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ABSTRACT

The decomposition of linkages into Assur graphs (Assur
groups) was developed by Leonid Assur in 1914 - to decom-
pose a linkage into fundamental minimal components for the
analysis and synthesis of linkages. In the paper, some new re-
sults and new methods are introduced for solving problems in
mechanisms, bringing in methods from the rigidity theory com-
munity. Using these techniques, an investigation of Assur graphs
and the decomposition of linkages has reworked and extended the
decomposition using the well developed mathematical concepts
from theory of rigidity and directed graphs. We recall some vo-
cabulary and provide an efficient algorithm for decomposing 2-
dimensional linkages into Assur components using strongly con-
nected decompositions of graphs and a fast combinatorial Peb-
ble Game Algorithm, which has been recently used in the study of
rigidity and flexibility of structures and in fast analysis of large
biomolecular structures such as proteins. Working on a one de-
gree of freedom mechanism, we apply our algorithm to give the
Assur decomposition. The Pebble Game Algorithm such a mech-
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anism is presented, along with an overview of the key properties
and advantages of this elegant algorithm. We show how the peb-
ble game algorithm can be used in the analysis and synthesis
of linkages to mechanical engineering community. Core tech-
niques and algorithms easily generalize to 3-dimensional struc-
tures, and can be further adapted to entire suite of other (body-
bar) types of kinematic structures.

Key Words:linkages, mobility, decomposition, Assur
graphs, directed graph, pebble game algorithm, strongly con-
nected components.

1 Introduction

This paper introduces a novel algorithm for dealing with mo-
bility and redundancy in mechanical systems. The main idea is
new. It gives a physical interpretation, pebbles, for the meaning
of degrees of freedom.

The problem of identifying the correct mobility of mecha-
nisms attracts a lot of researchers, for example [26]. The most
simple equation to compute the mobility of a mechanism is the
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Chybytchev-Grubler [8] formula, which for simplicity will be re-
ferred to in this paper as Grubler equation. The idea underlying
Grubler equation and others is that each link has d DOF (degrees
of freedom) and once we connect between two links, two rigid
bodies, we add constraints thus the DOF is reduced. In the rigid-
ity theory community, on which the pebble game relies on, the
calculation of DOF is done differently. In this community we
start with the free joints and begin to add links and constraints,
that way we reduce the DOF till the actual DOF is obtained. This
algorithm also treats the DOF in a very unique way. It provides
a physical visualization to the DOF by physical entities, pebbles,
that simplify the explanation and comprehension of this problem.

One of the advantages of this algorithm is that it resolves
some of the instances where Grubler equation gives a wrong an-
swer. The count of the formula must be applied not only once to
the entire mechanism but to all subgraphs to ensure there is not
redundancy buried in a piece (see §3). In the cases where there is
redundancy it also indicates the passive links. The algorithm, as
is shown in Section 3.1, indicates those links that are redundant.

The reader should note that the algorithm is topological, i.e.,
it gives the global mobility but can not relate to special DOFs
due to the special geometrical configurations.

Most of the examples appearing in the paper are for mecha-
nisms, but it should be clear that the algorithm can be equally ap-
plied to other mechanical systems, such as structures. In trusses,
for example, it can indicate whether it is topologically rigid, the
degree of indeterminacy of regions and more.

Surprisingly, this algorithm that was originally developed
for checking the mobility and rigidity of structures, including
mobility of large biomolecules, also provides the key ingredi-
ents for the decomposition into Assur Groups, now termed Assur
Graphs. As it is shown in the paper, the algorithm gives direc-
tions to the elements of the mechanical systems that then define
the decomposition as shown in Section 4.

The decomposition into Assur Graphs has recently been de-
veloped for three dimensions [17], which gives new insight onto
the structures and topologies of Assur Graphs in 3D, previously
unknown in the literature. In this paper all the joints are of revo-
lute joints in 2d and spherical joints in 3D. There is an ongoing
work to extend the applicability of the pebble game to other types
of turning pairs, such as higher turning pairs and more.

2 Notation and Structural Preliminaries

This paper is transferring some techniques and algorithms
from the mathematical work in rigidity theory (and related work
in structural engineering) to mechanical engineering. The fields
have distinct vocabularies, which we need to translate between
in a consistent manner.

As an illustration, consider the linkage in Figure 1(a) or the

topologically equivalent structural scheme (b). By designating
one of the links to be a driver, then pinning the end of the driver
to the ground or by adding an extra bar, this becomes a pinned
statically determinate graph (Figure 1(c)). The focus of this pa-
per is the study of specific decompositions of such associated
pinned structures, in dimension 2, but all of the results extend to
dimension 3 (see the last section).

(b)

()

FIGURE 1. A mechanical engineering plane linkage (a) is translated
into a flexible pinned structure (b). A mechanical engineer may pin one
inner vertex, so that this becomes statically determinate (rigid) (c).
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2.1 Pinned Structures, linkages and graphs

In rigidity theory, a plane pinned bar and joint structure is a
graph, which we call a pinned graph G = (I, P;E), with the ver-
tices partitioned into inner vertices I, and pinned vertices P to-
gether with a configuration p locating the vertices I, P in the Eu-
clidean plane. A kinematic motion of the structure is a displace-
ment of the vertices which preserves the distance between adja-
cent vertices and does not move the pinned vertices. A pinned
structure is rigid if the only motions are the zero motion. For
more detailed mathematical definitions see [15,17].

For the rest of this paper, we will focus just on the graph (the
topology). We do not discuss any special (singular) geometry
which may alter the structural and mechanical behavior, but on
the ‘generic’ behavior (see [15] for details). We define a pinned
graph by G(I,P;E), where I is the set of inner vertices, P is the
set of pinned vertices, and E is the set of edges, where each edge
has at least one endpoint in /. Edges that have one inner vertex
and one pinned vertex will be called ground edges, others will
be called non-grounded or inner edges. As pinned vertices never
move, edges between pinned vertices are not present in pinned
graphs.

The refined counts for determining whether a graph can be
realized as a minimal rigid structure (extending prior work of
Laman [23] for unpinned structures) are the following:

A pinned graph G = (I,P;E) satisfies the Pinned Plane
Structural Conditions [15] if

1. |E| =2|I| and
2. for all subgraphs G(I',P’;E’) the following conditions
hold:
G) [E'| <2|I'|if |P'] > 2,
(i) |E'| <2||—1if|P'| =1, and
(i) |E| <2|I'| -3 it P' =0.

The graphs with these counts are sometimes translated as
statically determinate in mechanical and structural engineering.
There is a unique set of solutions to the forces in the members
to a given external loads. In structural engineering, these are
also called isostatic [20]. Rigid structures are also described as
kinematically determinate structures, with only the zero motion.

The key properties of associated graphs that we want to ex-
amine are:

1. statically determinate graphs - graphs realizable as statically
determinate (minimally rigid) structures for generic config-
urations.

2. mechanisms (mobile structures) with various positive de-
grees of freedom (DOF): a linkage will be a mechanism with
1 DOF, and more generally, the structure is mobile.

3. independent graphs - graphs without redudance, so that re-
moving any one edge results in a structure with an added
DOF.

4. redundant graphs are graphs that are not independent. These
may be rigid (kinematically determinate) or mechanisms.

Theorem 2.1 (Pinned Laman Theorem [15]). A 2-
dimensional pinned graph G = (I,P;E) is pinned statically
determinate for the plane if and only if G satisfies the Pinned
Plane Structural Conditions.

Corollary 2.2. If a graph satisfies the modified count: |E|=
2|1| — k for k > 0 along with the other inequalities above, then
generic structures realizing the graph are k-DOF mechanisms,
without redundance.

The Pinned Laman Theorem is an elegant and remarkable
result, and unlike Grubler equation it also gives us a counting cri-
teria on subgraphs. In its original form it is obvious that it gives
a poor algorithm, as it requires counting the number of edges in
every subgraph, of which there are an exponential number. In the
example in Figure 2 it was small enough that we can just visually
inspect the counts. In the next section, we will present the Peb-
ble Game Algorithm to efficiently check this count, and generate
important additional information for the Assur decomposition.

(@) (b)

(c) (@

FIGURE 2. A linkage is a pinned statically determinate graph (a)
which is one edge (link, constraint) short of minimum required to be
rigid. (b) is a statically determinate graph. (c) is a one degree of free-
dom mechanism with a redundant region (B, C, D, E). (d) Is a two degree
of freedom mechanism.

In Figure 2, we have some examples of pinned graphs with
seven inner vertices. The vertices that are not labelled with small
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triangles are pinned joints. The Pinned Laman Theorem and its
Corollary tells us that we need at least 2 x (7) = 14 edges to be
statically determinate. In (a) we have 13 edges, and by inspec-
tion it satisfies the counts on the subgraphs (there are not too
many edges in any subgraph), so as it is one edge (constraint)
short of minimum required, it should have one degree of free-
dom. The graph in (b) has 14 edges and satisfies the counts on
the subgraphs so it is statically determinate. The graph in (c) has
14 edges, but in the region (B, C, D, E) with four inner vertices
it should have at most 2x(4) — 3 =5 edges, but it has six edges,
so that region is redundant (overconstrained), and one edge is
redundant and being wasted bringing the count down to 13, so
it should have one degree of freedom. The graph in (d) has 12
edges, so it should have two degrees of freedom.

3 Pebble Game and Assur Graphs

The pebble game algorithm presented here was developed
for the theory of statically determinate structures or minimal
rigid frameworks [20,23], and builds on counts above, which ex-
tend the standard Grubler‘s [8] counting equations for mechani-
cal linkages to subgraphs in an efficient way. As now developed
by authors such as [5, 19], the algorithm will detect the exact de-
grees of freedom of any plane structure in ‘generic realizations’ -
that is ones without any geometric singularity. A 3D version was
more recently utilized in the program FIRST for fast predictions
of rigidity and flexibility of large biomolecular structures such as
proteins [9]. In this paper, it is applied to an undirected pinned
graph G = (I, P;E), and will be adapted here to output a directed
graph which can be further used to give the Assur Decomposition
of the linkage.

3.1 Pebble Game Algorithm

There are many algorithmically precise ways of presenting
the Pebble Game Algorithm, with mathematically rigorous state-
ments and speed ups which can be implemented [5]. Here, we
give the basic intuitive form that can be understood by wider Me-
chanical Engineering community.

The pebble game presented here is structured to check the
constraint counting conditions given by the Pinned Laman’s The-
orem 2.1, specifically that is the counts in the Pinned Structure
Conditions. The reason we need a modified version of the peb-
ble game is that we now have two types of vertices, pinned and
inner. For this reason we will call this pebble game the Pinned
Pebble Game Algorithm, but we also say just the pebble game.
Note that we treat the ground edges with different rules, because
the pinned vertex is never mobile.

Algorithm 3.1. — Pinned 2-dimensional Pebble game algo-
rithm:

Input: A pinned graph G(I,P;E)

FIGURE 3. Pinned 2-dimensional pebble game (a-g). Inner edges
are covered with pebbles when there are four free pebbles on its ends
(b). We can search for free pebbles along the directed paths, drawing
back the pebble (c, d, e). There is one remaining free pebble, indicating
that the corresponding mechanism has one degree of freedom, with the
pebble placed at the inner vertex of the driver (g). The remaining free
pebble can be moved to all the inner vertices along the directed paths,
indicating that all joints are mobile.

Output: D(G) (set of directed - independent edges) and
R(G) (set of redundant edges)

Initialize D(G) and R(G) to empty sets of edges. Place 2
pebbles on each inner vertex of G.

1. Test all the non-grounded (inner) edges by playing the
2|V| =3 pebble game.

While there exists an untested inner edge e in G:

If endvertices of e (u and v) have 4 free pebbles:
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Place a pebble from either u or v onto e, directing e out from
that vertex. Place e into D(G).

Else: Search for a free pebble from u and v, by following the
directed edges in the partially constructed directed graph D(G).

If a free pebble is found on some vertex w at the end of the
directed path P: Perform a sequence of swaps, reversing the en-
tire path P, until a free pebble appears on the initial vertex (u or
v) of the path P (w looses one free pebble, and u or v gains one
free pebble). Check again for 4 free pebbles.

Else: Place e into R(G).
Stop (all inner edges have been tested).

2. Test all the grounded edges by playing the 2|V| pebble
game.

While there is an untested grounded edge e: Follow the same
procedure as in step 1, placing a pebble onto e whenever we have
at least 1 pebble on the inner vertex end of e. Place e into D(G),
otherwise e is redundant and placed in R(G).

Stop (all ground edges have been tested).

Figure 3 depicts the process of applying the Pinned 2-
dimensional Pebble Game on the pinned graph of the linkage we
initially introduced. The first step is to assign 2 pebbles to each
vertex (a), which tracks the 2|I| count. Pebbles are either free on
an inner vertex, or they are being used to cover edges. The peb-
bles represent the degrees of freedom associated to a vertex. We
pick any inner edge, and as long as its ends have four free peb-
bles we can pebble that edge, directing it out of that vertex (b).
When we have four pebbles on the ends, it ensures we respect the
critical subtraction 2|I| —3 on the subsets of pebbled edges. With
this rule the pebble game ensures we are checking the counting
criteria in the Pinned Laman’s Theorem 2.1 on all the subgraphs.
When we place a pebble onto an edge, it means that the edge is
constraining the overall motion of the structure with this graph
and it has reduced the overall degree of freedom count by one.
At some later stage, when we do not have four free pebbles on
the ends of the inner edge, we search for a free pebble along the
partially constructed directed graph (c). When the free pebble
is found (red pebble on vertex E (c)), we perform a sequence of
swaps [19], reversing the paths and the free pebble (d, e). We
now have four free pebbles, so we can place a pebble onto that
edge (f). Once all the inner vertices have been tested, we place
pebbles onto ground edges, making sure we have at least one
free pebble on its inner vertex end (g). At this point each edge
is directed towards the ground. We never take an edge ¢ € D(G)
that is covered by a pebble and leave it without a pebble (make
it undirected). Note that there is no distinction among pebbles,
we have just coloured some red in order to depict available free
pebbles at the end of the edge being tested or a free pebble that
is being reversed back.

The output has several key properties which are immediate.

1. The remaining free pebbles tell us how many degrees of
freedom the pinned graph has;

2. A generically rigid pinned graph will be identified by having
no remaining free pebbles;

3. A statically determinate graph will have no free pebbles and
D(G) =E;

4. A mechanism with 1-DOF will have one free pebble.

5. The pebble game is greedy in the sense of computer science,
meaning that we will always end up with the same remaining
number of free pebbles, regardless of the order the edges are
tested.

6. This algorithm is fast: well implemented, it is worst case
O(|V]|E]) [5], and in practice it is often near linear.

7. the residual set D(G) is a maximal independent set of edges -
adding any other edges from the original graph G would not
change the degrees of freedom of any part of the structure.

In our graph in Figure 3 there is one free pebble remaining at
the end, indicating correctly that this is a one-degree of freedom
mechanism. We need to draw the pebble back to the inner vertex
of that driver at the end of the game, which indicates that vertex
corresponding to the driver is mobile (Figure 3 (g)).

Where any free pebbles come to rest after a play of the
game does depend on the order of testing the edges. They can
be moved around, by reversing paths. The distribution of free
pebbles on the graph, in another words, how free pebbles can be
moved around on the graph can provide us a lot of useful infor-
mation [19]. We recall that at the end of the pebble game on our
original graph, we have drawn the pebbles around and placed the
free pebble on the end-vertex of the edge corresponding to the
driver. If we were not able to draw the pebble back to the end
of the driver, then that indicates that the structural topology we
are given is not good, as each driver has to have at least one free
pebble associated with it. So, knowing where free pebbles can
move can help in the the verification and design of mechanisms,
including the appropriate placement of drivers.

Furthermore, in (Figure 3 (h)) we see that we can move the
one remaining free pebble onto any vertex, as there is a directed
path from every vertex to the vertex holding the free pebble, in-
dicating that all the joints are mobile. On the other hand in Fig-
ure 4 (a, d, e), the free pebble can never be reversed to joint G, so
it is not mobile. In Figure 4 (e) we verify that the pinned graph
has 2 degrees of freedom as there are 2 remaining free pebbles.
Moreover, one can see that the two degree of freedom are only
accessible to joints C, D and E. That is we can shuffle the pebbles
around and place the 2 pebbles on any one of these three vertices.
Vertices A, B and F can have a maximum of one free pebble.

3.2 Directed Graphs from the Pebble Game

The pebble game also gives directions to the edges of D(G)
- going out from a vertex when a pebble from the vertex is placed
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(c) ()]

(e)

FIGURE 4. Output of the pebble game on 1 DOF pinned graph has
one free pebble remaining (a), statically determinate graph with no peb-
bles remaining and all edges covered by pebbles (b). When we cannot
get the fourth free pebble on the ends of an inner edge (c), that edge is
redundant, and the region we can search over (B, C, D, E) in the partially
constructed directed graph, called failed search region is redundant. Any
edge could be removed there without affecting the degrees of freedom.
The pinned graph in (c, d) has local redundance, but it still has 1 DOF
indicated by a remaining free pebble (d). Joint G is immobile as we
cannot get a free pebble there. The graph in (e) has 2 DOF as it has 2
remaining free pebbles. The 2 pebbles are only accessible to joints C, D
and E, and maximum one free pebble to A, B and F.

on the edge. More generally, a direction assignment G to graph
G = (I,P,E) is a pair of maps init:E — V and ter:E — V assign-
ing to every edge e an initial vertex init(e) and a terminal vertex
ter(e). The edge e is said to be directed out of init(e) and into
ter(e). In another words, Direction Assignment G assigns direc-
tions to edges of G. We will also refer to G as a directed graph
associated with G. For a given vertex in the directed graph G the
out-degree is the number of edges directed out of that vertex.

The output of the pebble game is a set of directed edges
B(G), with all edges to the ground directed towards the ground.
We will shortly see that such a directed graph is the ideal form
for a further decomposition of the mechanism into minimal As-

sur components. As preparation for this, we highlight a few key
properties of the directed graph G = (I,P; D(G)):

1. at each inner vertex, the out-degree is at most 2;

2. the out-degree of each pinned vertex is 0;

3. two plays of the pebble game with the free pebbles (if any)
at the same vertices will produce two directed graphs which
differ by at most a reversal of cycles [17].

More generally, it is possible that the synthesis of a mecha-
nism used methods that already generated a directed graph, with-
out reference to the pebble game. Will that matter? There are
some basic results that confirm that in that situation, once the
graph tests to be independent (e.g. by the pebble game), and the
given directions (from any source) have the same out-degree at
each vertex (the degrees of freedom are the same, and are fo-
cused on the same vertices) then the key properties needed for
our upcoming decomposition are the same.

Theorem 3.2 (2-Directed Graphs [17]). Given two pinned
directed graphs G1, G» on the same underlying undirected graph
G, such that for each vertex in G, the out-degree in él is the same
as the out-degree in G, then the two directed graphs differ only
by a set of cycle reversals.

3.3 Assur Graphs

The concept of Assur graphs (previously named Assur
graphs) was originally developed by Leonid Assur in 1914 and
is widely used in the kinematical community. A central concept
of Assur‘s method is the decomposition of a linkage into funda-
mental minimal components which serves as an important me-
chanical engineering tool of analysis and synthesis of linkages.
In Mechanical engineering Assur graphs (groups) are viewed as
pinned structures with zero mobility that does not contain a sim-
pler substructure of the same mobility [13]. Another definition
states that ”An Assur group is obtained from a kinematic chain of
zero mobility by suppressing one or more links, at the condition
that there is no simpler group inside” [24]. A recent and ongo-
ing investigation of Assur graphs and decomposition of linkages
was reformulated using the well developed mathematical con-
cepts from the rigidity theory and directed graphs [15, 18].

Given a mechanism and its associate pinned graph, we recall
that our goal is to turn such a graph into a statically determinate
pinned graph and decompose the graph into Assur components.
Using the rigidity vocabulary we define an Assur graph as a ‘min-
imal’ pinned statically determinate (isostatic) structure where the
deletion of any vertex and its incident edges (or removal of any
edge) makes it non-rigid. For a series of equivalent more rigor-
ous mathematical characterization of Assur graphs see [15].

In Figure 5 we have some examples of Assur graphs. If we
delete any inner vertex it will result in a flexible structure. In
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(a) (b) (©

FIGURE 5. Examples of simple Assur graphs. In (a) we have a dyad
and (b) a triad.

(2) (W) (©

FIGURE 6. Examples of pinned structures that are not Assur. In (a)
and (b) removing a two-valent vertex results in a rigid structure. In (c)
we have a mobile structure.

literature, the pinned structure in (a) is called a dyad, and in (b)
a triad. These are some of the most basic Assur graphs and serve
as building blocks of kinematic linkages [14]. In Figure 6 we
see examples of pinned graphs that are not Assur. In (a) and
(b) we have two examples that are not Assur graphs, they can
be decomposed into further Assur components. We can remove
the two-valent vertex with its two edges and remain with a triad
and dyad, respectively, which are pinned statically determinate
graphs. The pinned structure in (c) is not statically determinate,
it is mobile (non-rigid), so it is not Assur.

In the next section we use the directed graph from the pebble
game algorithm to decompose the pinned statically determinate
graph into Assur components, and give useful pebble game char-
acterizations of the Assur graphs.

4 Directed Graphs and Assur Decompositions

We have demonstrated that the pebble game algorithm cre-
ated a directed graph associated with pinned structure. Such
a directed graph will now be decomposed into strongly con-
nected components (components in directed cycles in the di-
rected graph), which we then use to obtain the Assur compo-
nents. The Assur decomposition algorithm is outlined in Sec-
tion 4.2. We will also explore a few additional properties of these
directed graphs.

4.1 Directed Graphs and Strongly Connected Decom-
positions

We need a few additional general terms for directed graphs.

A cycle in a graph G is a subset of the edge set of G which
forms a path such that the start vertex and end vertex are the
same. A directed cycle is an oriented cycle such that all directed
edges are oriented in the same direction. A directed graph G is
acyclic if it does not contain any directed cycle.

A directed graph is called strongly connected if and only if
for any two vertices i and j in G, there is a directed path from i to
j and from j to i. The strongly connected components of a graph
are its maximal strongly connected subgraphs. That is, strongly
connected components cannot be enlarged to another strongly
connected subgraph by including additional vertices and its as-
sociated edges. Each vertex can belong to only one strongly con-
nected component (which may consist of only a single vertex),
so the strongly connected components form a partition of the set
of vertices V [7].

A directed graph is acyclic if and only if it has no strongly
connected subgraphs except single vertices, since any cycle is
strongly connected. If each strongly connected component is
contracted to a single vertex, commonly called the condensation
of the directed graph, the resulting contracted graph forms a di-
rected acyclic graph. Other graph theoretic definitions that we
will use can be found in any introductory book to graph theory
(for instance [2]).

4.2 Assur Decomposition Algorithm

In this section we give a fast, efficient algorithm that decom-
poses a pinned statically determinate graph into Assur compo-
nents. We illustrate this on our original one-degree of freedom
linkage and demonstrate this algorithm, detailed steps are given
below. We represent such an engineering system as a pinned
graph (Figure 7 (a, b)). As we have seen in the introduction, to
start the analysis we can make such a structure statically determi-
nate by deleting the edge corresponding to the driver and pinning
the inner vertex A to the ground (Figure 7 (c)) (equivalently we
could have instead added an extra edge from A to the ground.)
Of course these two techniques would be equivalent under the
counting conditions of Pinned Laman Theorem and would both
give a statically determinate graph. We should point out that if
we did not make the structure statically determinate and instead
left it as a 1 DOF linkage, we would get almost identical results,
with some minor differences (see Remark below).

The first step in our Algorithm is to play the Pinned Pebble
game to generate the directions (Figure 7 (d)). The second im-
portant step is to find the strongly connected components among
the inner vertices. There are various fast algorithms for com-
puting the strongly connected components such as Tarjan’s algo-
rithm [21] whose complexity is O|E|, or we can use an alternative
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version based on an additional extension of the pebble game al-
gorithm which is also confirmed with mathematical proofs [18].
The strongly connected decomposition of any directed graph is
also included in the code of current Computer Algebra Systems
such as Maple, Mathematica and SAGE. The overall computa-
tional cost of our algorithm is on the order of the complexity of
the pebble game algorithm O(|V||E|).

Algorithm 4.1. — Assur Decomposition Algorithm in 2-
dimensions:

Given Pinned statically determinate graph and correspond-
ing pinned graph G = (I, P;E)

1. Generate directions on G(I, P; E) towards the ground us-
ing the 2-dimensional Pinned Pebble Game Algorithm.

2. Find strongly connected components of the directed graph
(using Tarjan’s algorithm or an equivalent)

3. Each strongly connected component and its outgoing
edges is an Assur component. For the component Make ev-
ery outgoing edge out of the strongly connected component a
grounded edge, pinning the end-vertex.

In Figure 7 (d) we have encircled all of the strongly con-
nected components, one component containing vertices G, H,
I and J and the other components being single vertices. Each
strongly connected component and its outgoing edges, where we
pin down the ends of its outgoing edges, forms an Assur com-
ponent. The pinned structure is now decomposed into 6 Assur
components, of which 5 are dyads (a dyad contains one inner
vertex and two pinned vertices).

We have several alternative characterizations of Assur
graphs (Assur components of structures) [15-17] . We summa-
rize a few here.

Theorem 4.2. Given a pinned statically determinate graph G
and a 2-drected assignment G = (I, P; E) the following are equiv-
alent:

1. the graph G is an Assur graph;

2. the pebble game applied to G has no free pebbles and has
all inner vertices in a single strongly connected component;

3. G has one strongly connected component on the inner ver-
tices;

4. G does not contain a directed cutset separating the inner
vertices;

5. removing any edge of G leaves 1 DOF at every inner vertex;

6. removing any vertex of G leaves 1 DOF at every other inner
vertex.

As noted above, different outputs of the pebble game may
differ by reversal of a cycle. This now translates as having no im-
pact on the strongly connected decomposition - or equivalently,
on the Assur decomposition.

(e)

FIGURE 7. A plane linkage (a) is translated into a flexible pinned
structure (b). We pin the inner vertex of the drive, so the structure be-
comes a pinned statically determinate (c). Pinned pebble game gen-
erated appropriate directions (d). Strongly connected components are
circled (e). Each strongly connected component and its outgoing edges
gives an assur component (f).

Remark. We should illustrate an important remark here about
the choice of which decomposition we are considering. When
we add an extra edge to the ground from the inner vertex of a
driver (or equivalently we can shift the inner vertex and make
it pinned [17]) to make it statically determinate, the remaining
graph will have exactly the same set of directed edges (up to cy-
cle reversals) as the graph with a free pebble remaining at the end
of the driver, so the decomposition would not change whether we
add the edge or not. This follows basically, because whether we
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FIGURE 8. Different output of the pebble game can produce a differ-
ent orientation in the graph. All inner vertices are still 2-directed, but
different orientation always leaves the strongly connected components
the same, and the subsequent Assur decomposition.

keep the pebble on that inner vertex of the driver or not does not
impact the strongly connected components. On the other hand,
moving that pebble around and placing it on other inner vertex
(i.e. choosing a different driver) will change the directed graph
and consequently the decomposition. So, decomposition is rel-
ative to what is a movable piece, i.e. what the chosen driver is.
However, in mechanical engineering, it is usually known where
the driver is. We are not giving the proof here but it follows this
same idea. For a mathematical proof that a pinned statically de-
terminate structure has a unique Assur decomposition see [17]).

Another reason we chose to make the graph statically deter-
minate, is that in the final decomposition, the strongly connected
component with the free pebble on it and its outgoing edges will
not be statically determinate, it will have 1 DOF, hence it will not
be an Assur component in our definition. However, we should
note that if we left the free pebble on the driver, then we would
be left with the same overall decomposition with this one com-
ponent not being Assur. U

5 3D Structures

The basic process of decomposing a 2D mechanism into As-
sur Graphs, based on a directed graph, extends directly to mech-
anisms in 3D [17, 18].

Specifically, if we are given a graph in 3D which is already
known to be Pinned statically determinate (or at least not redun-
dant), an analogous version of the pebble game will give a di-
rected graph and lead to a corresponding decomposition [17,18].
For this game, we need the modified counts:

A pinned graph G = (I, P;E) satisfies the Pinned 3D Struc-
tural Conditions [15] if

1. |[E| =3|I| and
2. for all subgraphs G’ = (I',P';E'), |E'| < 3|I'|.

These are always necessary conditions, and are sufficient for

tracking DOF in many critical situations.

The simplified pebble game corresponding to these counts
will place 3 pebbles on each vertex, and place a pebble on the
edge if a free pebble can be located at one of the vertices. Be-
cause we assumed the graph was statically determinate, we do
not need to play on inner edges first. Below is a simple example.
Given the directed graph G from the pebble game (or some other
source which makes the out-degree of each inner vertex 3), the
strongly connected decomposition described above will decom-
pose the graph in 3D Assur Graphs, with fully analogous prop-
erties to the 2D analysis. More generally, if we know the graph
was independent (perhaps a mechanism), then we can compute
the DOF, derive the directed graph and complete the strongly
connected decomposition as outlined above. Moreover, all the
advantages of the Assur decomposition still apply to this decom-
position, in terms of the analysis and synthesis of the mecha-
nisms. Here is an example on a very simple 3D 1 DOF linkage.

© (d)

FIGURE 9. A 3D linkage (a), with directed graph from the 3D peb-
ble game with one free pebble at the intended driver A. (C) shows the
corresponding strongly connected components and (d) shows the Assur
decomposition in 3D.

There are further extensions to more other mechanisms in
3D built with bodies, hinges, and isolated bars (e.g. extensions of
the Stewart Platform, robotic arms). These are also the structural
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models used for protein analysis [9, 19]. In 3D the counts for
body bar, body hinge, and molecular structures all start with core
6|B| — 6 [22]. For this count there is an efficient pebble game
which fits the count and leads to e full analogs of the results in
the previous two sections.

There is a gap in 3D because the rigidity theory lacks a
Laman type theorem for very general structures [18,23]. How-
ever, it is important to emphasize that the original results here,
and related investigations already provide key insights for 3D
mechanisms, and this work can lead to additional new methods
for the analysis and synthesis of 3D kinematic systems both in
practice and in pedagogical settings. This is an initial transfer
of the key pebble game algorithm from rigidity theory to the
study of mechansims. The ongoing connections between work
on mechanisms and work in the theory of rigidity promise to be
productive for both fields.
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