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ABSTRACT 
The paper presents an ongoing project aiming to build a 

robot, composed of Assur tensegrity structures, that mimics the 
caterpillar locomotion. Caterpillars are soft bodied animals 
capable of making complex movements with an astonishing 
fault-tolerance. In this model, a caterpillar segment is 
represented as a 2D tensegrity triad, consists of two cables and 
a linear actuator which are connected between two bars. The 
unique engineering properties of Assur tensegrity structures 
which were mathematically proved only this year, together with 
the suggested control algorithm share several analogies with 
the biological caterpillar. It provides each triad with an 
adjustable structural softness. Therefore, the proposed robot 
has a fault-tolerance and can adjust itself to the terrain 
roughness. This algorithm also reduces the control demands of 
the non-linear model of the triad by enabling simple motion 
control for the linear actuator and one of the cables, while the 
other cable is force controlled.  

INTRODUCTION 
Tensegrity structures are well known in the literature and 

were first patented by R. Buckminster Fuller in 1962 [1]. The 
analysis of a tensegrity system requires a different approach 
then that of a regular structure consisting of rods, for example 
[2, 3]. Tensegrity systems that can change their configuration 
were reported in the literature raising the problem of the 
difference between the theoretical model and the actual system, 
for example [4]. The mathematical foundation of this work 
relies on a different material- Assur trusses properties, that 
provides a different approach to the analysis of tensegrity 

structures and described in [5]. Therefore, a comprehensive 
literature review is not presented here. 

The soft bodied caterpillar, as most living animals, does 
not have a stiff skeleton and uses a hydrostatic skeleton instead. 
A hydrostatic skeleton is defined as a fluid mechanism, which 
acts as a compressed element that provides the means by which 
the element under tension can antagonize. As a result, it follows 
that the contraction of one muscle affects all the rest, either by 
altering their lengths or by altering the tonus, which they are 
required to exert [6]. This characteristic resembles the 
fundamental property of Assur tensegrity trusses. 

Several attempts were done to build robots that mimic or 
inspired by the caterpillar locomotion. A modular robot using 
three robotic modules of "Cube M" is presented in [7]. A 
computer simulation, in which each caterpillar segment is built 
of a Stewart platform, is reported in [8]. In both cases, the 
caterpillar segments are built of rigid elements, in contrast with 
a real caterpillar. A soft robot with continuously deformable 
body is reported in [9]. However, one of its major limitations is 
the coordination of the dynamics for very high degree-of-
freedom systems. Furthermore, the inherent flexibility in soft 
systems means that actuators’ placement is not obvious, nor is 
the motion that those actuators will create [10]. A Current work 
is being done to simulate a soft-bodied robot, using NVidia® 
PhysX; a hardware-accelerated physics engine, in order to 
evolve and optimize soft bodied gaits [11]. 

In this work, a different approach is presented. The 
structure that is being used in this work for modeling the 
caterpillar segment is a 2D triad. This model is not composed 
of soft elements, and yet, it demonstrates a structural softness. 
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Furthermore, the lack of soft elements allows a much easier 
simulation than the soft, very high DOF model described in [9]. 

The following sections are introduced in the paper: first the 
biological caterpillar’s locomotion is presented. In the second 
section the theoretical background of Assur tensegrity trusses is 
introduced. We proceed to the third section and introduce the 
shape change algorithm of the control system. In the forth 
section the caterpillar model is discussed. In the fifth section, 
the results of the analysis are shown, and at last we discuss the 
further research.    

 

THE BIOLOGICAL CATERPILLAR LOCOMOTION 
Caterpillars are excellent soft-bodied climbers that have an 

astonishing fault-tolerant maneuverability and a powerful, 
stable, passive attachment [9]. The caterpillar is divided into 
three parts: the head, the thorax, which consists of three 
segments, each bearing a pair of true legs, and the abdomen. 
The abdomen of the tobacco hornworm, which constitutes over 
a three quarters of the total caterpillar's length, has eight 
segments: segments A1-A7 and the terminal segment (TS). The 
abdominal segments A3 to A6 and the terminal segment (TS) 
have a pair of fleshy protuberances called prolegs [12]. Fig. 1. 

 
 
 
 

 
 

Figure 1. THE TOBACCO HORNWORM ANATOMY. 
 
 
The caterpillars' locomotion is primarily done by crawling 

[13] and it may reflect the output of the central pattern 
generating network [14]. Caterpillars crawl via a wave of 
muscular contractions that start at the posterior and progress 
forward to the anterior. During this motion, at least three 
segments are in varying states of contraction at the same time. 
The two feet on both sides of each body segment move 
together. This phase motion of the lateral legs is very unusual, 
since in most other animals, the two legs of each lateral pair 
move exactly half a cycle out of phase from each other. The 
gaits of the prolegs of the four segments A3-A6 of the tent 
caterpillar are depicted in Fig. 2. Once a particular proleg pair 
has moved and has been "planted", there is no further 

movement by that proleg or body segment, until the next cycle. 
As speed increases, both stride frequencies and stride lengths 
increase significantly. The former is more correlated with the 
changes in velocity. Frequency varies by a factor of four over 
the speed range, whereas the stride length varies by about forty 
percent [8,15]. 

 
 
 
  

 

 
 

 
 

 
 

 

 

 

 

 
 

 
Figure 2. THE GAITS OF THE CATERPILLAR’S PROLEGS IN 

ABDOMINAL SEGMENTS A3-A6 DURING LOCOMOTION. 
 
  

Muscles are attached to the inside surface of the body wall. 
The musculature is complex, with each abdominal body 
segment containing about seventy discrete muscles. Most 
muscles are contained entirely within the body segment. The 
major abdomen muscles are the ventral longitudinal muscle 
(VL1) and the dorsal longitudinal muscle (DL1) [12], Fig 3. 

 

 
 

Figure 3. THE MAJOR ABDOMEN MUSCLES: VENTRAL 
LONGITUDINAL MUSCLE (VL1) AND DORSAL LONGITUDINAL 

MUSCLE (DL1). 
 
 

Caterpillars have a relatively simple nervous system, with 
each segment having a ganglion (a nerve complex) monitoring 
its movements. Despite their limited control resources, 
caterpillars are still able to coordinate hundreds of muscles in 
order to perform a variety of complex movements. It has been 
argued that the mechanical properties of the muscles are also 
responsible for some of the control tasks that would otherwise 
be attributed to the neural control. It is also assumed, that some 
muscles function primarily to maintain turgor, whereas others 
are primarily locomotory [16]. 
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ASSUR TENSEGRITY TRUSSES  
The theoretical foundation of the proposed robot relies on 

the properties of Assur trusses in general, and particularly on 
the singular configuration property, that guarantees the rigidity 
of the structure.  

An Assur truss is defined as a determinate truss, in which 
applying an external force at any joint, results in forces in all 
the rods of the truss. The 2D triad appearing in Fig. 4a is an 
example of an Assur truss. A unique geometrical property of 
Assur trusses is that they have a configuration, in which there 
exists a self-stress in all the elements. An Assur truss in this 
configuration is said to be in a singular configuration. 

The geometric characterization of the singular 
configuration of the 2D triad depends on the external forces 
that act upon it. When it is not subjected to external forces, the 
singularity is characterized by the intersections of the 
continuations of the three rods: (O1C), (O2A) and (O3B) at the 
same point, denoted by O, Fig. 4b. 

 

 
 

 
Figure 4. THE 2D TRIAD. 

 
 

The scheme of the tensegrity deployable triad appears in 
Fig. 5. The triad consists of three linear actuators and three 
cables. In a singular configuration, the triad can sustain self-
stress forces. The actuators are operated to sustain the 
compression forces while the cables sustain the tension forces. 
Thus, the triad is considered a tensegrity structure. Note that if 
the triad is not in singularity, the cables will lose their tension 
and the triad will collapse. 

THE SHAPE CHANGE ALGORITHM 
The principal shape change algorithm, used in this model, 

is based on the algorithm that is described and mathematically 
proven in [17]. The idea underlying this control algorithm is 
described as follows: In order to keep the triad in a singular 
configuration, it is sufficient to maintain the tension of only one 
cable. In Fig. 5, cable BO3 is the force controlled cable. 

  

 
Figure 5. A TENSEGRITY TRIAD WHILE CABLE O3B IS FORCE 

CONTROLLED. 
 

In order to change the shape of the triad, the inverse 
kinematics of the new shape is calculated. Afterwards, a 
trajectory for the length change of each position controlled 
element (the actuators and the remaining two cables) is 
calculated independently. As explained above, the force 
controlled cable ensures that the triad will keep its singular 
state during its motion. If the cable becomes loose, its length 
will be shortened, which will bring back the triad to the 
singular configuration and vise versa, if the tension of the cable 
exceeds the determined value, it will become longer in order to 
enable the motion. The proposed shape change algorithm is 
simpler than those described in the literature, since the 
controlled elements are in fact decoupled, while still achieving 
the self- stress of the structure. 

THE CATERPILLAR MODEL 
In this model, the segment of the biological caterpillar is 

represented as a planar tensegrity triad. The triad in this model 
is a modification of the triad described above. It consists of two 
cables and a linear actuator connected between two bars. The 
cables are connected one at each side of the bars, and the linear 
actuator is connected in between, as shown in Fig 6. The cables 
can be thought of as representing the major longitudinal 
muscles of the caterpillar segments: The upper cable represents 
the ventral longitudinal muscle (VL1) and the lower cable 
represents the dorsal longitudinal muscle (DL1). The linear 
actuator, which is always subjected to compression forces, 
represents the hydrostatic skeleton. 

 
Figure 6. THE 2D TENSEGRITY TRIAD MODEL USED AS A 

SEGMENT OF THE CATERPILLAR. 
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Following the shape change algorithm described above, 
the linear actuator and one of the cables are position controlled 
while the remaining cable is force controlled. As described 
above, the singular configuration of the triad depends on the 
external forces that act upon it. The singularity constraint 
reduces one degree of freedom. 

When there are no external forces, the singularity is 
characterized by the intersection of the continuations of the 
cables and the linear actuator at the same point (similar to the 
standard triad). Using this information, an inverse kinematics 
can be calculated as follows: The coordinates of the target 
frame relative to the base frame are given. The coordinates of 
the base connection points (B1-B3) are easily calculated. The 
coordinates of the connection points of the follower (F1-F3) 
can be described as a function of the target frame coordinates 
and the unknown angle ϕ  (remember that the triad has only 
two DOF and therefore the angle is dependant). Afterwards, the 
three line equations of the two cables and the linear actuator are 
calculated. The algebraic formulation of three lines that 
intersect at one point is that the determinant of their coefficients 
is zero. Each line in Eqn. (1) has the coefficients of one line 
equation (The nomenclature used in this equation is taken from 
Fig. 6).  

 
 

(1) 
 
 
 
 
Solving this equation gives the angleϕ . Havingϕ , the 

calculation of the cables and the actuator lengths is simple.  
The geometric characterization of the singular 

configuration, when the follower is subjected to an external 
force on its C.M. (for example the gravity), was also developed 
and the inverse kinematics equation was calculated (not shown 
here). However, the triad in this model can be subjected to 
other external forces such as the ground contact and the forces 
applied at each triad by its neighboring triads. The calculation 
of the exact inverse kinematics in all of these cases is very 
complicated and impractical. 

This seemingly disadvantage makes this model suitable for 
simulating the caterpillar’s soft body. The triad responses to 
external forces and demonstrates a behavior that is referred to 
as a structural softness.  

Moreover, the degree of "softness" of each triad can be 
controlled during the simulation. This property is accomplished 
by altering the tension in the force controlled cable, which as a 
result affects the self-stress forces. As the self-stress forces are 
decreased, the triad becomes softer, and vise versa. This 
property makes the robot, like the biological caterpillar, fault-
tolerant. 

Motion Control 
The basic shape control algorithm described above can 

have many variants. The guiding principle that must be kept is 
that at least one cable is maintained in tension. For example, 
the force control can be applied to both cables, instead of one. 
Another alternative is to apply a combination of force control 
and position control to a single cable. An interesting option is 
to provide the cables with the mechanical properties of the 
biological caterpillar muscles, under both passive and 
stimulated conditions as described in [18]. 

The higher control level can be inspired by the biological 
caterpillar, consists of local control unit for each triad and 
global control unit for the entire caterpillar. 

RESULTS 
The Caterpillar model was built using MATLAB® 

Simulink & SimMechanics, such that all the six connection 
points of the cables and the linear actuator to the rods can be 
easily modified. It is important to examine different 
configurations for future optimization. The results of several 
simulations, demonstrating the properties that were discussed 
in the previous section, are shown. 

Figure 7 demonstrates the "softness" of the tensegrity triad 
while subjected to several external forces. In these simulations, 
the right rod is fixed while the left rod is subjected to three 
different forces. The length of the upper rod and the actuator is 
constant. The lower cable is force controlled. For the sake of 
clarity, geometric, mass and force values are not indicated, thus 
the results are shown in qualitative manner. 
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Figure 7. DEMONSTRATION OF THE STRUCTURAL SOFTNESS OF 
THE TENSEGRITY TRIAD. 

 
 

The intersection of the continuations of the upper cable 
and the linear actuator (which have a constant length) is the 
instant center of the rod. The forces in (a) and (b) change the 
position of the rod. Nevertheless, as the tension in the force 
controlled cable (the lower cable) increases, the effect of the 
external force decreases. The force in (c) does not apply any 
moment to the instant center of the rod, and therefore does not 
affect the triad. 
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Figure 8. THE SIMULATION OF THE CHAIN DEMONSTRATING THE 

TERRAIN ADJUSTABILITY. 
 
 

Figure 8 shows the fault tolerance of the robot, i.e., its 
ability to adjust itself to the terrain without any high level 
control. In this simulation both cables in each triad were 
independently force controlled, although the force magnitude 
was not constant. The force in each cable was controlled with 
spring-like properties. When the cable stretches and becomes 
longer, the tension force increases and vice versa. Note that 
although the tension magnitude decreases as the length of the 
cable is shorter, it is constantly remains in tension. 

DISCUSSION AND FURTHER RESEARCH 
In the paper we introduced an ongoing project, aiming to 

build a robot that mimics the soft-bodied caterpillar 
locomotion. The main property of the caterpillar, from our 
point of view, is its capability of being soft, and therefore has 
high maneuverability. The model achieves this property by 
using tensegrity structure principles in general, and in 
particular the 2D triad and its main property of the singular 
state and the new shape change algorithm, which was found to 
be very efficient. One outcome of this model is the terrain-
compatibility behavior. 

The research is now focusing on the higher level control. 
The idea is to design a control unit that is inspired by the neural 
system of the biological caterpillar: a local control unit for each 
triad and a higher level control unit that is responsible for the 
motion planning of the complete caterpillar’s locomotion. This 
aim will be achieved by developing optimal gaits for the 
simulation that might resemble the biological caterpillar gaits. 
It is believed that another outcome of this model will be its 
ability to control the caterpillar movements with a relatively 
simple control unit, as in the biological caterpillar. 

In the future, we intend to build a 2D mechanical model 
based on the results of this project. Afterwards, we plan to 
develop a 3D caterpillar-like model. 
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