in the
1D hologram H;(m,n). The reconstructed planar image
s1(m,n;z,), located at an axial distance z, from the 1D ho-
logram, is obtained by convolving the rows of the holo-
gram matrix with the 1D reconstructing PSF R{(m;z,).

3. MATHEMATICAL ANALYSIS OF THE
DIGITAL PROCESS

This section provides verification that the reconstruction
of the incoherent correlation hologram yields the image of
the observed 3D scene. Here also, the analysis is carried
out for the case of the 2D hologram, where the analysis of
the 1D hologram is briefly discussed afterward. There-
fore, contrary to what is illustrated in Fig. 1, we first as-
sume that the MVPs of the 3D scene are acquired on a 2D
grid. Figure 2 shows a top view of the optical system used
for acquiring the MVPs. From this figure it is seen that
the geometric relations between a point (x,,y,,z,) at the
3D scene (where the coordinate origin is defined on the
center of the imaging lens at the middle projection) and a
point (x,,y,) on the (m,n)th projection P,, ,(x,,y,) are
given by
flx,—ma) flys—na) 5
Xp = z, sy Yp= 2, > ( )

where fis the focal length of the imaging lens and « is the
camera gap between two adjacent projections. Using Eqgs.
(5) the generating PSF, defined by Eq. (2), is

EZ(xp’yp) = A2(bxp7byp)exp[igZ(bxpybyp)]
=A2(§5 ﬂ)eXP[lg2(§, 7])] = EZ(xs —ma,ys — na;zs)5

(6)
where
bf(x,—ma) bfa [x,Ap
g = = - mAp ’
2 zAp\  «
bf(ys - na) bfa ysAp
n= = -nAp |.
Zs zAp\  «

The complex distribution obtained on the hologram plane
by a single source point, located in the 3D scene at coor-

so(m,n;z,) = [Ho(m,n) * Ro(m,n;z,)|

= ff |:fffh(xs’ys’zs)EZ(xs_m,a’ys_n,a;zs)dxsdysdzs:|R2(m_m”n_n’;zr)dm’dn’
= fjfh(xs’ysyzs)|:ffEZ(xs_m’a’ys_n’a;Zs)R2(m_m,’n_n’;zr)dm’dn’:|dxsdysdzs

= f f f h(xsays,zs)E2(xs -ma,ys — na;zs) * RQ(m,n;zr)dxsdysdzs
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Fig. 2. Top view of the optical system of the MVP acquisition.

dinates (x,,y,,2;), and having an infinitesimal size of
(Axg,Ay,,Az,) and a value of h(x,,y,,2,), is given by

ﬁz(m,n;xs,ys,zs) = f f [h(xs’y37zs)AstysAzs

X 5(x1; - xp,y;; _yp)]E2(x1’77y1;)dx1’;dyllj
= h(xsyysyzs)E2(xp’yp)AstysAzs
=h(xg,ys,2)Eo(xs — ma,y, — na;z,)

XAx Ay Azg. (7)

The overall distribution of the hologram, resulting from
all the 3D scene points, is a volume integral over all the
holograms of these single points as follows:

Hy(m,n)

=Jfjg2(m5n;xs7ys’zs)dxsdy3dzs

= f f f h(xsyymzs)EZ(xs -—ma,ys — na;zs)dxsdystS'
8

Equation (8) indeed indicates that for each value of z, the
hologram is a 2D correlation between the scene function
h(xs,ys,2) and the PSF.

To confirm that this hologram can be reconstructed to
the image of the observed 3D scene, let us substitute the
expression of the hologram [Eq. (8)] into Eq. (3) in order to
obtain the reconstructed image sq(m,n;z,) as follows:

9)




2132 J. Opt. Soc. Am. A/Vol. 25, No. 8/August 2008

N. T. Shaked and J. Rosen

Let us define ¢(v,,,v,) so that FT{Ey(mAp,nAp)}=explid(v,,, v,)], where FT denotes a Fourier transform. Since Ry and
E, are a complex conjugate pair, FT{Ry(mAp,nAp)}=exp[-i¢(-v,,,—v,)]. Using Egs. (4) and (6) we first calculate the con-
volution between the generating and the reconstructing PSFs in Eq. (9) as the following:

EZ(xs -—ma,ys— na;zs) * RZ(m:n;Zr) = FT_l{FT{E2(xs —ma,ys— na;zs)} : FT{R2(manrzr)}}

mAp nAp mAp nAp
= FT‘l{FT{A2(§, n)expliga(§, 7)1} - FT{A2< ; )exp{— igz( ; ) ] } }

. . [—7Ap  -zAp (*Ap  yAp
=C-FT | exp|i¢o Vs v, | |exp| —i Vp+ —— 1,
abf abf a a

zZ, 2 zZ, 2

: BXP[— l¢(_ Z2rVms— ZrVn)]}

x,Ap

=C- 5<mAp—

where FT! denotes an inverse Fourier transform and C
is a constant. Thus, after substituting the result of Eq.
(10) back into Eq. (9) the reconstruction image is

xsAp
SZ(m,n;Zr) =|C- f f J h(xs,ymzs)(s mAP - _’nAp
o
yAp  zAp
- R T dxsdysdzs
a bfa

(11)

a a bfa
C-h|mAp-—,nAp-—;z, - —
mAp Apnp Apz i

Equation (11) indicates that a scaled version of the 3D
scene h(x,,ys,2;) is indeed reconstructed from the holo-
gram and hence the correctness of the entire digital holo-
graphic process is verified. Note that under the condition
that the Fourier transforms of the two PSFs, E5 and R,
are conjugate-pair phase-only functions, the convolution
of Eq. (10) is equal to the delta function and consequently
a proper reconstruction of the scene is obtained as shown
in Eq. (11).

The transverse and the longitudinal magnifications of
the proposed hologram resulting from Eq. (11) are

Ap Ap
MZ,x=M2,y=:> M2,2=_' (12)

Contrary to conventional MVP holograms, it is evident
from Eqgs. (12) that the magnifications of the proposed ho-
logram are independent on the axial positions of the ob-
jects in the 3D scene. Therefore, the original scale rela-
tions between the various objects are maintained during
the digital reconstruction, no matter whether the objects
are close to or far from the acquisition plane. Hence, the
digital image reconstructed from this hologram is a more
accurate representation of the 3D scene. In addition, this
special feature of the hologram may be very useful for op-
tical 3D pattern recognition and object segmentation. In-
tuitively, this behavior can be explained as follows. Al-
though farther objects look smaller than closer objects in
each captured projection, they also “move” slower
throughout the projections because of the parallax effect.

7nAp -

YsAp z,Ap
; , (10)

P B
abf

[

The slower “movement” of farther objects broadens the
correlation with the PSF in a way that the reduction of
the image size in each projection is exactly compensated
by the increment of the correlation size. However, if one
still wants to eliminate this effect during the digital re-
construction process in order to obtain the perspective of
a conventional optical imaging system, one should scale
the reconstructed image by M/M;,=(f/z,)/(Ap/a)
=1/(bz,) [since z,/z,=Ap/(bfa)] for each and every recon-
structed plane, where M=f/z, is the magnification of the
imaging lens. This rescaling process is demonstrated in
the results described in Section 5.

A similar mathematical confirmation can be applied for
the 1D incoherent correlation hologram. In this 1D case, if
the digital camera moves only horizontally (as shown in
Fig. 1), the geometric relations between a point (x,y,,2,)
at the 3D scene and a point (x,,y,) on the mth projection
P, (x,,y,) are different from the 2D case and given by

flag—ma) ¥
X, = ————, =—.
P z, Yp z

(13)

Following a similar mathematical analysis introduced for
the 2D case, the reconstruction distribution in the 1D
case is

Sl(m’n;zr) =

’

( a Zg bfa)
C'-hlmAp-—,nAp-—;z,- —
Ap £ Ap

(14)

where C’ is a constant. Contrary to the 2D incoherent cor-
relation hologram and based on Eq. (14), the magnifica-
tions of the 1D incoherent correlation hologram are

Ap f Ap
Ml,x= 5 Ml ="
o

My,=—. 15
Y 2, 1.z bfa ( )

Therefore, while the vertical magnification of the 1D ho-
logram is dependent on the axial positions of the objects
(as it is in conventional imaging systems), the horizontal
magnification is constant (as it is in the 2D hologram).
Hence, the aspect ratios of the reconstructed objects
might be different from the aspect ratios of the original
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observed objects. To eliminate this effect during the recon-
struction process we can apply a scaling factor of 1/(bz,)
along the horizontal axis only. This rescaling process is
demonstrated in the results presented in Section 6.

4. TWO EXAMPLES OF INCOHERENT
CORRELATION HOLOGRAMS

In this section, we present two possible incoherent corre-
lation holograms, the DIMFH and the DIPCH, where
each has certain advantages over the other types of digi-
tal holograms. The only difference between the DIMFH
and the DIPCH is the choice of the PSF used for generat-
ing each of the holograms. More types of incoherent cor-
relation holograms might be found for gaining other ad-
vantages.

A. Digital Incoherent Modified Fresnel Hologram

The DIMFH is actually an incoherent Fresnel hologram
generated directly by processing the MVPs of the 3D
scene. However, since this hologram magnifies the vari-
ous objects in the observed scene in a unique way, we call
it a modified Fresnel hologram. This direct holography
method is faster and more accurate than the Fourier-
based Fresnel holography method [3,4], since redundant
calculations and approximation errors are avoided. The
generation and the reconstruction of the 1D DIMFH is
performed by Eqgs. (1) and (3) (but for the 1D case), respec-
tively, where the generating PSF is a 1D quadratic phase
function given by

E1(x,.y,) = exp(i2mb%x}) 3(y,). (16)

Similarly, the 2D DIMFH processing is carried out by
Egs. (1) and (3), where the generating PSF is a 2D qua-
dratic phase function given by

Eo(x,,5,) = expli2mb*(x; +y3)]. 17

B. Digital Incoherent Protected Correlation
Hologram

The DIPCH is a new incoherent correlation hologram that
has two advantages over the Fresnel hologram in general
and over the DIMFH in particular. First, since a random-
constrained PSF is used to generate the hologram, only
an authorized user that knows this PSF can reconstruct
the 3D scene encoded into the hologram. By the term

! Initial
. Random

If the error is small  Pattern

enough, the POCS ends

| . »  FT
v
Space-Limiting Phase-Only
Constraint Constraint
T IFT |« |

Fig. 3. Schematics of the POCS algorithm for finding the PSF of
the DIPCH.
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“random-constrained” we mean that this PSF is computed
by an iterative algorithm initiated by a random function.
Therefore, the DIPCH can be used as a method of en-
crypting the observed scene. Second, the reconstruction
obtained from the DIPCH has a significantly higher
transverse resolution for the far objects in the 3D scene
compared to the DIMFH.

The DIPCH processing is still carried out by Eqs. (1)
and (3). However, this time, the generating PSF is a
space-limited random-constrained function that fulfills
the constraint that its Fourier transform is a phase-only
function. To find this PSF we use the projection onto con-
straint sets (POCS) algorithm [11,12]. The POCS algo-
rithm used for finding this PSF is illustrated in Fig. 3.
The POCS is an iterative algorithm that bounces from the
PSF domain to its spatial spectrum domain and back-
ward, using Fourier transform and inverse Fourier trans-
form, respectively. In each domain the function is pro-
jected onto the constraint set. The two constraints of the
POCS express the two properties required for the PSF of
the DIPCH. First, the Fourier transform of the PSF
should be a phase-only function. This requirement en-
ables one to reconstruct the scene well from the DIPCH as
provided by Eq. (10). Therefore, the constraint of the
POCS in the spectral domain is the set of all phase-only
functions and the Fourier transform of the PSF is pro-
jected onto this constraint by setting its magnitude distri-
bution to the constant 1. The other property of the PSF is
that it should be space limited into a relatively narrow re-
gion close to, but outside of, the origin. This condition re-
duces the reconstruction noise from the out-of-focus ob-
jects because the overlap during the convolution between
the hologram at out-of-focus regions and the resampled
space-limited reconstructing PSF is lower than in the
case of using a widespread PSF. Of course, this noise is
lower as much as the existence region of the PSF is nar-
rower. However narrowing the existence region makes it
difficult for the POCS algorithm to converge to a PSF that
satisfies both constraints with an acceptable error. In any
event, the constraint set in the PSF domain is all the com-
plex functions that identically equal to zero in any pixel
outside the predefined narrow existence region. There-
fore, the projection onto the constraint set in the PSF do-
main is performed by multiplying the PSF by a function
that is equal to one inside the narrow existence region of
the PSF and zero elsewhere. In the case of the 1D DIPCH
the constrained PSF is limited into a narrow strip of col-
umns, whereas in the case of the 2D DIPCH the PSF is
limited into a narrow ring. At the end of the process, the
POCS algorithm yields the suitable random-constrained
PSF that can be used in the hologram generation process.
Figures 4(a) and 4(b) show the resulting phase distribu-
tions of the PSFs that were used for generating the 1D
and the 2D DIPCHs, respectively.

In the following, we show that in the DIPCH the recon-
struction resolution is improved compared to the DIMFH.
In fact, far objects captured by the DIMFH are recon-
structed with a reduced resolution for two reasons. (a)
Due to the parallax effect, farther objects move slower
throughout the projections, and therefore they sample a
magnified version of the generating PSF. This magnified
version has narrower bandwidth, and thus the recon-
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(a) (b)

Fig. 4. Examples of the phase distributions of the generating
random-constrained PSFs of (a) a 1D DIPCH and (b) a 2D
DIPCH.

struction resolution of farther objects decreases. (b) The
quadratic phase function used in the DIMFH has lower
frequencies as one approaches its origin. Since far objects
are correlated with the central part of the quadratic
phase function along a range that becomes shorter as the
object is farther, the bandwidth of the DIMFH of far ob-
jects becomes even narrower beyond the bandwidth re-
duction mentioned in (a). Contrary to the DIMFH, the
spatial frequencies of the DIPCH’s PSF are distributed
uniformly all over its area. Therefore, the DIPCH sus-
tains resolution reduction of far objects only due to reason
(a). Hence, the images of far objects reconstructed from
the DIPCH, besides being protected by the random-
constrained PSF, also have higher resolution.

Let us show quantitatively that the resolution of far ob-
jects reconstructed from the DIMFH is worse than that of
the DIPCH. The bandwidth of the generating PSF is de-
termined by the movement (throughout the projections) of
the object point that is the closest to the imaging lens. For
a distance of « between any two consecutive projections
and for a distance of z,;,, between the closest object point
and the imaging lens, the smallest shift that can be re-
corded on the camera is af/z;,, where f/z,;, is the maxi-
mal magnification of the imaging lens. af/z,,;, is also the
minimal practical feature size of the generating PSF be-
cause a smaller feature size cannot be detected by the
camera due to the minimal sampling gap of af/z;,. For
this reason, the smallest object detail that can be re-
corded and reconstructed by the DIPCH is af/(Mz,;,). Re-
calling that M =f/z,, one realizes that the DIPCH’s recon-
struction resolution linearly decreases for the far objects
in the 3D scene.

For a single object point, the resulting hologram in the
case of the DIMFH is exactly the PSF given by Eq. (16) or
(17). These expressions are actually equal to the transfer
function of a lens for which the resolution properties are
well known. For a single point located at distance z;,
from the imaging system, the width of the recorded holo-
gram is 2Kof/z,;, and the smallest resolved detail is
aof [ (Mz ;). Now, for a point located at distance z, from
the imaging system, the width of the recorded hologram is
2K of/z,. Since, as explained above, the DIMFH of an ob-
ject point located at distance z, from the imaging system
is equivalent to a lens, the hologram resolving power is
linearly dependent on its width. Thus, the resolved detail
of an object at distance z, is the smallest-ever resolved de-
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tail of/(Mz,;,) multiplied by the ratio of the maximum
hologram width, 2Kaf/z,;,, and the actual hologram
width, 2K af/z,. Hence, the resolved detail of an object at a
certain distance z, is afz,/(Mz2 ) in the case of DIMFH.
We recall that the size of the resolved detail in the case of
the DIPCH is of/(Mz,;,). Therefore, the ratio of the mini-
mum resolved detail of the DIMFH and the DIPCH is
24/ Zmin. This means that the farther the object from the
imaging lens is, the worse the resolving power of the
DIMFH, compared to the DIPCH, becomes. In Sections 5
and 6 we demonstrate this conclusion by simulations and
experiments.

5. SIMULATION RESULTS

To demonstrate the generation of 2D correlation holo-
grams by simulation we first generated the 3D scene pro-
jections in the computer. The 3D scene was composed of
three equal-size partial United States Air Force (USAF)
resolution charts positioned at different transverse and
axial locations relative to the camera. To simulate this
situation the chart sizes on each computer-generated pro-
jection plane were determined according to their axial po-
sitions from the plane, where farther charts appeared
smaller than closer charts. In addition, the charts were
positioned at different transverse locations in each
computer-generated projection, where closer -charts
moved faster than farther charts throughout the different
projections. Figure 5 shows the eight most extreme, and
the central projections, out of the 600X 600 projections
synthesized in the computer as the input for the hologram
generation algorithms. Note that we synthesized these
projections with partial object occlusions in part of the
projections to demonstrate that the method is resistant
against these occlusions.

For comparison purposes we generated both a 2D
DIMFH and a 2D DIPCH. As described by Egs. (1) and
(17) to generate the 2D DIMFH we multiplied each pro-
jection by a 2D quadratic phase function and then
summed each of the inner products to the corresponding
pixel in the hologram. Figure 6(a) presents the magnitude
and phase of the 2D DIMFH generated by this process. As
described by Eqs. (2)—(4) and (17), reconstructing the 3D
scene from this hologram digitally was carried out by con-
volving the hologram with 2D quadratic phase functions
with a phase sign opposite to the generating PSF. The
three 2D quadratic phase functions yielding the best in-
focus reconstructed planes are shown in Fig. 6(b). The cor-
responding reconstructed planes are shown in Fig. 6(c). In
each plane only a single USAF resolution chart is in fo-
cus, whereas the other two charts are out of focus. This
holographic phenomenon validates that the volume infor-
mation is indeed encoded into the hologram. As explained
in Section 3, a 2D resampling process should be per-
formed on the reconstructed planes to retain the original
depth perspective of far and close objects in the 3D scene.
These rescaled, best in-focus, reconstructed planes are
shown in Fig. 6(d). Figure 6(e) presents zoomed-in images
of the best in-focus USAF resolution charts shown in Fig.
6(d). Evidently from these figures, the resolution of the re-
constructed charts decreases as the distance of the objects
from the acquisition plane increases.
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Fig. 5. Several projections taken from the entire computer-generated set containing 600 X 600 projections, used for generating the 2D

DIMFH and the 2D DIPCH.

The same computer-generated projections were used
for generating the 2D DIPCH. For this purpose, each pro-
jection was multiplied by the PSF of Fig. 4(b), computed
by the POCS algorithm. The inner product between each
projection and the PSF was summed to a single complex
value, which was introduced into the corresponding pixel
in the 2D DIPCH. The magnitude and the phase of the re-
sulting 2D hologram are shown in Fig. 7(a). The recon-
struction from this hologram was obtained by convolving
it with the conjugate function of the generating PSF
scaled differently in order to reconstruct a different trans-
verse plane with each scaled PSF. The phases of the three
PSFs that yield the best in-focus reconstructed planes
and the corresponding best in-focus reconstructed planes
are shown in Figs. 7(b) and 7(c), respectively. Here again,
the fact that in each of the reconstructed planes one
USAF resolution chart is in focus whereas the other two
charts are out of focus demonstrates that the 3D informa-
tion is encoded properly into this hologram. Then again,
we performed a 2D resampling process on the recon-
structed planes for retaining the original depth perspec-
tive. The resampled best in-focus reconstructed planes
are shown in Fig. 7(d). Figure 7(e) shows zoomed-in im-
ages of the best in-focus USAF resolution chart in each of
these resampled reconstructed planes. Comparing be-

tween the best in-focus reconstructed charts obtained
from the DIPCH [Fig. 7(e)] and from the DIMFH [Fig.
6(e)], one realizes that the far objects reconstructed from
the DIPCH have a significantly better resolution than
those reconstructed from the DIMFH, although the
former are a bit noisier due to the nonuniformity of the
gray levels of the random-constrained PSF generated by
the POCS algorithm.

6. EXPERIMENTAL RESULTS

The experiment of synthesizing 1D incoherent correlation
holograms was carried out on the optical system illus-
trated in Fig. 1. Three equal-size USAF resolution charts,
8.5 cm X 8.5 cm each, were positioned at the 3D scene in
front of a dark background and were illuminated by a
halogen white light. The axial distance between the first
and the second charts, as well as between the second and
the third charts, was 10 cm. The distance between the
closest chart and the camera was 50 cm. The digital cam-
era (CCD type, model: PCO, Scientific 230XS, containing
1280 X 1024 pixels and an 8.6 mm X 6.9 mm active area)
was positioned on a micrometer slider and captured 1200
projections of the 3D scene across a horizontal range of
24 cm. Note that in contrast to the 2D hologram, in which
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Fig. 6. Generating and reconstructing the 2D DIMFH: (a) mag-
nitude and phase of the hologram; (b) the phase distributions of
the reconstructing PSFs used for obtaining the three best in-
focus reconstructed planes; (c) the corresponding three best in-
focus reconstructed planes along the optical axis; (d) same as (c),
but after the 2D resampling process; (e) zoomed-in images of the
corresponding best in-focus reconstructed objects.
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Fig. 7. Generating and reconstructing the 2D DIPCH: (a) mag-
nitude and phase of the hologram; (b) the phase distributions of
the reconstructing PSFs used for obtaining the three best in-
focus reconstructed planes; (c) the corresponding three best in-
focus reconstructed planes along the optical axis; (d) same as (c),
but after the 2D resampling process; (e) zoomed-in images of the
corresponding best in-focus reconstructed objects.
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Fig. 8. Several projections taken from the entire experimentally obtained set containing 1200 projections, used for generating the 1D

DIMFH and the 1D DIPCH.



N. T. Shaked and J. Rosen

i

111
Wﬁl |

i

il

czm IS

Fig. 9. Generating and reconstructing the 1D DIMFH: (a) mag-
nitude and phase of the hologram; (b) the phase distributions of
the reconstructing PSFs used for obtaining the three best in-
focus reconstructed planes; (c) the corresponding three best in-
focus reconstructed planes along the optical axis; (d) same as (c),
but after the 1D resampling process; (e) zoomed-in images of the
corresponding best in-focus reconstructed objects.

the projections of the 3D scene have to be acquired on a
2D grid, in the 1D hologram the camera moves along a
single axis only. Figure 8 shows the two most extreme and
the central projections taken from the entire set of 1200
projections.

These captured projections were used in order to gen-
erate both the 1D DIMFH and the 1D DIPCH. The 1D
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Fig. 10. Generating and reconstructing the 1D DIPCH: (a) mag-
nitude and phase of the hologram; (b) the phase distributions of
the reconstructing PSFs used for obtaining the three best in-
focus reconstructed planes; (c) the corresponding three best in-
focus reconstructed planes along the optical axis; (d) same as (c),
but after the 1D resampling process; (e) zoomed-in images of the
corresponding best in-focus reconstructed objects

DIMFH was generated, according to Eqgs. (1), (2), and
(16), by multiplying each projection by a 1D quadratic
phase function and summing the inner product to the cor-
responding column in the 1D DIMFH. The amplitude and
phase of the resulting hologram are shown in Fig. 9(a).
According to Egs. (2)—(4) and (16) the reconstruction from
this 1D DIMFH was obtained by a 1D convolution of the
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hologram with 1D quadratic phase functions in which the
phase sign is opposite to the generating PSF. The three
best in-focus reconstructing PSFs and the corresponding
best in-focus reconstructed planes are shown in Figs. 9(b)
and 9(c), respectively. In each of the planes shown in Fig.
9(c) a different USAF resolution chart is in focus, whereas
the other two charts are out of focus. This validates the
success of the holographic process of the 1D DIMFH. As
explained in Section 3, resampling these reconstructed
planes along the horizontal axis is required in order to re-
tain the original aspect ratios of the objects. These resa-
mpled best in-focus reconstructed planes are shown in
Fig. 9(d). Looking on the corresponding zoomed-in images
of the best in-focus charts, shown in Fig. 9(e), one can con-
clude that the far objects in the 3D scene indeed have a
reduced horizontal resolution compared to the close ob-
jects in the scene, due to the reasons explained in Subsec-
tion 4.B.

A 1D DIPCH was generated by multiplying each of the
acquired projections by the random-constrained PSF of
Fig. 4(a), computed for the 1D case by the POCS algo-
rithm. Next, each inner product was summed to a single
column in the 1D DIPCH, the amplitude and phase of
which are shown in Fig. 10(a). To reconstruct the 3D
scene from this hologram the DIPCH was convolved with
the conjugate of a scaled version of the same PSF used for
the hologram generation. The phases of the three recon-
structing PSF's, yielding the best in-focus reconstructed
planes, are shown in Fig. 10(b). The corresponding recon-
structed planes are shown in Fig. 10(c). As before, in each
of these planes a different USAF chart is in focus,
whereas the other two charts are out of focus. Once again,
a resamapling process was applied on the horizontal axis
of the reconstructed planes for retaining the original as-
pect ratios of the objects. Figure 10(d) shows these resa-
mpled best in-focus reconstructed planes, whereas Fig.
10(e) shows the corresponding zoomed-in images of the
best in-focus charts at these three planes. As in the 2D
case farther objects have a higher resolution (horizontal
resolution for the 1D case) in the DIPCH [Fig. 10(e)] com-
pared to the DIMFH [Fig. 9(e)]. Once again, this property
signifies the advantage of the DIPCH over the DIMFH,
where the other advantage of the DIPCH is being pro-
tected by the random-constrained PSF used for generat-
ing the hologram.

7. CONCLUSIONS

We have presented a theoretical framework for generat-
ing and reconstructing 1D and 2D incoherent correlation
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holograms. These holograms are synthesized from MVPs
of a 3D scene illuminated by incoherent white light, with-
out the need for special laboratory conditions. A proper
digital process, involving multiplication of each of the
MVPs by a certain broadband PSF and summation of
each of the products, yields the final incoherent correla-
tion hologram of the 3D scene. Different PSFs generate
different types of holograms. Two examples have been
presented: (a) the DIMFH, which is an incoherent Fresnel
hologram generated directly, without approximations or
redundant calculations; and (b) the DIPCH, which en-
ables one to encode the 3D scene in a secured way and to
image the scene with a significantly improved resolution.
These new holograms have been demonstrated by both
simulation and experiments. In the future, the proposed
framework might be used to find new types of incoherent
correlation holograms for other purposes and with other
advantages over the existing types of holograms.
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