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Abstract. A new state space representation of a class of combinatorial optimiza-
tion problems is introduced. The representation enables efficient implementation 
of exhaustive search for an optimal solution in bounded NP complete problems 
such as the traveling salesman problem (TSP) with a relatively small number of 
cities. Furthermore, it facilitates effective heuristic search for sub optimal solu-
tions for problems with large number of cities. This paper surveys structures for 
representing solutions to the TSP and the use of these structures in iterative hill 
climbing (ITHC) and genetic algorithms (GA). The mapping of these structures 
along with respective operators to a newly proposed electro-optical vector by  
matrix multiplication (VMM) architecture is detailed.   In addition, time space 
tradeoffs related to using a record keeping mechanism for storing intermediate so-
lutions are presented and the effect of record keeping on the performance of these 
heuristics in the new architecture is evaluated. Results of running these algorithms 
on sequential architecture as well as a simulation-based estimation of the speedup 
obtained are supplied. The results show that the VMM architecture can speedup 
various variants of the TSP algorithm by a factor of 30x to 50x.  

Keywords: Optical Computing, Parallel Processing, Combinatorial Optimiza-
tion, The Traveling Salesman Problem, Heuristic Search, Hill Climbing, Genet-
ic Algorithms. 

1   Introduction 

This paper presents a new weight incidence representation of Hamiltonian cycles 
along with a set of operations on this representation including mutations and crossov-
ers. The proposed representation facilitates efficient mapping of heuristic search tech-
niques onto a new electro optical matrix by vector multiplication (VMM) architecture 
and enables fast search for a sub optimal solution to the TSP with a relatively large 
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number of cities. In addition, the paper outlines efficient mapping of exhaustive 
search for solutions of TSP with a small number of cities onto the VMM.   

The VMM consists of an electrical unit and an optical unit [1] and serves as a co-
processor to a controller. Under the proposed implementation the controller is work-
ing in parallel with the optical unit in a pipeline mode. The controller prepares 256 
vectors which constitute a specific representation of TSP solutions according to a giv-
en algorithm and sends them in real time to the VMM.  The fact that the controller can 
prepare the vectors in real time is due to the novel representation of TSP solutions and 
novel representations of basic operations on TSP solutions. Through the multiplica-
tion of a matrix containing solutions and a vector of weights, the optical unit  
computes the cost of 256 Hamiltonian tours in parallel at a rate 125 million cost eval-
uations per second. The controller/VMM system can complete 125 million iterations 
of an algorithm such as hill climbing in one second thereby achieving a speedup of 
30x to 50x in various variants of the algorithms. In the current architecture, the role of 
the optical unit is solely to compute the cost of each solution. In the future, we plan to 
explore porting additional parts of the search algorithm to the optical unit.  

Many combinatorial optimization problems require an exponential amount of re-
sources (time and / or space) with respect to a given parameter of the problem and 
necessitate NP complete or intractable procedures for finding an optimal solution [2]. 
A common approach for solving such problems is to define a search space that is an 
enumeration of potential solutions to the problem or steps toward the solution, and 
perform heuristic search in that space [3].  A multitude of heuristic search and combi-
natorial optimization methods is under extensive research. The list of these techniques 
includes the A*, Hill Climbing, iterative hill climbing (ITHC), genetic algorithms 
(GA), tabu search, swarm, and simulated annealing [3-10]. 

The traveling salesman problem is one of the most commonly addressed combina-
torial optimization problems and is chosen as the platform of study for this research. 
In the context of this research, the TSP is stated in the following way: “Given a com-
plete weighted undirected graph, find the minimal Hamiltonian cycle of the graph 
[11,12].” As a consequence of assuming undirected graph this paper is only concerned 
with the symmetric TSP, similar results are expected for the asymmetric problem.  

Because of the complexity of the TSP, exhaustive solutions are limited to problems 
with a small number of cities and heuristic search might require a significant amount 
of computing resources before settling on an acceptable solution. As a consequence of 
the inherent complexity, multitude of algorithms, heuristics, architectures, and data 
structures for representing the problem as well as parallel processing procedures for 
the solution of the TSP have been explored [13-18]. 

Due to the potential for achieving high speed of computation, optical computing 
may be an interesting platform for exploring approaches for exhaustive solution for 
relatively small, bounded, problems and heuristic solutions of large problems. Shaked 
et al., have developed a new edge-weight based representation for the TSP and certain 
other NP complete problems [1,11,12]. This representation enables computing the 
cost of a TSP solution through a dot product operation. Shaked has mapped this repre-
sentation to an optical vector by matrix multiplication system where TSP solutions are 
represented in a transparency matrix and the dot product operation is implemented 
using an optical vector by matrix multiplication [19]. In addition, Shaked has demon-
strated an efficient method for electrical and optical construction of the matrix [20]. 



132 D.E. Tamir  et al. 

The papers by Shaked address exhaustive solution for bounded NP complete prob-
lems. One advantage of the approach presented in the paper is that the same matrix 
can be used for solving any problem with up to ܰ cities and the only element that 
changes from one instance of a traveling salesman problem to another instance is the 
weight vector.  

Only a few other papers address optical solution to the TSP. Haist et al. presents an 
optical TSP system that provides a polynomial-time solution for the problem yet re-
quires an exponential amount of photons [21]. As a result, his system is also limited 
for an exhaustive solution of relatively small instances of the TSP. Collings has dem-
onstrated the use of optical hardware to find local optimal solutions to the TSP using a 
Hopfield neural network based heuristic [22]. Additional papers on optical systems 
addressing the TSP and related problems are listed in [23-27].  

Recently, Tamir et al., have proposed a new fast electro-optical architecture for 
vector by matrix multiplication [1]. In the proposed architecture, the VMM consists of 
a matrix of 256x256x8 bits which is multiplied by a vector of 256x8 bits. The pro-
posed VMM is capable of performing 16 Tera integer operations per second and 
completes the multiplication of a 256x256x8 matrix by a 256x8 vector at a rate of 125 
million vector-by-matrix multiplications per second. The paper shows how to map the 
solution of bounded NP complete problems developed by Shaked et al., into the new 
proposed VMM. Using the representation proposed by Shaked, the architecture can 
check 125 million solutions of up to 23 cities in 1 second.  In this paper we adopt a 
new representation for Hamiltonian cycles. Using this representation the VMM, work-
ing along with a controller, can efficiently handle heuristic solutions to problems with 
thousands of cities.  

2   Strategies for Solving the TSP 

2.1   Exhaustive Search in the TSP Search Space  

Given a representation of a solution, exhaustive search enumerates the entire set of 
solutions and evaluates the cost of each solution. The best cycle is retained.  The 

complete, undirected, weighted graph with ܰ vertices (ܥேሻ contains 
ሺேିଵሻ!ଶ  solutions. 

Hence, enumerating all of these solutions is of complexity of the order of ܱሺܰேሻ. The 
complexity is generally related to time complexity. Nevertheless, certain TSP solution 
strategies trade time complexity by space complexity [6], number of constraints [28], 
or number of photons required to complete the computation on an optical computing 
device [21].  Some papers detail methods for efficient implementation of exhaustive 
search. Nevertheless, due to the high growth rate of the complexity function, exhaus-
tive search is only practical for problems with a relatively small number of cities.  

2.2   Heuristic Search Procedures  

Despite the reduction in problem size, heuristic search algorithms are often very com-
plex and require careful utilization of computer resources such as processing power 
and storage space.  Many heuristic search algorithms are designed for optimal utiliza-
tion of processing power in order to reduce processing time and do not fully exploit 
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the storage space or the trade-offs between time and space complexity.  Several  
researchers have studied time/space trade-offs [6,29,30]. A related problem is the 
problem of anytime and any space algorithm [29,30]. In parallel to the research on 
mapping heuristic search to the VMM we are performing a research on efficient utili-
zation of time and space resources for addressing NP-complete problems. For this 
end, we propose novel methods of record keeping using a cache for tracking solutions 
explored by the heuristic. This method enables an anytime / any space solution to the 
TSP. The current paper introduces the concept of record keeping along with the map-
ping of the problem to a parallel execution on the VMM thus enabling a significant 
speedup over existing approaches. 

2.2.1   Hill Climbing and Iterative Hill Climbing 
Hill climbing is a steepest descent greedy search algorithm [3-6,31]. There are two 
parts to the hill climbing algorithm. First, a valid solution, called an initial configura-
tion, is generated. Next, the hill climbing algorithm attempts to improve the current 
solution by making local changes to the configuration and taking the best new solu-
tion that exists in the local search space. Each improvement is referred to as a step. 
This improvement process continues until the hill climbing algorithm can no longer 
find a better solution, at which point the procedure returns the last solution found. 
Iterative Hill Climbing (ITHC) is a variation of hill climbing that addresses the prob-
lem of getting trapped at a local minimum. In ITHC, once a local minimum is found, 
another initial configuration is generated from the global search space and the climb-
ing process restarts. This process, of generating initial configurations and improving 
them, continues iteratively until the global search space is exhausted or a desired 
number of iterations are completed.  

2.2.2   Genetic Algorithm Based Search 
Genetic Algorithms are based on the principle of natural selection in which solutions 
are represented by chromosomes [7].  Each chromosome contains a series of characte-
ristics which encode the solution at a particular point in a solution space, without  
ambiguity.  For example, in combinatorial optimization problems, such as feature 
selection, solution chromosomes are represented by bit strings. A 1 bit represents a 
feature selected, and a 0 bit represents a feature which is not selected. New genera-
tions of solutions are produced by elimination of low quality solution chromosomes 
and addition of solutions through chromosome crossovers and mutations to produce 
children solutions.  Crossovers usually consist of swapping of chromosome bits from 
two good quality chromosomes, while mutations can be random changes to the chro-
mosomes of individual solutions.  Over iterations these processes gives rise to solu-
tions which, on average, have a higher fitness than the previous generation [7].   

2.3   Representing an Hamiltonian Cycle 

The literature on GA for the TSP contains numerous ways for representing Hamilto-
nian cycle [32,33]. Laranga et al, describe several representation methods including 
path based, binary, adjacency, ordinal, and matrix, methods, other representations 
include vector based methods [32]. The path based method is the most natural way to 
represent a Hamiltonian cycle. It is a vertex based representation obtained by listing 
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the cities visited in the order of visitation. So the cycle 1 െ 2 െ 3 െ 4 െ 5 െ 6 െ 1 is 
represented as the sequence ሼ1,2,3,4,5,6ሽ.  The problem with this and most other re-
presentations is that the result of crossover is not necessarily a valid Hamiltonian 
cycle. Hence, these representations do not enable straight forward implementation of 
classical crossover.  

The path can be represented in an adjacency vector structure where element ݅ of the 
vector contains the value ݆ if vertex ݆  is located in place ݅ of the cycle. Several matrix 
representations have been considered. The first representation is a vertex based repre-
sentation where a ܰ ൈ ܰ matrix is used for a ܰ vertex graph. The element ሺ݅, ݆ሻ  of the 
matrix contains 1 if and only if the vertex ݅ is traversed before the vertex ݆. Another 
matrix representation includes 1 in place ሺ݅, ݆ሻ if, and only if, in the vertex ݆  is ex-
plored immediately after vertex ݅ [32]. 

We consider three additional vector representations. The first representation is due 
to Shaked [19]. This is a binary edge based vector where 1 in place ݇ of the vector 
denotes that edge ݇ is traversed by the Hamiltonian cycle and the edges are enume-
rated in a consistent way. For example for the graph ܥହ the edges can be enumerated 
in the following order ሾ݁ଵ,ଶ,  ݁ଵ,ଷ,  ݁ଵ,ସ,  ݁ଵ,ହ,  ݁ଶ,ଷ,  ݁ଶ,ସ,  ݁ଶ,ହ,  ݁ଷ,ସ,  ݁ଷ,ହ,  ݁ସ,ହሿ In this ex-
ample and under this representation, the vector ܤ ൌ ሾ1,0,0,1,1,0,0,1,0,1ሿ denotes that 
edges  ݁ଵ,ଶ,  ݁ଵ,ହ,  ݁ଶ,ଷ,  ݁ଷ,ସ,  and  ݁ସ,ହ are traversed. Hence, the vector ܤ represents the 
cycle 1 െ 2 െ 3 െ 4 െ 5 െ 1. We refer to this vector as the “binary incident vector.”  
Note that due to the symmetry the edge ݁ଵ,ହ stands also for the edge  ݁ହ,ଵ. Shaked uses 
another vector which is an edge-weight based vector. The compatible edge-weight 
vector for ܥହ is:  ܹ ൌ ሾݓଵ,ଶ, ,ଵ,ଷݓ  ,ଵ,ସݓ  ,ଵ,ହݓ  ,ଶ,ଷݓ  ,ଶ,ସݓ  ,ଶ,ହݓ  ,ଷ,ସݓ  ,ଷ,ସݓ    .ସ,ହሿݓ 
The novelty of this representation is that it enables calculating the cost (or length) of a 
specific cycle represented by a binary incidence vector ܤ through the dot 
uct ܹ.    .ܤ

Tamir et al. presented an electro-optical unit capable of fast vector by matrix mul-
tiplication (VMM). For this VMM we are proposing a new vector representation 
where the weight vector contains the weights of the edges traversed in the order of 
traversal. So the cycle 1 െ 2 െ 3 െ 4 െ 5 െ 1 is represented by the vector  ܹ ൌሾݓଵ,ଶ, ,ଶ,ଷݓ  ,ଷ,ସݓ  ,ସ,ହݓ   ଵ,ହሿ. We refer to this vector as the weight incidence vector ofݓ 
the cycle 1 െ 2 െ 3 െ 4 െ 5 െ 1. In this case a dot product between the vector ܹ and 
the vector  1ത ൌ ሾ1,1,1,1,1ሿ yields the cost of a cycle. Note that the weight incidence 
vector described above can be inferred from the respective cycle. A cycle however is 
not always uniquely defined by the weight incidence vector. In some of our imple-
mentations, a pair of vectors is maintained, the adjacency vector (e.g., ሾ1,2,3,4,5ሿሻ 
and the incidence weight vector ሺሾݓଵ,ଶ, ,ଶ,ଷݓ  ,ଷ,ସݓ  ,ସ,ହݓ    .ଵ,ହሿሻݓ 

 

2.4   Operations on Hamiltonian Cycle Representations 

We divide the operations on Hamiltonian cycles into two types of operations: muta-
tions and crossovers. A mutation on a representation of a cycle alters the representa-
tion in a given way. A crossover uses the representation of two cycles to generate a 
new cycle. In classical genetic algorithms a chromosome is a binary string that 
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represents a solution. Chromosome mutation is implemented by a permutation on the 
binary string. In the case of TSP, mutations are a bit more involved. First, some of the 
representations are not binary. Second, for a non-complete graph an arbitrary permu-
tation of a Hamiltonian cycle representation does not necessary yield an Hamiltonian 
cycle. Hence, in general, a mutation in the TSP domain has two stages, permutation of 
the representation and if needed repair of the representation or regeneration of a valid 
Hamiltonian cycle.  

The 2-Opt operation is commonly used  in heuristic TSP solution and as a GA mu-
tation. The 2-Opt algorithm removes 2 edges from a Hamiltonian cycle and replaces 
them with 2 edges whose sum is less than the sum of the edges that were removed, 
while maintaining the Hamiltonian property of the new cycle [11,12]. This operation 
is referred to as a “butterfly.” Other mutations include: displacement mutation, ex-
change mutation, insertion mutation, scramble, and random permutation [32,33]. 

The classical genetic algorithm of crossover between chromosomes takes two 
chromosomes split each chromosome into two or more parts and then combines dif-
ferent parts to create one or more chromosomes.  Again, in the case of TSP, an arbi-
trary crossover of the representation of two Hamiltonian cycles does not necessary 
yield Hamiltonian cycles. Thus, a general TSP crossover involves a stage that resem-
bles classical crossover followed by repair and / or regeneration of a cycle. Some of 
the commonly used crossover operations include: partially mapped crossover (PMX), 
ordered crossover (OX), position based crossover, heuristic crossover, neighborhood 
relationship crossover, meta ordering crossover, and self crossover. A comprehensive 
list of these and additional mutations, crossovers, and permutations can be found in 
[32,33]. 

3   The VMM Architecture 

The VMM can serve as a co-processor attached to a DSP or a dedicated CPU, referred 
to as the controller. A high level schema of the VMM is included in Fig. 1. As the 
figure shows, the VMM is composed of two main components: the optical unit and 
the electrical driver.  

3.1   The VMM Optical Unit 

One of the configurations that can be used to implement the optical component of the 
VMM is based on the Stanford multiplier principle and illustrated in Fig. 2 [1]. As 
shown in this figure, the input vector of the VMM is represented by a set of light 
sources, the matrix of the VMM is represented by a slide mask or a real-time SLM 
and the output (multiplication-product) vector of the VMM is represented by a set of 
sensitive detectors. The light from each of the sources is spread vertically so that it 
illuminates a single column of the matrix. Next, each row in the matrix is summed 
onto a single detector in the detector array. This VMM configuration can be imple-
mented through several optical techniques. One of these techniques uses two sets of 
lenses each of which contains a cylindrical lens and a spherical lens with focal lengths 
of f. A single set of lenses has an equivalent focal length of f/2 in the vertic-
al/horizontal direction and f in the other direction. As shown in Fig. 2, the first set of 
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lenses is positioned between the input vector (represented by the light sources) and 
the matrix (represented by the SLM). This set of lenses is positioned so that the light 
coming from each of the sources illuminates only a single column in the matrix, 
which means collimating the light diverging vertically from each of the sources but 
imaging it in the horizontal direction. The other set of lenses is positioned between the 
matrix and the output vector (represented by the sensitive detectors) and is rotated by 
90 degrees compared to the first set of lenses (see Fig. 2). Therefore, these lenses im-
age a row in the matrix onto a vertical position of a single detector in the detector ar-
ray and spread the light from a single column of the matrix. Other papers proposed 
additional versions and applications of the optical VMM. Comprehensive literature 
reviews in this subject can be found in references [1,34]. 

3.2   The VMM Electrical Driver 

The electrical driver is comprised of 256 single electrical driver (SED) units and has 
two types of inputs: a 1×256×8 bit input vector A, which is the VMM input vector 
(that is, the VCSEL source array driving signal), and a set of 256 vector inputs B0 to 
B255 (total of 256×256×8 bit). The output of the VMM is a 1×256×20 bit vector C. 
The VMM output vector C, is an aggregation of the set of scalar outputs (C0 to C255), 
where the output Cj emerging from the jth SED unit is a single 20-bit bus which is 
generated by the output detector array. Within each SED, the input vector Bj can be 
stored in an internal dual-port modular memory buffer/shifter before it is directed to 
the SLM. The output Cj is directed to the external output. The electro-optical configu-
ration supports a dot-product operation between the input row vector A (being con-
verted into light by the VCSELs) and one column of the entire SLM matrix. Each 
SED unit performs one vector dot-product operation per cycle of 8 ns (the reciprocal 
of 125 MHz). Combined together, the 256 units perform a vector (1×256×8 bit) by 
matrix (256×256×8 bit) multiplication operation at a rate of 125 MH.  

The proposed system can perform multiplication of a 1×256×8 bit vector by a 
256×256×8 bit matrix at a rate of 125 million vector-by-matrix multiplications per 
second. If the matrix and vector are smaller than 256×256 and 1×256, respectively, 
then it may be possible to achieve the same rate with multiple small matrices/vectors. 
If the matrix and / or the vector have more than 256×256 (256×1) elements, then 
there is an overhead related to decomposing the matrix into sub matrices. In most of 
the cases, this overhead is negligible. 

4   VMM Implementation of Hill Climbing and Genetic Algorithms 
in the TSP Search Space 

The VMM is assumed to be a co-processor attached to a controller. Our current pro-
posal and simulations assume that the controller prepares vectors according to the 
specific algorithm and sends them to the VMM where the fast matrix multiplication 
yields the cost of 256 vectors per cycle. In future implementations we will consider 
using an FPGA, ASIC, or other types of dedicated hardware to implement an electric-
al unit that is designed for the TSP algorithm. This unit will work directly with the 
SLM matrix and will supply a direct link for exchanging information between the 
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electrical unit and the optical unit. In addition, we consider implementing other parts 
of the algorithm such as identifying the ܭ best solutions on the optical unit. We have 
implemented a simulation of the ITHC  algorithm on the VMM. The simulation of the 
genetic algorithm implementation on the VMM is currently in advanced stages. We 
report on the actual ITHC simulations in this section. 

4.1   VMM Implementation of Iterative Hill Climbing in the TSP Search Space 

The ITHC in the TSP search space procedure is implemented through iterations on 
two execution phases: tour construction and tour improvement. Following extensive 
experimentation with tour construction algorithms such as the random restart and the  
greedy randomized adaptive search procedures (GRASP) [6,35], we adopted a deter-
ministic approach which employs a greedy enumeration (GE) of spanning paths ac-
cording to their weight and converts them into spanning cycles by adding an edge 
connecting the first and last vertex [6].  

The actual implementation of the ITHC using the VMM is done in the following 
way: First, the controller is generating the initial starting configuration using the mod-
ified Kruskal’s algorithm [11]. This is called the initial reference cycle. Reference 
cycles are represented using the adjacency vector representation as well as the weight 
incidence vector. All the other cycles are represented only by their weight incidence 
vector. Next, the controller is generating all the 2-Opt butterflies that evolve from the 
reference cycle. Each butterfly is a permutation which changes the location of two ver-
tices in the reference cycle or a swap of two pairs of edges in the weight incidence vec-
tor. Hence, a butterfly implies removing  two weights from the reference weight inci-
dence vector and adding two weights to the vector. As the controller prepares these 

 

 

Fig. 1. The electro optical computing system 
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Fig. 2. The VMM optical unit 

vectors, they are sent to the VMM. Since the VMM cycle is 8 ns the controller can pre-
pare 256 vectors, and send them to the VMM, in real time. The VMM computes the cost 
of 256 vectors at a time and returns the results to the controller which retains the best 
result. After generating all the possible butterflies the best cycle is selected and becomes 
the reference cycle. This completes the first step of hill climbing. The controller verifies 
that the current step is not in the cache, places the current step in the cache, prepares the 
next set of weight incidence vectors, and sends them in real time to the VMM. Again, 
the best cycle is retained. It becomes the reference cycle and a new step is created. This 
process is repeated until a restart condition is met. That is, either a local optimum has 
been achieved or a hit on the cache, denoting that this step has already been explored, 
occurs. At this point the controller implements the greedy enumeration procedure to 
generate a new initial reference cycles and a new climber is spawned to climb from this 
point [6]. The process of generating new climbers repeats until a time limit or a limit on 
the number of climbers is reached.   

4.2   VMM Implementation of Genetic Algorithm Based Search  

As in the case of iterative hill climbing the role of the controller  is to prepare vectors 
according to the algorithm and send them for cost evaluation to the VMM. We use the 
incidence edge-weight vector as the primary representation for chromosomes. Never-
theless, a crossover might require maintaining the adjacency vector. A mutation is a 
2-Opt operation as described in the previous section. We are experimenting with sev-
eral versions of crossovers including PMX and OX [32], in addition, we have devel-
oped a new and novel crossover operation which is efficient in computation time and 
contribution to solution quality. Moreover it has a good fit with the electro-optical 
architecture, thus it is efficiently implemented on the VMM. The new crossover  
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operator is an extension of an operator proposed in [13]. It involves the following 
operations: First, the cycle is split into two distinct paths at an arbitrary point. Each of 
the paths is going through two different mutations and then the complementary paths 
are recombined to generate new cycles. The advantage of this method is that it does 
not require a repair operation after the recombination since the parts of the path that 
are recombined are mutually exclusive. To further explain, let  ܥଵ be a chromosome. 
The path represented by   ܥଵ is divided into two mutually exclusive paths. That is, the 
two paths span the graph vertices and have no common vertices. The two path are 
represented by the chromosomes   ܥଵଵ and  ܥଵଶ. Next  ܥଵଵ and  ܥଵଶ are going through 
two mutations generating  ܥ′ଵଵ,   ܥ′′ଵଵ,   ܥ′ଵଶ, and  ܥ′′ଵଶ.  Finally, the partial paths are 
recombined to generate two new cycles.  The two new cycles are selected arbitrarily 
from the four valid recombination options. For example, the two new paths can be the 
cycles which correspond to the recombinationܥ  ݏ′ଵ ൌ ଶ′ܥ  ଵଶ and′′ܥ||ଵଵ′ܥ   ൌ  ܥ′′ଵଵ||ܥ′ଵଶ (the operator || stands for concatenation of one chromosome in the inter-
nal point of another). Since the two parts of the chromosomes are mutually exclusive 
with respect to vertices there is no need for a repair operation. 

5   Simulation Results 

At this stage only the ITHC simulation has been completed. The GA based search is 
in advanced stages of development. With respect to ITHC we have performed  
experiments with randomly created graphs as well as graphs taken from the TSPLIB 
set of benchmarks [36]. In this section we show the results of the search as well the 
computation of the speedup that can be obtained by the VMM. 

Figure 3 shows the result of running the ITHC with randomly created graphs and 
demonstrates a speedup of more than 4x, obtained with GE and caching in a problem 
with 40 vertices (cities). So far, we have addressed problems with randomly generated 
graphs of up to 100 cities and obtained a speedup of about 4x. Note that this speedup 
is due to the greedy enumeration and caching and is not related to the VMM speedup 
detailed below. 

Table 1 shows the results of running the ITHC with TSPLIB benchmarks. The ex-
periments include greedy enumeration without cache. On the other hand an “infinite” 
memory model is assumed. That is, all the steps of all the climbers are stored in mem-
ory. Since the number of climbers is limited (1 million in these experiments) the 
available memory is sufficient to store the entire set of steps.  

The quality of the cycles is good. In several cases the cost of a cycle is the same as 
the best cost reported in TSPLIB in other cases a degradation of up to 1.5% is observed. 
This is tolerable given the simplicity and practicality of ITHC. In addition, real applica-
tions might include many more climbers. The dedicated memory demonstrates the any-
space features of the GE algorithm [29,30]. It also demonstrates the redundancy (%Dup) 
or the upper limit for improvement with cache (90% in some cases). 

5.1   The VMM Contribution to the Speed-Up of the ITHC Based TSP Solution 

We start with an upper bound on the speedup that can be obtained using the VMM 
with a problem of 256 cities (which requires a vector of 256 weights), then we show 
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the results of simulation with 100 cities. For the speedup simulation we are making 
the following assumptions: 1) the controller is working at 2 GHz or more. 2) The con-
troller bus to memory is operating at 2 GHz, and 3) The VMM is operating at a rate of 
125MHz. Note that assumptions 1 and 2 are conservative. The limiting factor is the 
access rate to the bus and 2 GHz is above the current state of the art. Using a bus with 
less bandwidth will increase the VMM speedup. Using a processor with higher fre-
quency will have a minor effect on speedup. 

In the VMM system a butterfly requires 4 addition or subtraction operations and 4 
accesses to memory. Hence, generating 256 butterflies takes about 3 ns. In addition  
 

 

 
Fig. 3. Number of instructions for a 40-city problem (GE) 

Table 1. TSPLIB Benchmarks 

 Best % Dup

ulysses16 100 85.5 
ulysses22 100 87.4 

gr24 100 86.4 
fri26 100 86.9 

bays29 100 91.1 
att48 100.2 93.6 

gr48 1M 101.5 90.1 
eil51 100.7 93.2 
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the controller may need to retain a copy of the best cycle out of 256 cycles; hence 256 
comparisons (subtractions) and additional 256 accesses to memory. This will take less 
than 2 ns. Hence, real time operation is maintained. This means that the controller can 
generate the vectors for the VMM in real time at a rate of operation of 125 million but-
terflies per second. Without the VMM, the controller has to calculate the cost of each 
cycle and maintain the cycle with the best cost. In the worst case, each butterfly requires 
copying the entire vector. Hence a butterfly involves 5 addition / subtraction operations 
(one more addition to adjust the final cost) and 260 accesses to memory. Additional 
overhead would be due to the need to maintain and update pointers to the memory. Un-
der the current assumptions this will take about 160 ns. Thus, a speedup of 20x is ob-
tained with the VMM. In the cases we ran with up to 100 cities, the simulation yields a 
speedup of about 8x which complies with the calculation for vectors of 256 elements. 

5.2   The VMM Contribution to the Speed-Up of the GA Based TSP Solution 

Each generation (of life of chromosomes) includes a percentage of mutations and a per-
centage of crossovers thus creating the next generation. Generally, the percentage of 
mutations is low; sometimes as low as 1%. Additionally, the size of the population with-
in a generation is generally in the order of one hundred hence the fact that the VMM can 
hold 256 vectors at a time fits well with the population number. In one of our models a 
population size of 256 is used along with the PMX and OX crossovers. In the second 
model, the VMM holds up to 128 vectors representing 128 cycles each of which is di-
vided into two mutually exclusive parts. This supports our new crossover operation. 
Under this model, we can efficiently handle TSP instances with up to 512 cities. 

Mutations are implemented as 2-Opt and are identical to the 2-Opt operations in 
the ITHC. Hence the speedup of the VMM for mutations is expected to be the same.  
In the worst case a classical crossover operation requires recalculating the cost of a 
cycle hence the classical crossover may require 256 additions as well as 256 memory 
writes. We assume that addition operation takes half of the time of memory access 
operation. Hence, the speedup due to the VMM is expected to be about 30X. The new 
crossover requires 512 additions and memory writes. Thus, problems with a large 
number of cities may be subject to a speed-up of 50x or more due to the VMM. 

6   Conclusions and Proposals for Further Research  

We presented a new state space representation which enables efficient implementation 
of TSP solution algorithms including hill climbing and genetic algorithms with a large 
number of cities as well as exhaustive search with a relatively small number of cities. 
The representation uses a weight incidence vector, a data structure that holds the 
weights of edges that are traversed by a given Hamiltonian cycle. In addition, we have 
presented the mapping of exhaustive search, ITHC, and GA TSP solution algorithms 
to a newly proposed electro-optical VMM architecture.   

We have performed a set of experiments with a sequential architecture and a simula-
tion of the effect of a proposed parallel implementation where a controller prepares the 
vectors according to a given algorithm and sends them in real time to the VMM.  In 
addition, the experiments demonstrate the effect of record keeping on the performance 
of these heuristics [6,37]. The simulation based estimation of the contribution of VMM 
to improved performance shows that the parallel electro-optical implementation has a 



142 D.E. Tamir  et al. 

potential speedup of 30x to 50x over sequential implementations in various variants of 
the TSP algorithms. 

In the future, we plan to explore porting additional parts of the search algorithm to 
the optical unit. In addition, we will consider using an FPGA, ASIC, or other types of 
dedicated hardware to implement an electrical unit that is designed for the TSP algo-
rithm. This unit will work directly with the SLM matrix and will supply a direct link 
for exchanging information between the controller and the VMM. In addition, we 
consider implementing other parts of the algorithm such as identifying the ܭ best so-
lutions on the optical unit. 

Acknowledgments. The last author is partially supported by the Rita Altura Trust in 
Computer Science. 
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