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ABSTRACT 
The paper introduces a tensegrity robot consisting of 

cables and actuators. Although this robot has zero degrees of 
freedom, it is both mobile, and capable of sustaining massive 
external loads. This outcome is achieved by constantly 
maintaining the configuration of the robot at a singular 
position. The underlying theoretical foundation of this work is 
originated from the concept of Assur Trusses (also known as 
Assur Groups), which are long known in the field of 
kinematics. During the last three years, the latter concept has 
been reformulated by mathematicians from rigidity theory 
community, and new theorems and algorithms have been 
developed. Since the topology of the robot is an Assur Truss, 
the work reported in the paper relies on Assur Trusses theorems 
that have been developed this year resulting in an efficient 
algorithm to constantly keep the robot at the singular position. 
In order to get an efficient characterization of the desired 
configurations, known techniques from projective geometry 
were employed. The main idea of the control system of the 
device, that was also mathematically proved, is that changing 
the length of only one element, causes the robot to be at the 
singular position. Therefore, the system measures the force in 
only one cable, and its length is modified accordingly by the 
control system. The topology of the device is an Assur Truss – 
a 3D triad, but the principles introduced in the paper are 
applicable to any robot whose topology is an Assur Truss, such 
as: tetrad, pentad, double triad and so forth. The paper includes 
several photos of the device and the output data of the control 
system indicating its promising application. 
INTRODUCTION 
In recent years, there is a great interest in developing 
Deployable Tensegrity Structures due to its great potential for 

practical applications, such as: deployable bridges, space 
antennas and satellites [7], robots that can both deploy and fold 
and more. Tensegrity structures are well known in the 
literature. Tensegrity structures were first patented by R. 
Buckminster Fuller in 1962[1]. The analysis of a Tensegrity 
system requires a different approach from regular structures 
consisting of only rods, for example [2,3]. Tensegrity systems 
that can change their configuration were reported in the 
literature raising a problem of the difference between 
theoretical model and the actual system, for example, [4]. A 
further research with five modules and active shape control 
were discussed in [5]. The movement of a Tensegrity structure 
form one point to another along a prescribed path is presented 
in [6].  
The approach adopted in this work is different. The work 
reported in this paper relies on the properties of Assur Trusses 
in general, and particularly on the singular configuration 
property of that guarantees the rigidity of the structure.  
The mathematical foundation of this paper rests on different 
material, Assur Trusses [8], thus we do not give a 
comprehensive literature review.  
The paper introduces the following sections; In section 3 the 
concept of Assur Trusses is introduced and their special 
properties, particularly their difference from  regular 
determinate trusses.  For the sake of clarity, the mathematical 
foundation of this work is explained in 2D systems but the 
results and the output data of the control system is taken from 
the 3D prototype robot that was built in our laboratory. In 
section 4 we introduce the unique geometrical property of 
Assur Trusses, which is the mathematical foundation of the 
control algorithm that was developed in this work.  After the 
theory is introduced and explained in 2D, we proceed from 
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section 5 and introduce the 3D robot that was built. In section 6 
we introduce the Singular Configuration in the 3D robot and in 
section 7 the experimental results of the robot. In section 8 we 
discuss further research and conclusions. 
  

3. ASSUR TRUSSES AND ITS UNIQUE PROPERTIES 
In this section we introduce the concept of Assur 

Trusses. The idea of Assur Trusses (also known in the literature 
as Assur groups) raised from the mechanisms community, 
where it has been used in developing a systematic method for 
decomposing every linkage into kinematical components. 
There are several properties that exist in Assur Trusses, while 
in this paper, we use only two of them.  
First, we clarify the difference between regular trusses and 
Assur trusses.  
Definition of Assur truss: Let T be a determinate truss at a 
generic position, i.e., there is no algebraic dependence between 
its joints coordinates. T is an Assur truss IFF applying an 
external force at each joint results in forces in all the rods of the 
truss. For example, the truss appearing in Figure 1a is an Assur 
truss since applying a force at any of its joints: A, B or C yields 
forces in all the rods. This type of truss is called –‘Triad’. The 
structure of the robot reported in this paper is a 3D Triad. The 
truss in Figure 1b is not an Assur Truss since applying a force 
at joint B does not yield forces in rods (AB) and (AO3). 
Therefore, it is not an Assur Truss.  
 
 
 
 
 
 
 
 
 
 
Fig. 1: A structure that is an Assur Truss (a) Not an Assur truss 
(b). 
 
In the last three years, a work has been done to mathematically 
prove the existence of special combinatorial and geometrical 
properties in Assur Trusses [9].  The main geometrical property, 
upon of which the control algorithm reported in this paper is 
based on, was proved, and is given in the following theorem. 
 
Theorem 1: Let T be a determinate truss.   
T is an Assur Truss IFF there is a configuration in which there 
exists: 
a. A unique self-stress in all the rods. 
b. All the joins are mobile with one degree of freedom.  
Example of a singular configuration of the 2D Triad appears in 
Figure 2, where the characterization is that the continuations of 
the three rods: (O1,C), (O2,A) and (O3,B) intersect at the same 

point, denoted by O. Note that the latter point is the absolute 
instant center of the body {A,B,C}. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: The singular configuration of the Assur Truss- 2D Triad. 

4. THE MATHEMATICAL FOUNDATION OF THE 
CONTROL ALGORITHM OF THE ROBOT 

The main idea behind the control algorithm is as 
follows: 
Theorem 2: Let T be an Assur Truss in an arbitrary 
configuration.  
It is guaranteed that the singular configuration will be reached 
by changing the geometrical condition of only one link. 
The scheme of the Deployable Tensegrity robot in 2D appears 
in Figure 3. In 2D, the robot consists of three struts (actuators) 
and three cables. In one of the cables, in this case cable (BO3), 
there is a length control element which changes the length of 
the cable to assure that the system is constantly at the singular 
position state.  
The struts (actuators) are operated to expand and sustain the 
compression forces while the cables sustain the tension forces. 
A unit that measures the tension forces is attached to cable 
O3B. If the cable becomes loose, its length will be shortened by 
the length control element (Figure 3) which will retrieve the 
cable’s tension. Thus, according to theorem 2, it is guaranteed 
that this change will bring the system into its singular positions.  
 
 
 

 
Fig. 3: Scheme of the Adjustable Deploying Tensegrity Triad. 

5. INTRODUCTION OF THE 3D ROBOT 
In Figure 4 appears one floor of the Adjustable 

Deployable Tensegrity 3D prototype robot that was built in our 
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laboratory. The components of the robot depicted bellow are 
indicated in Figure 4 with the letters A-E.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: One floor of the robot and its components. 
(A) - An electric actuator (three overall) (B) -A coiling system 

for the cables (C) - Cables 
(D) - Load cells measuring tension (E) - Electric motors (three 

overall) 
 
 

 
Fig. 4a: The two floor prototype robot (left) and a model of the 

three floor prototype (right) 
 
6. SINGULAR CONFIGURATION OF THE 3D ROBOT 

Each floor (module) is a 3D triad consisting of two 
plates. A top plate and a bottom one. In each there are three 
important points: Ti and Hi for i=1,2,3 where Ti and Hi are 
points in the bottom plate and in the top plate respectively 
(Figure 5).  
It is well known that three points define a plane, thus applying 
the following equation, we derive the three planes, with which 
we define the singular position. Every plane is defined by three 
points, thus we define the following three planes through the 

six points mentioned above, as defined by the following 
equation (1). Note, the index numbers in the equation are 
modulo three, thus 4 becomes 1, and the symbol 'v' stands for 
joint operation.  
 
 
 

3,2,1iHTT 1i1iii =∨∨=∏ ++  (1)  
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B 
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Since the intersection between two planes is a line, the 

intersection of each of the three planes , i = 1,2,3 with the 
top plane creates three lines, with which we define the singular 
position as follows: 

iΠ

Conclusion 1: The 3D Triad is at a singular position when the 
three lines of the intersection between the three main planes 
and the top plane intersect at the same point. 
Thus, in order to maintain the stiffness of the device, that 
allows it to sustain external loads, the control system 
guarantees that the intersection of the three lines is constantly 
at a one single point. 

It is interesting to notice that the singular position of a 
2D Triad is also an intersection of three lines at a single point.   
 

 
Fig. 5: Description of the singular configuration of the device. 
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7. EXPERIMENTAL RESULTS 
The algorithm that was based on the theoretical work 

appearing in the previous section was implemented on a single 
stage system described in chapter 4.  The shape changes, which 
are described in the following results, include the deployment 
of the stage from a distance of 310 mm to 520 mm between the 
upper and lower plate and back to 310 mm. The duration of the 
deployment and the folding process was set to fifteen seconds. 
During the reported experiments, the tension in cable no. 1 was 
maintained around 20 Kilograms using an impedance control 
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algorithm. The tension in the other two cables was monitored, 
and compared afterwards with the required tension value. The 
latter determines the rigidity of the structure. The tension 
values in the three cables are depicted graphically in Figure 6. 
Another important feature that was measured, was the 

ajectory tracking of the struts and the cables. 
 
tr

 
Fig ly 

deploym each the 
20 Kg value of the force controlled cable. 

The results of the 
ables’ tracking are depicted in Figure 7. 

 

. 6:  The force developed in the three cables, while on
cable 1 (first graph) was force controlled during the 

ent process. Note that the other two cables r

 
The required tension in the force controlled cable was 20 Kg, 
the mean tension error (difference between the required tension 
and the actual one) in cable 1 was -1.3(3.5) Kg, in cable 2 -
4.47(5.2) Kg and in cable 3- 2.52 (4.87) Kg. The overall 
fluctuation in the cable tension is given by the STD written in 
the brackets. While folding the structure, the mean forces in the 
cables were lower than during the deployment process. The 
mean tension error in cable 1 was -2.17(2.35) Kg, in cable 2- 
2.94(3.4) Kg and in cable 3- 0.62 (3.3) Kg. 
c

 
Fig. 7:  The force developed in the three cables, while only 

cable 1 was force controlled during the folding process. 
 

 
Fig. 8:  Length change of cable 2 related to time. 

 
The important result is that applying a force control in only one 
cable, maintains the rigidity of the structure while changing its 
configuration from one position into another. There is a clear 
difference between the deployment and the folding processes. 
After exploring these phenomena, we concluded that it is due 
to the difficulty to maintain a certain tension in the cable while 
loosening it. Another conclusion that stems from the 
experiments’ results is that the response time of the winch 
system used for the length control of the cable is too long.  As a 
result there is a delay between the measurement and the 
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response. This might explain the relatively large overshoot in 
the force response graphs.        

8. CONCLUSION AND FURTHER RESEARCH 
In the paper we introduced the prototype of the 

Adjustable Deployable Tensegrity Robot including its 
underlying theory and some of the experimental results. The 
performance, as can be seen in the paper, impressively meets 
the theoretical conclusions. The result is a new device that can 
be both very loose and very stiff, and capable of sustaining 
massive external forces at any configuration.  

We intend to proceed and develop an algorithm that 
will find the best process for the shape changes of the robot in 
order obtain the desired configuration. Moreover, the intension 
is to create a smooth movement which is often disturbed by the 
equipment and the design of the prototype. 

Another direction that we are working on is 
developing another type of a Tensegrity Deployable robot using 
a different topology, for example, a Tetrad. The mathematical 
foundation remains the same and relies upon the Assur trusses, 
but the variety of the configurations is expected to extremely 
increase. 

 
 

REFERENCES 
[1] Skelton R.E., Adhikari R., Pinaud J. P., Chan W. and Helton 
J. W., An Introduction to the Mechanics of Tensegrity 
Structures, Proceedings of the 40th IEEE, Conference on 
Decision and Control, Orlando, Florida USA, December 2001, 
pp. 4254-4259 
[2] Crane C.D., Duffy J., Correa J.C., Static Analysis of 
Tensegrity Structures Part 1. Equilibrium Equations. 
Proceedings of DETC'02, 2002. 
[3] Crane C.D., Duffy J. Correa J.C., Static Analysis of 
Tensegrity Structures Part 2. Numerical Examples. Proceedings 
of DETC'02, 2002. 
[4] Fest E., Shea K., Domer B., F. C. Smith I., Adjustable 
Tensegrity Structures, Journal of Structural Engineering ASCE, 
April 2003, pp. 515-526 
[5] Fest E., Shea K., F. C. Smith I.Active Tensegrity Structure, 
Journal of Structural Engineering ASCE, October 2004, pp. 1-
12 
[6] Aldrich J.B., Skelton R.E., Kreutz-Delgado K., Control 
Synthesis for a Class of Light and Agile Robotic Tensegrity 
Structures, Proceedings of the American Control Conference, 
Coloradi June 2003, pp. 5245-5251 
[7] Gunnar Tibert ,"Deployable Tensegrity Structures for Space 
Applications", April 2002, Doctoral Thesis,Royal Institute of 
Technology Department of Mechanics, Stockholm , Sweden 
[8] Servatius B., Shai O. and Whiteley W., Combinatorial 
Characterization of the Assur Graphs from Engineering, 
accepted for publication in European Journal of Combinatorics, 
2009a. 

[9] Servatius B., Shai O. and Whiteley W., Geometric 
Properties of Assur Graphs, accepted for publication in the 
European Journal of Combinatoric, 2009b. 

 

ACKNOWLEDGEMENTS 
The authors would like to thank MAFAT for supporting 

this research. 

 

http://www.eng.tau.ac.il/%7Eshai/Publications/assur%20comb.pdf
http://www.eng.tau.ac.il/%7Eshai/Publications/assur%20comb.pdf
http://www.eng.tau.ac.il/%7Eshai/Publications/assur%20geo5.pdf
http://www.eng.tau.ac.il/%7Eshai/Publications/assur%20geo5.pdf

