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ABSTRACT 

It is well-known that structural mobility criteria, such as the Chebychev-

Kutzbach-Grübler (CKG) formula, fail to correctly determine the mobility of 

mechanisms with special geometries. Even more, any known structural mobility 

criteria also fail to determine the generic (i.e. topological) mobility since they are 

prone to topological redundancies 

A computational algorithm is proposed in this paper, which always finds the 

correct generic mobility of any planar and spherical mechanism. Its foundation is 

a novel representation of constraints by means of a constraint graph. The algo-

rithm builds on the 'pebble game', originally developed within combinatorial rigid-

ity theory for checking the rigidity of graphs. An extension of Laman's theorem is 

introduced that enables application of the algorithm to any planar or spherical 

mechanism with higher and lower holonomic kinematic pairs and multiple joints. 

The novel algorithm further yields the redundantly constrained sub-linkages of 

a mechanism.  In addition this algorithm naturally leads to a decomposition of a 

mechanism into Assur graphs, however this is beyond the scope of this paper. 

Keywords: Mobility, topological redundancy, pebble game, Assur graphs 

 

1. Introduction 

The mobility being the essential property of a mechanism has been a major 

matter of interest in mechanism theory. The approaches can be broadly classified 

as those that deal with the mobility of a given mechanism, with a particular geom-

etry, and those that aim on the generic mobility of a class of mechanisms with cer-

tain topology [1]. Methods of the first class attempt an explicit solution of the con-

straint equations or the approximation of the solution variety [13, 14, 15], possibly 

using tools from numerical algebraic geometry [16, 17]. Instead of considering a 

particular geometry, the second class approaches the problem from a structural 

point of view. These attempts have a long tradition and only need topological in-

formation about the existence of links and joints. The CKG formula is a well-

known topological mobility criterion. It is assumed that they generally yield the 
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generic mobility [6], i.e. the mobility of almost all realizations of a particular to-

pology. Although they are independent of any geometric data all such methods are 

sensitive to topological redundancy since these criteria only take into account the 

existence of joints and links but not their particular arrangement. 

The identification of topological redundancies requires graph-theoretic consid-

erations of the constraints and appropriate algorithms. Such an algorithm is pre-

sented in this paper. The basis for this algorithm is a graph representation of the 

constraints inherited from rigidity theory. This differs from the topological graph 

[3] often used in that it does not merely represent the arrangement of links and 

joints, but rather the system of constraints imposed to the links. This is presented 

in section 2, where the two established types (body-bar, bar-joint) are recalled and 

are mentioned briefly in the paper, and a novel type of constraint graph is intro-

duced. The mathematical theorem underlying the proposed computational algo-

rithm is given in section 3, and the actual computational algorithm is introduced in 

section 4. The algorithm is proved to converge to the unique generic mobility [9]. 

In order to motivate the application of this algorithm, an engineering interpretation 

of the steps and output of the algorithm is given. The application of the method is 

shown in section 5 for a simple example, and further interpretations of the output 

are discussed. The paper concludes with a brief outline of future work in section 6. 

The algorithm used in this paper, called pebble game, was developed in 1997 

[2] for checking whether a set of points subject to geometric constraints form a 

rigid structure. The use of this algorithm was also extended to check whether a 

graph consisting of rigid bodies is rigid or mobile as reported in [10]. In engineer-

ing, pebble game was applied to check the mobility of planar mechanisms consist-

ing of only binary links and limited to lower kinematic pairs [8]. It was proved 

that pebble game can decompose any mechanism with only binary links to Assur 

graphs in 2d and 3d [7]. The algorithm reported in this paper overcomes this limi-

tation and is applicable to any type of planar mechanisms with holonomic higher 

and lower kinematic pairs and multiple joints. 

2. Constraint Graphs 

The kinematic functionality of a mechanism is dictated by the geometric and 

topological constraints imposed on its bodies. The topological graph already 

relates bodies and joints but it does not explicitly represent the imposed 

constraints. To this end a constraint graph 𝐺 is introduced. In the following 𝛿 

denotes the generic mobility, 𝐺(𝐸, 𝑉) the constraint graph (undirected or 

directed), 𝑒(𝐺) = |𝐸| the number, and 𝑣(𝐺) = |𝑉| the number of vertices of 𝐺. 

The idea behind constraint graphs is to represent a mechanism as an abstract 

relation of ‘objects’ representing certain degrees of freedom (DOFs). These 

objects constitute vertices of the constraint graph, and are chosen so as to 

uniquely represent the mechanism’s configuration. They can stand for rigid 

bodies or points. The constraints between them are represented by edges. In this 

sense the graph represents a system of abstract constraint relations that possibly 

have different physical meanings (e.g. rotation or translation constraints). 
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There are several types of constraint graphs, such as Bar-Joint graph and 

Body-Bar graph, but the most general constraint graph, developed by the authors, 

applies to any type of planar mechanism is the mixed constraint graph below. 

In this paper we introduce a new type of graph, termed mixed constraint 

graph 𝐺 = (𝑉𝐵 ∪ 𝑉𝐽, 𝐸). In this graph a vertex 𝑣 can represent a rigid body, 𝑣 ∈

𝑉𝐵, as well as points, 𝑣 ∈ 𝑉𝐽.  That is, for a planar mechanism, each vertex of the 

mixed constraint graph embodies an object that can move in the plane, and its 

physical meaning follows from that of the body-bar and bar joint-graph. If a vertex 

represents a body then it possesses three DOFs. If it represents a point (i.e. the 

location of a joint) then it has two DOFs. Note, this type of constraint graph can 

also deal with multiple joints, a revolute joint connecting m bodies thus stands for 

𝑚 − 1 revolute joints with collinear axes. For example, in Figure 1.a, joint 𝐽1 is a 

multiple revolute joint while the other two joints, 𝐽2 and J3, are binary joints, i.e., 

connect between two bodies/links. 

           
 

3. Rigidity and Mobility of Mixed Graphs 

One of the main problems in checking the correct generic mobility of a mechanical 

system is to identify whether there is no sub-system having over-determinacy, 

redundant elements. A mathematical criterion for checking such non-existence of 

over-determinacy was established and proved in 1970 [4] for bar-joint graph, while 

in 1991 a mathematical criterion for body-bar graphs was reported [12]. These 

theorems give rise to the following theorem for mixed constraint graphs: 

Planar Mixed Laman theorem (Shai and Müller, 2013): A floating planar mixed 

constraint graph  𝐺 = (𝑉𝐵 ∪ 𝑉𝐽, 𝐸) with 𝑒(𝐺) = 3𝑣𝐵(𝐺) + 2𝑣𝐽(𝐺) − 3 is 

determined if and only if 𝑒(𝐺′) ≤ 3𝑣𝐵(𝐺′) + 2𝑣𝐽(𝐺′) − 3 for every subgraph 𝐺′ 

of 𝐺, where 𝑣𝐵(𝐺) and 𝑣𝐽(𝐺) = |𝑉𝐽| is the number of vertices corresponding to 

bodies and points/joints, respectively. 

Corollary: A floating planar mixed constraint graph  𝐺 = (𝑉𝐵 ∪ 𝑉𝐽, 𝐸) is non-

redundant if and only if 𝑒(𝐺′) ≤ 3𝑣𝐵(𝐺′) + 2𝑣𝐽(𝐺′) − 3 for every subgraph 𝐺′. If 

this condition is satisfied, the linkage has generic mobility 𝛿(𝐺) = 3𝑣𝐵(𝐺) +
2𝑣𝐽(𝐺) − 𝑒(𝐺) ≥ 3. 
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Figure 1. A linkage (a) whose mixed constraint graph (b) does not satisfy the 

mixed Laman theorem. 
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For example, the floating system in Figure 1.a is not determined since the 

corresponding mixed graph in Figure 1.b does not satisfy the Mixed Laman 

theorem. To prove that, let us choose the sub-graph spanned by the vertices:  

 V’ = {B1, B2, B3, J1} having 9 edges which is greater than 3 ⋅ 3 +  2 ⋅ 1 –  3 = 8, 

thus mixed Laman’s theorem is not satisfied.    

 

4. Pebble Game - A Computational Algorithm 

Pebble game is a very efficient algorithm to check if a graph satisfies the 

mixed Laman theorem and thus to check if there exists an overdetermined sub-

graph. The pebble game is of polynomial order in the number of vertices, 𝑂(|𝑉|)2 

and the required memory also grows quadratically, i.e. with  𝑂(|𝑉|)2 [5]. 

The main concept of the algorithm is to assign 'pebbles' to any physical object 

in the kinematic model (bodies, points) representing certain DOFs, and to remove 

them in course of the algorithm. The number of pebbles remaining after running 

the pebble game is equal to the generic mobility of the linkage. Aiming on the 

generic, i.e. topological, mobility the method operates exclusively upon the 

constraint graph, i.e. the topology, and a generic rather than a specific geometry is 

assumed. Redundancies due to special geometries are thus excluded. 

The pebble game starts with an unconstrained system, in the sense that the 

number of pebbles assigned to a vertex is equal to the DOF as if its members were 

not subject to any constraint. Denote with 𝑘(𝑣) the DOF of the object represented 

by vertex 𝑣. For planar constraints graphs 𝑘(𝑣) = 2 represents a point and 

𝑘(𝑣) = 3 a body. The algorithm is initialized by assigning 𝑘(𝑣) = 2,3 pebbles to 

each vertex 𝑣. That is, initially there are no constraints between the elements of a 

linkage, i.e. each element has 𝑘(𝑣) DOFs to move in the plane.  

Each edge of  𝐺 represents one constraint. Initially all constraints are inactive, 

i.e. all objects/vertices are unconstrained. An inactive constraint is represented by 

an undirected edge (constraint graph 𝐺 is initially undirected). During the pebble 

game the constraints are successively activated by directing the edges. This 

indicates that the DOFs of one vertex are depending on the DOFs of other vertices. 

In the algorithm this is achieved by removing a pebble from one of its end-

vertices. An undirected edge is termed admissible if the total of free pebbles next 

to its end vertices is at least four. Only admissible edges can be directed and can 

thus become active constraints. 

Input to the Pebble Game algorithm: 

The algorithm starts from the topological graph, i.e. an undirected graph as 

described in section 2. Each vertex 𝑣 represents a physical object that has 𝑘(𝑣) 

DOF.  

The Pebble Game algorithm: 

1. INITIALIZATION: Assign 𝑘(𝑣) pebbles to each vertex 𝑣 of the undirected 

graph, thus all edges are admissible. This is equivalent to regarding all 

mechanical objects, corresponding to the vertices, as unconstrained, i.e. each 

having 𝑘(𝑣) DOFs. 
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2. WHILE there exist admissible edges DO the following Orientation Move 

(Vertex - Edge move): 

Let (𝑢, 𝑣) be an admissible edge, i.e., the total sum of pebbles next to the two 

end vertices is at least 4. Remove one pebble from one of its end vertices, let 

it be vertex 𝑢, and replace the edge by a directed edge 〈𝑢, 𝑣〉, i.e., u becomes 

the tail and 𝑣 the head vertex of 〈𝑢, 𝑣〉. 

END WHILE 

After this loop there are no admissible edges left. This move corresponds to 

activating the constraint corresponding to the pebble removed from the tail 

vertex. The direction of the edge introduces a causality in the sense that one 

DOF of the tail vertex 𝑢 is assumed to be dependent on one DOF of the head 

vertex 𝑣. Note that this is an abstract assignment, i.e. it is not said that a certain 

DOF of 𝑢 is made dependent on a certain DOF of 𝑣. 

3. WHILE there are free pebbles left DO the following Reorientation move 

(Vertex - Vertex Move): 

Choose an undirected edge (𝑢, 𝑣) and make it admissible by bringing free 

pebbles to its end vertices by applying the following steps (peb(𝑣) denotes 

the number of pebbles at vertex 𝑣):  

Suppose peb(𝑣) < 2, if 𝑣 stands for a point, or peb(𝑣) < 3, if 𝑣 stands for a 

body. Then search for a vertex, say 𝑧, with free pebbles, i.e., peb(𝑧) > 0, for 

which there is a non-directed path from 𝑣 to 𝑧. Then redirect all edges within 

the path from 𝑣 to 𝑧 so to form a directed path, and move one pebble from 

vertex 𝑧 to 𝑣. Finally set peb(𝑧) ≔ peb(𝑧) − 1 and peb(𝑣) ≔ peb(𝑣) + 1. 

END WHILE 

 

5. Example of Applying Mixed Pebble Game 

In Figure 2 we apply the mixed pebble game to the mixed graph representing 

the linkage in Figure 1.a. 

Initially, all the bodies and joints have three and two pebbles, respectively, as 

shown in Figure 2.a. The orientation move is first applied and all the admissible 

edges are directed. For example, the two edges (𝐵1 , 𝐵3) and (𝐵1, 𝐽1) are 

admissible, thus can be oriented, since there are 6 and 5 pebbles respectively next 

to the two end vertices. Figure 2.b shows all edges that could be directed by 

applying the orientation move. Since there are no more admissible edges the 

reorientation move is being applied next. For example, in Figure 2.c edge (J2,B1) 

becomes admissible by moving one pebble from vertex B3 and one from B2 thus it  

can be oriented as shown in Figure 2.d. 
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Figure 2. Example of applying mixed Pebble game on mixed constraint graph. 

 

Applying reorientation move on edge 〈𝐵2, 𝐽3〉 brings a free pebble to vertex 𝐵2 

thus edge 〈𝐵2, 𝐵1〉 is now directed as shown in Figure 2.e. 

Now we are left with four free pebbles and one edge, (𝐽1, 𝐵3) unoriented.  It is 

possible to move 3 pebbles next to any two end vertices, thus we move them to the 

end vertices of edge (𝐽1, 𝐵3). For the sake of consistency, we move them to vertex 

B3 as shown in Figure 2.f. 

In Figure 2.f there are no edges that can be made admissible by applying the 

reorientation move and the algorithm terminates. The output of the algorithm 

allows for the following interpretations: 

Result 1: The most obvious result is the generic mobility of the associated linkage. 

Since the algorithm terminates with 4 free pebbles the planar linkage generically 

possesses 4 DOFs. 

Result 2: Besides the generic mobility the particular location of the pebbles 

indicates which links can be moved independently, hence can be used as control 

inputs. As we deal with floating planar linkages there are always 3 DOFs that 

correspond to the relocation of the linkage as a whole. In this example there are 4 

free pebbles. Each of the pebbles represents one DOF that can be independently 

controlled. The specific allocation of pebbles in figure 2.f, together with the 

original mechanism in figure 1.a, allows for an apparent interpretation: the 3 DOFs 

of 𝐵3 describe the location and orientation of the linkage in the plane, and the one 

pebble at  𝐽2 is a translation DOF of the location point of  𝐽2 that controls the 

internal shape.  
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Notice that  

1. The pebble at 𝐽2 is not the joint angle but one component of the location vector. 

2. There is no specific assignment of coordinates to the DOFs so that ANY 

generalized coordinate can be used to represent the DOF of 𝐽2. The pebble 

game algorithm operates on an abstract level and does not need specific 

selection of coordinates. 

3. The particular allocation of pebbles is not unique and can be controlled in 

course of the algorithm. Also the algorithm's result can be changed by 

application of the reorientation move (which does not change the number of 

free pebbles). For instance, in figure 2.f a free pebble is now assigned to vertex 

𝐽2. With a reorientation of 〈𝐽2, 𝐽3〉, this pebble can be moved to 𝐽3. Now the one 

independent DOF is assigned to 𝐽3. 

 

 

6. CONCLUSIONS AND OUTLOOK 

The paper introduces an efficient computational algorithm for determining the 

correct generic/topological mobility for any planar or spherical mechanism with 

higher and lower kinematic pairs, including multiple joints. The paper introduces a 

mixed constraint graph, which is a more general constraint graph than other graphs 

introduced in the literature, such as body-bar and bar-joint graphs. One of the 

salient conclusions of this paper is that, by using the mixed constraint graph, it is 

possible to represent any planar mechanism, and consequently to invoke the 

corresponding mixed pebble game algorithm. The latter is the main contribution of 

the paper: it determines the correct generic mobility of the mechanism modeled by 

a mixed constraint graph. The planar mixed Laman theorem, which is an extension 

of the well-known Laman theorem for bar-joint graphs, is given as a mathematical 

foundation of the algorithm. As mentioned in the paper, the novel mixed pebble 

game always converges to the correct generic mobility. Moreover it is discussed 

that this computational algorithm allows for decomposing any mechanism into its 

building blocks, namely Assur graphs. 

The reported algorithm applies to floating linkages, i.e. linkages that are not 

fixed to a ground. In a forthcoming publication, the mixed pebble game will be 

amended to include mechanisms (grounded mixed constraint graphs), which 

requires another type of constraint graphs. To this end the algorithm needs to be 

qualified so as to be able to treat immobile ground vertices. 
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