List of Journal Publications

As of 7/2019: (Citations=2821, h-index=32, source=Google Scholar)


1.      Fuchs, M. B., and Haj-Ali, R. M., A Family of Homogeneous Analysis Models for the Design of Scalable Structures, Structural and Multidisciplinary Optimization, 2, pp. 143-152, 1990. 

2.      Wang, S. S., Srinivasan, S., Hu, H. T., and Haj-Ali, R. M., Effect of Material Nonlinearity on Buckling and Postbuckling of Fiber Composite Laminated Plates and Cylindrical Shells, Composite Structures Journal, Vol. 33, pp. 7-15, 1995. 

3.      Ghaboussi, J., Pecknold, D. A., Zhang, M-F, and Haj-Ali, R. M., Autoprogressive Training of Neural Network Constitutive Models, Int. Journal Numerical Methods Engineering, Vol. 42, pp. 105-126, 1998. 

4.      Dokun, O.D., Jacobs, L. J., and Haj-Ali, R. M., Ultrasonic Monitoring of Material Degradation in FRP Composites, ASCE J. Eng. Mechanics, Vol. 126, No. 7, pp. 704-710, 2000. 

5.      Gullerud, A. S., Xiaosheng, G., Dodds, R. H., Jr., and Haj-Ali, R. M., Simulation of Ductile crack growth using Computational Cells: Numerical Aspects, Engineering Fracture Mechanics, Vol. 66, pp. 65-92, 2000. 

6.      Haj-Ali, R.M., Kurtis, K.E., and Sthapit, A. R., Neural Network Modeling of Concrete Expansion During Long-Term Sulfate Exposure, ACI Materials J., V. 98, No. 1, pp. 36-43, 2001. 

7.      Haj-Ali, R. M., Pecknold, D. A., Ghaboussi, J., and Voyiadjis, G., Z., Simulated Micromechanical Models using Artificial Neural Networks, ASCE J. Eng. Mechanics, Vol. 127, No. 7, pp. 730-738, 2001. 

8.      Haj-Ali, R. M., Kilic, M., and Zureick, A-H, Three-Dimensional Micromechanics-Based Constitutive Framework for Analysis of Pultruded Composite Structures, ASCE J. Eng. Mechanics, Vol. 127, No. 7, pp. 653-660, 2001. 

9.      Haj-Ali, R. M., Kilic, M., Nonlinear Behavior of Pultruded FRP Composites, Composites Part B: Engineering, Volume 33, No. 3, pp. 173-191, 2002. 

10.   Citipitioglu, A. M., Haj-Ali, R. H., and White, D. W., Refined 3D Finite Element Modeling of Partially-Restrained Connections Including Slip,” Journal of Constructional Steel Research (JCSR), Volume 58, Issues 5-8, pp. 995-1013, 2002. 

11.   La Saponara, V., Muliana, H., Haj-Ali, R. M., and Kardomateas, G., A., Experimental and Numerical Analysis of Delamination Growth in Double Cantilever laminated Beams, Engineering Fracture Mechanics, Vol. 69, No. 6, pp. 687-699, 2002. 

12.   Muliana, A. H., Steward, R., Haj-Ali, R. H., and Saxena, A., Artificial Neural Network and Finite Element Modeling of Nano-Indentation Tests, Metallurgical and Materials Transactions - A, Vol. 33A, No. 7, pp. 1939-1947, 2002. 

13.   Haj-Ali, R. M., Kilic, M., Nonlinear Constitutive Models for Pultruded FRP Composites, Journal Mechanics of Materials (MOM), Vol.  35, No. 8, pp. 791-801, 2003. 

14.   Kilic, M., Haj-Ali, R. M., Progressive Damage and Nonlinear Analysis of Composite Structures, Composites Part B: Engineering, Vol. 34, No. 3, pp. 235-250, 2003. 

15.   Haj-Ali, R. M.,El-Hajjar, R. F., Crack Propagation Analysis of Mode-I Fracture in Pultruded Composites using Micromechanical Constitutive Models,  Journal Mechanics of Materials (MOM), Vol. 35, No. 9, pp. 885-902, 2003. 

16.   Kilic, M., Haj-Ali, R. M., Elastic-Degrading Analysis for Pultruded Composite Structures, Composite Structures, Vol. 60, No. 1, pp. 43-55, 2003. 

17.   El-Hajjar, R.F, Haj-Ali, R. M., A Quantitative Thermoelastic Stress Analysis Method for Pultruded Composites, Composite Science and Technology Journal, Vol. 63, No. 7, pp. 967-978, 2003

18.   Haj-Ali, R. M., Muliana, A. H., Micromechanical Models for the Nonlinear Viscoelastic Behavior of Pultruded Composite Materials, International Journal of Solids and Structures, Vol. 40, No. 5, pp. 1037-1057, 2003.  (Impact Factor: 1.68, ISI-Citations=21)

19.   Muliana, A.H. and Haj-Ali, R. M., Nested nonlinear viscoelastic and micromechanical models for the analysis of pultruded composite materials and structures, Mechanics of Materials (MoM) Journal, Vol. 36, No. 11, pp. 1087-1110, 2004.  (Impact Factor: 1.9, ISI-Citations=16)

20.   El-Hajjar, R. F., and Haj-Ali, R. M., Infrared (IR) Thermography for Strain Analysis in Fiber Reinforced Plastics, Experimental Techniques, Society for Experimental Mechanics (SEM), Vol. 28, No. 2, pp. 19-22, 2004. 

21.   Haj-Ali, R. M., Muliana, A. H., Numerical Finite Element Formulation of the Schapery Nonlinear Viscoelastic Material Model, International Journal for Numerical Methods in Engineering (IJNME), Vol. 59, No. 1, pp. 25-45, 2004. 

22.   El-Hajjar, R. F., and Haj-Ali, R. M., In-plane Shear Testing of Thick-Section Pultruded FRP Composites using a Modified Arcan Fixture, Composites Part B: Engineering, Vol.  35, No.  5, pp. 421-428, 2004. 

23.   Haj-Ali, R. M., Muliana, A. H., A multi-scale constitutive formulation for the nonlinear viscoelastic analysis of laminated composite materials and structures, International Journal of Solids and Structures, Vol. 41, No. 13, pp. 3461-3490, 2004. 

24.   El-Hajjar, R. F. and Haj-Ali, R. M., Mode-I Fracture Toughness Testing of Thick Section FRP Composites using the ESE(T) Specimen, Engineering Fracture Mechanics. Vol. 72, No. 4, pp. 631-643, 2005. 

25.   Muliana, A.H. and Haj-Ali, R. M., Multi-scale Modeling for the Long-term Behavior of FRP Composite Structures, AIAA Journal, vol. 43, No. 8, pp. 1815-1822, 2005.

26.   Muliana, A.H. and Haj-Ali, R. M., Analysis for Creep Behavior and Collapse of Thick-Section Composite Structures, Composite Structures, Vol. 73, No. 3, pp. 331-341, 2006. 

27.   Haj-Ali, R., El-Hajjar, R. F., and Muliana, A. H., Cohesive fracture modeling of crack growth in thick-section composites, Engineering Fracture Mechanics. Vol. 73, No. 15, pp. 2192-2209, 2006. 

28.   Haj-Ali, R. and Muliana, A. H., A Multi-Scale Nonlinear Framework for the Long-Term Behavior of Layered Composite Structures, ASCE, Journal Engineering Mechanics, Vol. 132, Issue 12, pp. 1354-1362, 2006. 

29.   Haj-Ali, R., Kilic, M, and Muliana, A. H., Nested Nonlinear Micromechanical and Structural Models for the Analysis of Thick-Section Composite Materials and Structures, Composites Science and Technology, Vol. 67, Issue 10, pp. 1993-2004, 2007

30.   Haj-Ali, R. M., Kim, H-K, Nonlinear constitutive models for FRP composites using artificial neural networks, Mechanics of Materials (MOM), Vol. 39, No 12, pp. 1035-1042, 2007. 

31.   Haj-Ali, R. M., Wei, B-S, Johnson, S., and El-Hajjar, R.F., Thermoelastic and Infrared-Thermography Methods for Surface Strains in Cracked Orthotropic Composite Materials, Engineering Fracture Mechanics, Vol. 75, No. 1, pp. 58-75, 2008. 

32.   Haj-Ali, R. M., Kim, H-K, Koh, S-W, Saxena A., and Tummala, R., Nonlinear constitutive models from nanoindentation tests using artificial neural networks.  International Journal of Plasticity (IJP), Vol. 24, No. 3, pp. 371-396, 2008. 

33.   Muliana, A. H., and Haj-Ali, R. M., A Multi-scale Framework for Layered Composites with Thermo-rheologically Complex Behaviors, International Journal of Solids and Structures, Vol. 45, No. 10, pp. 2937-2963, 2008. 

34.   Haj-Ali, R.M., Dasi, L. P., Kim, H-S, Choi, J., Leo, H.W., and Yoganathan, A.P., Structural Simulations of Prosthetic Tri-leaflet Aortic Heart Valves, Journal of Biomechanics, Vol. 41, No. 7, pp. 1510-1519, 2008. 

35.   Haj-Ali, R. M., and Muliana, A. H., A micro-to-meso Sublaminate Model for the Viscoelastic Analysis of Multi-layered FRP Composite Structures, Mechanics of Time Dependent Materials, 12, pp. 69-93, 2008. 

36.   Haj-Ali, R.M., Choi, J., Wei, B-S, Popil, R., and Schaepe, M., Refined Nonlinear Finite Element Models for Corrugated Fiberboards, Composite Structures, Composite Structures, Vol. 87, No. 4, pp. 321-333, 2009.

37.   Haj-Ali, R., and Aboudi, J., “Nonlinear Micromechanical Formulation of the High Fidelity Generalized Method of Cells,” Int. J. Solids and Structures, Volume: 46 (13), pp. 2577-2592, 2009.

38.   Haj-Ali, R.M., Cohesive micromechanics: A new approach for progressive damage modeling in laminated composites, Int. J. Damage Mechanics, Vol. 18, No. 8, 691-719, 2009.

39.   Wei, B-S, Johnson, S., and Haj-Ali, R.,” A Stochastic Fatigue Damage Model for Composite Materials Based on Markov Chains and Thermography,” Int. J. Fatigue, Volume 32, Issue 2, Pages 350-360, 2010.

40.   Choon Hwai Yap, Hee-Sun Kim, Kartik Balachandran, Michael Weiler, Rami Haj-Ali and Ajit P. Yoganathan, " Dynamic deformation characteristics of porcine aortic valve leaflet under normal and hypertensive conditions," Am J Physiol Heart Circ Physiol 298:395-405, 2010.

41.   Joonho Choi, Heesun Kim and Rami Haj-Ali, "Integrated fire dynamics and thermomechanical modeling framework for steel-concrete composite structures," Steel and Composite Structures, Vol. 10, No. 2, 2010.

42.   Haj-Ali, R., and Aboudi, J., “Formulation of the high-fidelity generalized method of cells with arbitrary cell geometry for refined micromechanics and damage in composites," Int. J. Solids and Structures, Volume 47, Issues 25-26, pp. 3447-3461, 2010.

43.   Johnson, S., Wei, B., and Haj-Ali, R., " A stochastic fatigue damage model for composite single lap shear joints based on Markov chains and thermoelastic stress analysis," Journal of Fatigue and Fracture of Engineering Materials & Structures, Vol. 33, 897-910, 2010.

44.   Marom, G., Haj-Ali, R., Raanani, E., Schafers, H-J, and Rosenfeld, M.,” A fluid-structure interaction model of the aortic valve with coaptation and compliant aortic root," Medical & Biological Engineering & Computing, 50:173-182, 2012.

45.   Sasson A., Patchornik, S., Eliasy, R., Robinson, D., and Haj-Ali, R., “Hyperelastic Mechanical Behavior of Chitosan Hydrogels for Nucleus Pulposus Replacement - Experimental Testing and Constitutive Modeling,” Journal of the Mechanical Behavior of Biomedical Materials, Vol. 8, pp. 143-153, 2012.

46.   Haj-Ali, R., and Aboudi, J.,” Discussion Paper: Has Renaming the High Fidelity Generalized Method of Cells been Justified?” Int. J. Solids and Structures, Vol. 49, Issues 15–16, pp. 2051-2058, 2012.

47.   Choi, J., Haj-Ali, R., and Kim, H-S,”Integrated fire dynamic and thermo-mechanical modeling of a bridge under fire,” Structural Engineering and Mechanics, Vol. 42, 6, 2012.

48.   Haj-Ali R., Marom G., Ben Zekry S., Rosenfeld M. and Raanani E., “A general three-dimensional parametric geometry of the native aortic valve and root for biomechanical modeling,” J. Biomech., Volume 45(14), pp. 2392–2397, 2012.

49.   Marom G., Haj-Ali R., Rosenfeld M., Schäfers H.J. and Raanani E. Aortic root numerical model: Correlation between intra-operative effective height and diastolic coaptation.  J. Thorac. Cardiovasc. Surg. Vol 145(1), pp. 303–304, 2013.

50.   Marom, G., Haj-Ali,R., Rosenfeld, M., Schäfers, H-J, and Raanani, E., “Aortic root numerical model: Annulus diameter prediction of effective height and coaptation in post aortic valve repair,” Journal of Thoracic and Cardiovascular Surgery Vol. 145(2), pp. 406-411, 2013.

51.   Haj-Ali, R., and Aboudi, J.,” A New and General Formulation of the Parametric HFGMC Micromechanical Method for Two and Three-Dimensional Multi-Phase Composites” Int. J. Solids and Structures, Vol. 50 (6), pp. 907–919, 2013.

52.   Marom G., Halevi, R., Haj-Ali R., Rosenfeld, M., Schäfers H.J. and Raanani E. Numerical model of the aortic root and valve: Optimization of graft size and sinotubular junction to annulus ratio. The Journal of Thoracic and Cardiovascular Surgery, 146(5), 1227-1231, 2013.

53.   Marom, Gil, Kim, Hee-Sun, Rosenfeld, Moshe, Raanani, Ehud, and Haj-Ali, Rami. Fully Coupled Fluid-Structure Interaction Model of Congenital Bicuspid Aortic Valves:  Effect of Asymmetry on Hemodynamics.  Medical & Biological Engineering & Computing, 51(8): 839-848, 2013.

54.   Marom G., Peleg M., Halevi R., Rosenfeld M., Raanani E., Hamdan A. and Haj-Ali R., “Fluid-structure interaction model of aortic valve with porcine-specific collagen fiber alignment in the cusps.” J. Biomech. Eng., 135(10) , 2013.

55.   Shoham N, Sasson AL, Lin FH, Benayahu D, Haj-Ali R, Gefen A.,” The mechanics of hyaluronic acid/adipic acid dihydrazide hydrogel: Towards developing a vessel for delivery of preadipocytes to native tissues.” J Mech Behav Biomed Mater. 22;28C:320-331, 2013.

56.   Haj-Ali, R. and  El-Hajjar, R., An Infrared Thermoelastic Stress Analysis Investigation of Single Lap Shear Joints in Continuous and Woven Carbon-Fiber/Epoxy Composites. Int. J. Adhesion and Adhesives, Vol. 48, Pp. 210-216, 2014.

57.   Sasson Levi, A., Meshi, I., Mustacchi, S., Amarilio, I., Benes, D., Favorsky, V., Eliasy, R., Aboudi, J., and Haj-Ali, R., “Experimental Determination of Linear and Nonlinear Mechanical Properties of a Soft Laminated Composite Material System”, Composites Part B: Engineering, Vol 57, pp. 96-104, 2014.

58.   Haj-Ali, R., Zemer, H., El-Hajjar, R., and Aboudi, J., Piezoresistive Fiber-Reinforced Composites:  A Coupled Nonlinear Micromechanical-Microelectrical Modeling Approach, Int. J. Solids and Structures, Vol. 51(2), Pp. 491-503, 2014.

59.   Sharabi M., Mandelberg Y., Benayahu D., Benayahu Y., Azem A. and Haj-Ali R., A new class of bio-composite materials of unique collagen fibers. Journal of the mechanical behavior of biomedical materials, 36, 71-81, 2014

60.   El-Hajjar, R. and Haj-Ali, R, “An Infrared Thermoelastic Stress Analysis Investigation for Detecting Fiber Waviness in Composite Structures,” Polymer-Plastics Technology and Engineering, 53: 1251–1258, 2014.

61.   Halevi, R., Hamdan, A., Marom, G., Mega, M., Raanani, E., and Haj-Ali, R.,” Progressive Aortic Valve Calcification: Three-Dimensional Visualization and Biomechanical Analysis,” J. of Biomechanics, Volume 48, Issue 3, pp. 489–497, 2015.

62.   Sharabi M., Benayahu D., Benayahu Y., Issacs J., and Haj-Ali R., Laminated Collagen-based bio-composites for tailor designed soft tissue mimetics. Composites Science and Technology, 117, 268-276, 2015

63.   Mega M, Marom G, Halevi R, Hamdan A, Bluestein D, and Haj-Ali R. Imaging analysis of collagen fiber networks in cusps of porcine aortic valves: effect of their local distribution and alignment on valve functionality. Computer Methods in Biomechanics and Biomedical Engineering. 25, 1-7, 2015.

64.   Aboudi, J. and Haj-Ali, R.M., A fully coupled thermal-electrical-mechanical micromodel for multi-phase periodic thermoelectrical composite materials and devices, Int. J. Solids and Structures, 80, pp. 84–95, 2016.

65.   Haj-Ali, R., Eliasi, R., Fourman, V., Tzur, C., Bar, G., Grossman, E., Verker, R., Gvishi, R., Gouzman, I., and Eliaz, N. Mechanical characterization of aerogel materials with digital image correlation. Microporous and Mesoporous Materials 226, 44-52, 2016.

66.   Levi-Sassona, A., Aboudi, J., Matzenmiller, A., and Haj-Ali, R. Failure Envelopes for Laminated Composites by the Parametric HFGMC Micromechanical Framework.  Composite Structures. Vol. 140:15,pp. 378–389, 2016.

67.   Halevi, R., Hamdan, A., Marom, G., Lavon, K., Ben‑Zekry, S., Raanani, E., Bluestein, D., and Haj-Ali, R., Fluid–structure interaction modeling of calcific aortic valve disease using patient‑specific three‑dimensional calcification scans, Med. Biol. Eng. Comput., pp 1-12, 2016.

68.   Haj-Ali, R., and Aboudi, J.,” Integrated Microplane Model with the HFGMC Micromechanics for Nonlinear Analysis of Composite Materials with Evolving Damage” Int. J. Solids and Structures, Vol 90, pp. 129–143, 2016.

69.   Meshi, I., Amarilio, I., Benes, D., and Haj-Ali, R., "Delamination behavior of UHMWPE soft layered composites," Composites-B Eng., 98, pp. 166-175, 2016.

70.   Sharabi M., Varssano D., Eliasy R., Benayahu Y., Benayahu D., and Haj-Ali R., Mechanical flexure behavior of bio-inspired collagen-reinforced thin composites, Composite Structures, 153, 392-400, 2016.

71.   Haj-Ali, R., Massarwa, E., Aboudi, J., Galbusera, F., Wolfram, U., and Wilke, H-J, “A New Multiscale Micromechanical Model of Vertebral Trabecular Bones,” Biomechanics and Modeling in Mechanobiology, Vol. 16 (3), pp. 933–946, 2017.

72.   Eyass Massarwa, Jacob Aboudi, Fabio Galbusera, Hans-Joachim Wilke, and Rami Haj-Ali, “A nonlinear micromechanical model for progressive damage of vertebral trabecular bones,” Journal of Mechanics of Materials and Structures, Vol. 12 No. 4, pp. 407-424, 2017.

73.   Lavon, K., Halevi1, R., Marom, G., Ben Zekry, S., Hamdan, A., Schäfers, H-J, Raanani, E., and Haj-Ali, R.,” Fluid-Structure Interaction Models of Bicuspid Aortic Valves: The Effects of Non-Fused Cusp Angles,” J Biomech Eng 140(3), 2018. doi: 10.1115/1.4038329.

74.   Eyass Massarwa, Jacob Aboudi, and Rami Haj-Ali, “A Multiscale Progressive Damage Analysis for Laminated Composite Structures using the Parametric HFGMC Micromechanics,” Journal of Composite Structures, Vol. 188, pp. 159-172, 2018.

75.   Benayahu D., Sharabi M., Pomeraniec L., Awad L. Haj-Ali R. and Benayahu Y., Unique collagen fibers for biomedical applications. Marine drugs Journal, 16(4), 102, 2018.

76.   Uri Breiman, Jacob Aboudi, Rami Haj-Ali, “Semi-analytical compressive strength criteria for unidirectional composites,” Journal of Reinforced Plastics and Composites, Vol. 37(4) 238–246, 2018.

77.   Rotem Halevi, Ashraf Hamdan, Gil Marom, Karin Lavon, Sagit Ben-Zekry, Ehud Raanani and Rami Haj-Ali, A New Growth Model for Aortic Valve Calcification,” ASME Journal of Biomechanical Engineering, Vol. 140, 2018.  DOI: 10.1115/1.4040338

78.   Sharabi M., Wade K. R., Galbusera F., Rasche V., Haj-Ali R. and Wilke H-J. Three- dimensional microstructural reconstruction of the intervertebral disc using ultra-high field MRI. The spine journal, 18 (11),2119-2127, 2018.

79.   Sharabi M., Levi-Sasson A., Wolfson R., Wade K. R, Galbusera R, Benayahu D., Wilke H-J. and Haj-Ali R. The mechanical role of the radial fibers network within the annulus fibrosus of the lumbar intervertebral disc: a finite elements study. Journal of Biomechanical Engineering (2018), doi:10.1115/1.4041769. 141(2), 021006

80.   Sharabi, M., Wertheimer, S., Wade, K. R., Galbusera, F., Benayahu, D., Wilke, H. J., and Haj-Ali, R. Towards intervertebral disc engineering: bio-mimetics of form and function of the annulus fibrosus lamellae. Journal of the Mechanical Behavior of Biomedical Materials, Vol. 94, Pp. 298-307, 2019.

81.   Haj-Ali, R., Wolfson, R., and Masharawi, Y., “A patient specific computational biomechanical model for the entire lumbosacral spinal unit with imposed spondylolysis,” Clinical Biomechanics, Clinical Biomechanics., 68:37-44. doi: 10.1016/j.clinbiomech.2019.05.022, 2019.