
 1 Copyright © 20xx by ASME 

Proceedings of the ASME 2011 International Design Engineering Technical Conferences & 
Computers and Information in Engineering  

IDETC/CIE 2011 
August 28-31, 2011, Washington, DC, USA 

DETC2011- 48146 
       The correction to Grubler criterion for calculating the  

                  Degrees of Freedoms of Mechanisms 
 

 

 

 

 

 
 
 
 
 
ABSTRACT 

   It is well known that the widely used Chybychev-Grubler 

Kutzbach’s criterion does not give the correct mobility for 

many mechanisms. In this paper we will show that if we add to 

the known Grubler equation the number of inner forces existing 

in the mechanism, termed self-stresses, we will derive the 

correct answer. The unique contribution of this paper is that it 

enables to find this correction on the given mechanism without 

any need to write the corresponding matrices or any equations. 

It should be noted that the correct mobility is obtained from the 

given configuration of the mechanism; that is the instantaneous 

mobility and not the global mobility.  

 

Introduction 

 

  The problem of identifying the correct mobility of 

mechanisms has been a source of concern for many researchers, 

as described for example in [1],[2]. The most simple equation 

used to compute the mobility of a mechanism is the 

Chybytchev-Grubler [3] , [4]formula, which for simplicity 

will be referred to in this paper as the Grubler equation. There 

are many published works that enable to find the correct DOF 

for a given mechanism, most of them rely on checking the 

corresponding  matrix of the mechanism, such as the Jacobian 

matrix [1]and [5]. There are other important works that go in 

other directions, such as Lie algebra [6] and general views, 

such as [7].  In this paper we do not give a comprehensive 

review on the works done in mobility since this work is aimed 

to enable engineers/students, once they get the mechanism, to 

calculate the correct DOF(degrees of freedom) only from the 

topology and configuration of the given mechanism. Our paper 

shows that if we add a correction to the Grubler equation we 

will have the correct mobility. This  

 

 

 

 

 

 

 

 

number is proved to be the number of inner self-stresses 

existing in the mechanism in the specific configuration. Thus, 

the paper deals with the instantaneous mobility and not the 

global mobility, although there are cases where it is the same, 

as shown in the paper. The examples appearing in the paper are 

for two dimensions, but the method is also applicable to 3d, as 

it can be followed from the underlying proof of the method.  

 

1.Grubler equation and its correction number 

 

Grubler equation is well known [4], and for 2d it can be 

written:    

            

)1(*2*3 HL PPNF 
 

 

where N denotes the number of links, PL and PH denote the  

number of low and high turning pairs.   

As widely reported in many studies, for example [1], this 

equation sometimes does not give the correct DOF. This paper 

shows that the difference between the correct mobility and 

Grubler’s result is the number of self-stresses. Thus, the 

corrected Grubler’s equation becomes: 

 

)2(*2*3 SSPPNF HL   

 

The focal point of this paper is to show how we find this 

number, that which we call the Grubler’s  correction and it is 

proven in section 4.  

For the sake of clarity all the mechanisms in the examples have 

only low turning pairs. 
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2.The Self-Stresses in Mechanical Systems 

 

 

                

   Self-stresses are inner forces that exist in the mechanical 

elements satisfying the force equilibrium around each joint. 

There are two types of self-stresses: geometrical 

(instantaneous) and topological. The former exists only for 

specific configurations, while the latter exists for almost any 

geometry for the given mechanism. For example, the 

determinate truss in Fig. 1a has a self-stress in the rods since it 

is at a singular position (the continuations of the three ground 

rods intersect at the same point). Thus, this is a geometrical 

self-stress and the truss has an infinitesimal motion. Once the 

truss moves an infinitesimal distance, it goes out of the singular 

position (the three lines do not intersect), there is no self-stress 

and the truss therefore becomes immobile.  

On the other hand, the truss in Fig. 1b constantly possesses a 

self-stress in the region {A,B,C,D}.  As a result, although 

Grubler’s equation yields zero DOF it constantly has a self-

stress and thus has a finite motion. 

The truss in Fig. 1c has a special property. It is both a triad, as 

in Fig. 1a, and is at the singular position, i.e. the continuations 

of the three ground links intersect at infinity. Due to the 

parallelism and the equality of the ground rods lengths, it is 

constantly at the singular for any configuration and it thus 

possesses a continuous self-stress. Therefore, Gruber’s 

correction remains throughout the entire cycle therefore it has a 

finite motion.     

 

Figure 1. – Example of different types of self-stresses 

a) Geometrical self-stress (Assur graph at the 

 singular position). 

                  b) Topological self-stress. 

                  c) Continuously geometrical self-stress. 

 

In the following section we introduce two methods for 

calculating the Grubler’s correction and all are performed on 

the mechanism. The examples are applied to structures which 

have geometrical self-stresses, i.e., Assur Graphs at the singular 

configuration. 

 

 

 

3.The two main methods for finding the Grubler’s 

Corrections 

 

  We start with the method that defines the minimum number of 

independent inner forces.  

 

3.1 The force method for finding Grubler’s Correction 
 

   In this method we search for the maximum number of 

independent forces that can act in the links, such that the force 

equilibrium around each joint is satisfied. Since each inner 

force defines a set of links where there are inner forces, termed 

self-stress set, this method searches the maximum independent 

self-stress sets. This number of independent inner forces is the 

Grubler’s correction.  

An example of applying the force method to calculate the exact 

dof is given in Fig.2. For the system in Fig.2.a, Grubler’s 

equation yields zero dof. In Fig.2b we apply inner force in link 

7 that defines the self-stress set – {7,8}. Applying an inner 

force within another link, not included in the existent self-stress 

sets (in this case link 5), yields a self-stress in links 

{5,6,1,2,7,8} defining the second set as shown in Fig.2 c.  The 

only links that do not belong to any set are {3,4}. However, 

applying an inner force in one of them, for example in link 4, 

does not define any self-stress set since around joint C there 

cannot be equilibrium of forces, as shown in Fig. 2d.  

In summary, there are two self-stresses, as shown in Fig. 2e.  

Thus the correction number is two, meaning, there are 2 dof for 

this specific geometry of the system. In Fig.2f we can see the 

two independent motions, which in this case are both 

infinitesimal motions. Joint B is mobile and links {5,4,3,1} can 

rotate with one dof, thus the exact number of dof for this 

configuration is two. 

 

Figure 2 – An example of finding the Grubler’s correction using 

the force method. 
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The pairs of the following links (1,2), (5,6),(7,8) and (3,4) are collinear 

 

   Another method for finding Grubler’s correction, i.e., number 

of self-stresses is based on the assembly process, as given 

below. 

 

3.2 The Assembly method for finding the Grubler’s 

correction 
 

  In this method we start to assemble the system and during the 

assembly we find the number of self-stresses. The case where a 

self-stress occurs is as follows: 

The assembly self-stress rule : If you have to add a link during 

the construction of the system in such a way that it is inserted 

between joints in which at least two of them are immobile, we 

will have an additional self-stress  

 

   For the sake of clarity, we apply the assembly method to the 

same problem that we had applied to the force method, as 

appears in Fig. 2. 

It is easy to verify that there is no problem assembling the first 

5 links, (Figs. 3a –3d), since at most one end joint of the links is 

immobile. The first problem arises in step – ‘e’ where link 5 has 

to be added while joint C is restricted to be collinear with link 

5, thus it cannot rotate and cannot move since joint D is 

immobile. The other end joint of link 5 is a pinned joint and 

thus is of course immobile. Therefore, according to the 

assembly self-stress rule, a new self-stress has been created. 

The process continues until step ‘i’ (Fig.3i) at which the two 

end joints of link 8 are again immobile, thus the second self-

stress is constructed. 

Note, any other order of assemble results with the same number 

of self-stresses.    

 

Figure 3 – An example of finding the Grubler’s correction using 

the assembly method. 

 

4. The mathematical proof underlying the proposed method 

 

   For sake of convenience, the proof relies on the mathematical 

foundation developed in rigidity theory[8]. It should be 

clarified that other proofs, relying on Jacobian matrices and 

other methods result with the same conclusion.  

The idea underlying Grubler’s equation is that each link has ‘d’ 

dof (d stands for the dimension)  and once we connect between 

two links (i.e, two rigid bodies) we add constraints and thus the 

dof is reduced. In the rigidity theory community this result is 

achieved differently. In this community we start with the free 

joints and at each iteration we add a link, i.e. constraint.  In this 

way we reduce the dof until the actual dof  is obtained. For 

simplicity, let us explain the idea on linkages whose joints are 

all of type revolute joints and each link is with degree two, i.e. 

it connects between two joints. In these linkages we start with 

2*j dof and adding each link reduces the dof by one.  Hence we 

have the following variant of Grubler equations: 

 

F = 2* J – N.        (3) 

 

  This relation can be written in matrix form, known as rigidity 

matrix [9],[10], with N rows and 2*j columns. For each link 

‘i’, whose end joints are U and V, should appear with four 

elements in row ‘i’ as follows; in column Ux: Ux – Vx and in 

column Uy: Uy-Vy. The same numbers with opposite signs 

appear in the two columns Vx and Vy as follows; in column 

Vx:  Vx-Ux and in column Vy: Vy – Uy. 

 

Example of mechanism, four bar link, for which we construct 

its corresponding rigidity matrix appears in Fig 4.  
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Figure 4 – An example of a mechanism (a) and its 

corresponding rigidity matrix (b) 

 

  The columns of the rigidity matrix span the space of the 

velocities where the rows span the space of forces. The kernel 

of the dimension of the columns is actually the dof of the 

mechanism. If the rows are independent, the kernel of the 

matrix is then equal to 2*V – N. In the case where the rows are 

dependent, i.e., the rows of the forces, it follows that there in 

those rows that are dependent there exist inner self-stresses. Let 

us denote the kernel of the rows by SS, i.e., there are SS 

independent self-stress that span the kernel space of the rows. 

Thus, the dimension of the kernel of the columns also increased 

by SS, which means the dof are increased by the number SS.  

Therefore, we result with the following equation: 

 

F =  2*V – N + SS.   (4) 

 

  From the above, since we did not relate to the dimension of 

the mechanism it follows that Grubler’s correction is applied 

also to spatial mechanisms. It can be verified that in the known 

example of parallel Cartesian robotic manipulator in [1] where 

Grubler’s equation yields erroneous result, the Grubler’s 

correction number is four, i.e., there are four self-stresses.  

 
 

Conclusion and Further Research 

 

  The paper shows that it is possible to add a correction to the 

known Grubler’s criterion and obtain the correct dof for the 

given mechanism. As mentioned in the introduction, this 

corrected dof result is instantaneous, that is, for the given 

configuration, although there are cases, as shown in Fig. 1 

where it also gives the global dof. The idea is to proceed and 

obtain a correct mobility result for both cases: instantaneous 

and global. We can expect this objective to be achieved since 

there is much ongoing reaseach to find the global dof, using a 

novel algorithm, pebble game.  We hope that combining the 

two approaches will yield the needed result. Both methods 

work on the mechanisms without the need to write the 

corresponding matrices or velocity equations. 
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