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Abstract: The instantaneous duality (known also as symmetry) 

between serial chain manipulators and fully parallel systems is 

well known in the literature. This paper takes this idea one step 

further, by introducing a systematic method that transforms one 

mechanical system into another. This duality concept rests on the 

concept of dual graphs to define the kinematics of the dual 

system. The mechanism structure can be represented in two 

essentially different ways: its kinematic topology or its 

constraint system. The first is embodied by the topological graph 

and the second by the constraint graph. The dual to a topological 

graph is a constraint graph and vice versa. Hence there are 

various ways to introduce a dual topology. The dual kinematics 

is defined by instantaneously identifying the twist screws in the 

original system with the wrench screws of the dual. This 

identification allows carrying over statements from the original 

to the dual system. In particular it is shown that the singularities 

can be easily established in the dual if they are known in the 

original system. This concept of transference is a powerful tool 

since a variety of dual systems can be assigned to a given 

system. This idea is demonstrated for a Bricard mechanism that 

is instantaneously dual to a 6/6 Stewart platform at a singular 

position, and in a another configuration (resembling the 

cyclohexane molecule) is dual to the 6/3 Stewart platform at the 

singular position. This provides another perspective of the 

known mobility of this molecule. 

Keywords: dual mechanisms, dual screw systems, dual graphs, 

singularities 

1. Introduction 

Duality has been proposed as a way to analyze a 
mechanism by considering another mechanism that is 
referred to as its dual. There is no unique mechanism 
that can be called ‘dual’ to a given mechanism, however. 
Moreover there are various ways to associate a 
mechanism dual to a given one. The aim of this paper is 
to propose a systematic duality concept that combines 
the concept of dual graphs and self-dual screw systems. 

The aim of introducing a mechanism dual to a given 
mechanism is to transfer statements that can be made 
for one to the other. These statements are specific to 
particular the kinematics, i.e. the topology and geometry.  

The construction of a dual kinematics involves two steps:  

1. Designation of the dual screw system, and the  
2. Designation of a dual topology. 

Since the ‘duality’ in question is a design concept, rather 
than a mechanical principle, none of the two steps has a 
unique solution. 

This freedom in defining dual objects allows for 
introducing a dual mechanism may be helpful for 
synthesis and understanding the original mechanism. 

The notion of duality of serial and parallel manipulators 
was presented by Waldron & Hunt. In their original paper 
[1] they identified the joint screws of a 6R serial 
manipulator with the linear actuator forces of a fully 
parallel platform. This particular assignment implies that 
the screw system of the original manipulator and its dual 
are identical. It also implies that the dual topology of an 
open serial chain is a parallel platform. The latter 
assumption was concluded by observing the role the 
Jacobian, i.e. the screw system, plays for the velocity 
transformation in the serial and the force transformation 
in the parallel manipulator. In order to establish a 
systematic foundation for introducing the dual 
topologies, Shai [2] applied the concept of dual graphs, 
where mechanisms were represented as bar-joint graphs. 
Along this line the special class of parallel manipulators 
with self-dual topologies was investigated by Lambert & 
Herder in [3], and it was shown how results obtained for 
the dual manipulator can be employed for the analysis of 
the original one. 

In all publications the (instantaneous) screw system of 
the dual mechanism is identified with the screw system 
of the original mechanism. The reason for this, and the 
actual motivation for introducing the duality concept, is 
that any statement about the instantaneous kinematics 
of a mechanism can be transferred to its dual, and vice 
versa. From the outset the duality is only instantaneous. 
Consequently it is in general not possible to transfer 
about global properties like the finite mobility or 
singularity loci. In [4] Bruyninckx classified two serial 
manipulators as being instantaneously dual if their screw 
systems are instantaneously equal. In [5] Gosselin & 
Lallemand analyzed the duality of redundant serial and 
parallel manipulators and suggested to adopt control 
schemes established for redundant serial manipulators to 
their parallel duals. 

In this paper the notion of dual graph is used to define the 
dual mechanism. The concept rests on the representation 
of mechanism topology by a topological graph and a 
constraint graph introduced in section 2. The definition of 
the dual graph to a planar graph is recalled in section 4.1. 
This is used to introduce the dual to the topological graph 
in section 4.2 and to the constraint graph in section 4.3. 
The dual to a topological graph is interpreted as constraint 
graph, and the dual to a constraint is interpreted as 
topological graph. Together with the dual screw system 
they define the dual mechanism. In section 5 three types 
of duality are introduced: instantaneous, local, and global. 
This paper deals with instantaneous duality. A few 



examples are presented in section 6 that show how 
duality can be used to identify instantaneous kinematic 
properties of a mechanism upon its dual.  

2. Graph Representation of Mechanisms 

2.1 Topological Graph   

The topology, i.e. the arrangement of bodies and joints 
can be represented by a topological graph         
where the vertices     represent bodies, and an edge 
            represents the existence of a joint 
between the bodies represented by   and  . In most 
mechanisms there is no more than one joint between 
two bodies, hence there is at maximum one edge 
between two vertices of  . The number of edges is 
denoted with   

      .  

If moreover only 1-DOF joint are assumed, the 
topological graph represents possible 1-DOF relative 
motions of adjacent bodies. The edges of the topological 
graph thus have the physical meaning of relative twists of 
adjacent bodies. Hence to any edge   can be associated 
an instantaneous relative twist     ̇   , where    is 
the instantaneous screw coordinate vector of the relative 
twist (commonly expressed in the spatial frame), and  ̇  
is the generalized speed of the joint represented by the 
edge   (here    is the joint variable). In other words the 
topological graph is a basic representation of the 
mechanism kinematics. 

2.2 Constraint Graph   

The topological graph provides information about the 
relative DOF of adjacent bodies. The freedom of a 1-DOF 
joint is represented by one edge. Alternatively to 
representing the ‘motion elements’ of a mechanism, as in 
the topological graph, the constraint system can be 
represented the constraint graph        . Vertices of   
still represent bodies, but now a vertex            
indicates the existence of one constraint between the 
bodies   and  . A (lower pair) 1-DOF joint imposes five 
constraints, i.e. edges, between adjacent bodies. It 
should be remarked that the constraint graph with 
vertices representing bodies is commonly called body-bar 
graph [6]. The number of edges is denoted with 

  
      . For mechanisms with 1-DOF joints   

     
 . 

As an example the constraint graph for the 
overconstrained Bricard mechanism is shown in figure ??.  

The edges of   have the physical meaning of constraint 
wrenches. Hence to an edge      can be assigned a 
wrench        

 , with instantaneous screw coordinate 
vector   

   and intensity   . 

Edges of   represent kinetostatic variables (wrenches) 
that are dual to these of   (twists). Both graphs represent 
the same mechanism, however. Moreover the relative 
twist screw of the joint connecting two bodies, 
represented by edge   in the topological graph  , is 
reciprocal to the five constraint wrenches represented by 
the edges between these bodies in the constraint 
graph  . Since there is a 5-dimensional variety of 
constraint wrenches reciprocal to a joint screw, this 
assignment is not unique. On the other hand the twist 

screw of a joint is reciprocal to itself and thus provides 
one unique reciprocal screw giving rise to one unique 
constraint wrench. 

3. The Dual Screw Systems 

3.1 Self-Dual Twist and Wrench Systems 

A twist is represented by a 6-vector of the form 
        , where      is the angular and      
the translational velocity. A twist can be expressed in 
terms of the speed magnitude   and screw coordinates 
             , as     , where   is the pitch. 

Wrenches are represented by 6-vectors of the form 
        , where      is the torque and      the 
force of the couple. The screw coordinates of the couple 
generated by a force      acting at the point       is  
              . The wrench is thus determined 
by the magnitude   and the screw coordinate vector.  

A screw coordinate vector   can either represents a twist 
or a wrench. Using the above notation convention the 
rotational and translational part of twists and wrenches 
are interchanged, since the direction unit vector   of the 
screw represents the angular velocity and force, 
respectively. 

Twists are elements of the vector space          –the 
Lie algebra of screws. As to any vector space, there is a 
dual space, denoted       , consisting of linear 
operators on      . These can be identified with 
wrenches that are represented by screw coordinate 
vectors            . Therefore when considered as 
linear operators the wrench screws are occasionally 
called co-screws. The pairing of      and      is 
given by the reciprocal product               
which has the physical meaning of power. 

With the dual meaning of screws the notion of dual screw 
system was introduced in [1]. The conceptual idea is to 
identify the screws    associated to the joint twists with 
the screws   

  defining the wrench system of another 
mechanism that is called the ‘dual mechanism’. In the 
following a wrench and twist system that have an 
identical screw system, i.e.      

 , are called self-dual. 

Self-dual screw systems have the property that by 
definition the wrench         is reciprocal to the twist 
    ̇   

 . Moreover    is a unique constraint wrench 
reciprocal to the joint twist   . 

3.2 Introducing a Dual Screw System 

As described in section 2 a mechanism can be 
represented by the topological graph   or the constraint 
graph  . Edges of   stand for joint twists, and edges of   
for joint constraint wrenches. In either case screws are 
assigned to the edges that constitute a screw system. The 
dual screw system is defined as the self-dual system. 

Given a screw system   (  ) representing joint twists 
(constraint wrenches) of a mechanism, the dual screw 
system    ( ) representing constraint wrenches (joint 
twists) is defined is defined via the identification     . 

Yet nothing is said about the kinematics and topology. If 
the dual screw system is supposed to be the screw system 
of a (yet to be defined) dual mechanism, the dual 



topology must necessarily contain the same number of 

edges as the original (  
  or   

 ). This can be achieved 
making use of the concept of dual graphs described 
below. 

4. Dual Topologies 

4.1 Duality of Planar Graphs 

A planar graph is a graph   that can be embedded in the 
plane without any edge intersecting. To a planar graph   
can be associated a geometric dual graph    with the 
same number of edges. This rests upon the notion of 
faces (a face is a region surrounded by a cycle without 
any edges reaching from the cycle into the region). As the 
plane embedding of the topological graph of a 
mechanism is not unique there can be different non-
isomorphic geometric dual graphs. However, it is 
desirable that this relation is in a sense one-one. The 
question is whether the dual of the dual    is isomorphic 
to the original  . It is known ( [7], theorem 5.10) that this 
is only so if    is the combinatorial dual of  . This is so if 
there is  a one-one correspondence of the edges in   
with the edges in    such that a subset of the edges in   
forms a cycle if and only if the corresponding set of edges 
in    forms a cut-set. This is a more general notion of a 
dual graph since it does not rely on the faces of   but is 
based on the cycles in  . Therefore the combinatorial 
dual is used in the following. 

This applies to any graph, and in the following the dual of 
the topological graph   and of the constraint graph   will 
be used. 

Accepting that the vertices in the original graph and in its 
dual represent bodies, the idea is to define a dual 
mechanism with topology defined by the dual graph. 
Notice that this duality is a conceptual construct rather 
than a mechanical principle. 

4.2 The Dual of a Topological Graph   

Yet the dual screw system is not assigned to a dual 
kinematics. The dual kinematics is determined by the 
dual to the graph representing the mechanism.  

The topological graph indicates the existence of joints 
between adjacent bodies. An edge in   gives rise to an 
edge in the dual   . The dual of a topological graph is a 
constraint graph. Hence there are as many constraint 
wrenches in the dual as there are joints in the topological 
graph, namely   

 . Vertices of the dual constraint graph 
correspond to bodies in the dual mechanism. Clearly the 
number of vertices (bodies) in the topological graph 
differs from the number of vertices in the dual constraint 
graph. 

This is shown for the Bricard mechanism in Figure 1. The 
topological graph comprises 6 vertices (bodies) mutually 
connected by 1-DOF joints. Hence the dual topology 
consists of two vertices (bodies) and 6 wrenches between 
them. This mechanism is identified as a Stewart platform. 
The constraint graph of the latter is the dual to the 
topological graph of the former. 

Remark: Waldron & Hunt [1] introduced the concept of 
serial-parallel duality, and a platform connected to the 

ground by   kinematic chains was identified as the dual 
mechanism to a serial chain with   joints. This is not 
conforming to the dual topology deduced from the dual 
of the topological graph. The dual topology of an open 
chain with   joints is a single body where   wrenches 
acting within the body. Within the dual graph approach 
the end-effector of the serial chain must be connected to 
ground so forming a loop, i.e. the end-effector 
configuration is specified. 

 

Figure 1 Bricard mechanism a1) and its topological graph a2). 
Steward platform b1) and its constraint graph b2) when only 
the platform P and the ground Gr are considered. Superposition 
of the topological and constraint graph of the mechanisms c).  

4.3 The Dual of a Constraint Graph   

The constraint graph contains one edge for each 
constraint wrench. The dual of a constraint graph   is a 
topological graph   . An edge in   corresponds to an 

edge in   , and both have   
  edges. Indeed the number 

of vertices, i.e. bodies is different.  

Figure 2 shows this for the Bricard mechanism. The 
constraint graph consists of 6 vertices (bodies) mutually 
connected by 5 edges (constraints). The dual topology 
consists of two vertices (bodies) that are connected by 6 
kinematic chains, each containing 5 joints and 4 bodies. 
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Figure 2 Constraint graph of the Bricard mechanism a), and the 
dual graph b) (also superposed to the constraint graph). 

4.4 Fundamental Cycle and Cut Sets 

The graph   possess     
        fundamental 

cycles (this is the cyclomatic number). The number of 
fundamental cycles of   is equal to the number of 
fundamental cut sets of its dual   . Figure 3 shows this 
for the topological graph of the Bricard mechanism. That 
is, to any fundamental cycle corresponds a fundamental 
cut set. 

 

Figure 3 a) The topological graph   of the Bricard mechanism 
has one fundamental cycle   . b) Its dual graph    has one 
fundamental cut.  

5. The Dual Mechanism 

Combining the dual topology and the dual screw system 
gives rise to the dual mechanism. That is, the dual 
topology determines how the dual screw system is 
arranged in the dual mechanism.  

The mechanism dual to the topological graph of the 
Bricard in Figure 1a) turns out to be a structure 
equivalent to a Stewart platform in Figure 1b) where the 
wrenches are actuation forces. Notice, however, that 
only the forces acting on the platform are specified, the 
actual joints connecting the linear actuators are arbitrary.  

When starting from the constraint graph of the Bricard 
mechanism the dual mechanism is a parallel manipulator 
in Figure 2 consisting of a moving platform connected to 
a fixed platform by 6 kinematic chains. Each of the 6 
chains contains consists of 5 1-DOF joints. 

Obviously, for a given mechanism, the actual dual 
mechanism depends on the graph representation that is 
used to define the dual graph. Moreover, the 
identification of the screw dual system is generally only 
possible in a specific configuration. For instance, since the 
Bricard and its dual Stewart platform have a different 
kinematic it is clear that the identification of the joint 
twist screws of the Bricard with the constraint/actuator 
wrench screws is only valid in particular configurations.  

To generalize this a classification of the duality is in order. 
From a kinematic viewpoint instantaneously a 
mechanism is uniquely defined by its joint screw system   
and its topological graph  . A mechanism is thus 
symbolized by       .   describes the topology, i.e. the 
arrangement of joints and bodies. From a static viewpoint 
instantaneously a mechanism is uniquely defined by the 
screw system    defining (constraint) wrenches between 
interconnected bodies and its constraint graph  . This is 
symbolized by         .   describes the presence of 
constraints between the bodies.  

These are two equivalent descriptions of mechanisms 
since a given mechanism can be described by   or   . 
Denote with   the vector of generalized coordinates 
(joint angles) describing the mechanism’s configuration, 
and with   the mechanism’s configuration space (joint 
space). Assume that the topological graph is planar. 

 

Definition 1: 

       is instantaneously dual to          at the 
configuration    , iff            and   is the dual 
graph of  . 

       is locally dual to          at    , iff its 
instantaneously dual to          on a subvariety of   
containing  , and   is the dual graph of  . 

       is (globally) dual to         , iff it is locally dual 
to          at any configuration    . 

 

The dual mechanism to        is thus          . 

Analogously    can be defined to be dual to   by simply 
interchanging them, and   and  , in the above definition. 
This duality is not reciprocal, i.e.   being dual to    does 

a) 

b) 



not necessarily imply that    is dual to  . This is so 
because the dual of a graph is not unique. 

In this paper only instantaneous duality is considered. 

6. The Dual Instantaneous Kinematics 

6.1 Kinematic-Static Equivalence 

By construction the (instantaneous) screw system of the 
original mechanism and its dual are identical, i.e. the 
twists of one and the wrenches of the other have the 
same geometry. This was called self-duality. The 
significance of this instantaneous duality of two 
mechanism is that (instantaneous) statements made for 
one mechanism can be carried over to the other.  

Consider the instantaneous duality of Bricard mechanism 
and Stewart platform for instance. The Bricard 
mechanism has one kinematic loop and satisfies the loop 
closure condition 

∑ ̇   

   

                                            

The Stewart platform satisfies the wrench closure 
condition 

∑     

    

                                            

In general, as explained in section 4.4, (with appropriate 
labeling) the fundamental circuits    of   are the 
fundamental cut sets of   . Then the kinematic loop 
closure condition for        is 

∑  ̇   

    

                             

and the static balance for          is  

∑     

    

                            

Hence the rank of the screw system, i.e. the dependence 
of    is crucial. This reveals in particular the 
instantaneous mobility of the mechanism        and 
the wrench closure of          . 

6.2 Instantaneous Mobility and Singular 
Configurations 

The (instantaneous) constraint system of dual 
mechanisms is deduced from the (instantaneous) 
kinematics of the original mechanism. Duality can hence 
be used to conclude the (instantaneous) kinematic 
properties of a given mechanism by looking at its dual 
and vice versa.  

Conditions for screw systems having a certain rank have 
been the subject in kinematics and geometry, and 
according classifications of  -systems exist, e.g. [8, 9, 10, 
11]. On the other hand the conditions for the dual 
mechanism being in a special configuration where the 
screws become linear dependent can possibly be 
identified by inspection or may be known already. Then 
this allows identification of special configurations of the 
original mechanism. A few examples are presented in the 
following. 

1.) Consider again the Bricard mechanism in Figure 1a). 
The condition for the overconstrained Bricard mechanism 
to be mobile is that the 6 joint axes intersect a common 
line; they form a 5 system. This property is 
(instantaneously) shared by its dual, the Stewart platform 
in Figure 1b). Hence only 5 actuation wrenches of the 
latter are linearly independent, and the manipulator is in 
a singularity (force singularity, parallel singularity). 
However, the kinematics of both mechanisms is different. 
The geometry of the Bricard mechanism is such that the 
dependence is preserved in all configurations, which is 
the condition for mobility. For the Stewart platform this is 
a special configuration where the platform cannot 
withstand a torque about the line that all actuator forces 
intersect. In this example the Stewart platform is 
constructed as the dual           of the Bricard 
mechanism       .  

2.) Starting from the constraint graph description        
of the Stewart platform (modeled as two platforms), a 
Bricard mechanism can be defined as its dual          . 
Consider the 6/3 Stewart platform (6 anchor points on the 
ground and 3 at the platform) in Figure 4a). The six screws 
correspond to the actuator forces. The dual mechanisms 
is the single-loop 6R Bricard mechanism in Figure 4b). The 
condition for a force singularity are indicated in Figure 4a). 
This condition is retained by the closed loop 6R 
mechanism which ensures its mobility. This particular 
mechanism is kinematically equivalent to the cyclohexane 
molecule (Figure 4d), which is known to be mobile with 1 
DOF. 



 

 

Figure 4 6/3 Stewart platform (a1) and its constraint graph (a2). 
Its dual 6R Bricard mechanism (b1) and its topological graph 
(b2). The cyclohexane molecule (d) is a physical realization of 
the 6R mechanism. 

3.) Instead of representing the 6R Bricard mechanism as 
       using the topological graph, it can also be 
represented as        using the constraint graph in 
Figure 2a). The dual topology is shown in Figure 2b). 
Combined with the screw system this leads to the dual 
mechanism in Figure 5. This is a moving platform connect 
with 6 chains to the fixed platform/ground. Since the 
constraint wrenches for the revolute joints in the Bricard 
mechanism are not unique, the joint screws, and thus the 
joints in the chains are not uniquely specified. Any 
combination of joints can be used as long as their screws 
are reciprocal to those of the revolute joints in the Bricard 
mechanism. Consequently all statements about the 

instantaneous kinematics of the Bricard mechanism apply 
to all platforms of this class.  

By construction all 5 joint screws of a chain of the 
platform are reciprocal to the corresponding screw of the 
revolute joint in Bricard mechanism. The fact that all 
revolute joint axes intersect a common line implies that 
the platform cannot withstand a torque about this 
common line. This holds for any such platform dual to the 
Bricard mechanism        regardless of the particular 
assignment of the 5 joints within the respective chain. 

This example shows the potential of the duality concept. 

 

Figure 5 Dual mechanism deduced from the constraint graph of 
the Bricard mechanism. The joint kinematics of the six chains is 
arbitrary, but since the joint axes of the Bricard mechanism 
intersect a common line the platform cannot withstand a 
torque about that line. 

7. Conclusions and Further Research 

The paper introduces a systematic approach for 
constructing dual mechanisms resting on dual graphs and 
self-dual screw systems. The approach employs the 
concept of dual graphs to define the topology of the dual 
mechanism. Since there is no natural dual topology this is 
a design principle rather than an inherent mechanical 
principle. This work is part of a general combinatorial 
approach, in which combinatorial methods are used to 
solve mechanical engineering problems in a systematic 
way, such as: determining the generic/topological 
mobility, decomposing any mechanism into building 
blocks and more. The combinatorial and graph 
theoretical approach enables dealing with complicated 
systems in a systematic way. Future work will address 
multiloop systems, whose duals are cooperating parallel 
manipulators, and thus allows studying the singularities 
of complex mechanical systems in a systematic manner. 
The duality principle is also applicable to the analysis of 
gears, which has been discussed in [12, 13, 14]. 
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