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Finding Dead-Point Positions of
Planar Pin-Connected Linkages
Through Graph Theoretical
Duality Principle
The paper brings another view on detecting the dead-point positions of an arbitrary
planar pin-connected linkage by employing the duality principle of graph theory. It is first
shown how the dead-point positions are derived through the interplay between the link-
age and its dual determinate truss—the relation developed in the previous works by
means of graph theory. At the next stage, the process is shown to be performed solely
upon the linkage by employing a new variable, the dual of potential, termed face force.
Since the mathematical foundation of the presented method is discrete mathematics, the
paper points to possible computerization of the method. �DOI: 10.1115/1.2179461�
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1 Introduction
Dead-point position of a linkage is such a geometrical configu-

ration at which the linkage loses its mobility �1�. In the field of
machine design it is important to be aware of the possible dead-
point configurations of the given planar linkage, as in some cases
such configurations constitute an undesirable obstacle for the valid
operation of the linkage, while in other cases they constitute a part
of the linkage functionality �2,3�. Additional applications include
the synthesis of mechanisms, where the criterion of the mecha-
nism motion between the dead-point positions is used to reduce
the considered space of solutions �4�.

The problem of finding dead-point positions of engineering sys-
tems is widely reported in the literature �5–7�, due to its impor-
tance in many fields of engineering practice �8� and engineering
design �9�. Some works consider the problem of finding the dead-
point positions for the mechanism of a given geometry, while
others relate to enumerating all the possible dead-point configura-
tions of a mechanism where only the topology is given. The first
problem is also known as a problem of limit positions. Analytical
solutions for this problem have been obtained for various types of
linkages �10�. Some methods for solution of the first type of prob-
lem often involve analysis of the corresponding Jacobian matrix
�11� which is known to provide an efficient solution.

The challenge of the second problem, much more ill defined, is
that it gives the engineer the possible dead-point positions that can
occur in potential in the specific topology of the linkage. Knowing
these positions can assist the engineering designers in taking ad-
vantage of the dead points in such applications as toggle mecha-
nisms �12�, or in preventing the mechanism from entering the
locked positions. One of the known works done in this field is by
Yan and Wu �5�, who employed the properties of linkage instant
centers to find the dead-point configurations of the mechanism.
This method employs the principles of instant centers of the link-
age, thus it is subject to the limitation that there are linkages
where the instant centers are difficult to be found by employing
Kennedy’s theorem �13�, such as in the known double-butterfly
mechanism �14�.
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The idea underlying this paper is to bring another view to this
problem, by employing the knowledge existing in statics through
the duality relation between the planar pin-connected linkages, for
brevity referred here as linkages, and planar determinate trusses,
which are briefly described in Sec. 2. The latter duality relation
was established by employing graph-theoretic representations of
the corresponding systems, as is thoroughly described in the pre-
vious publications of �15,16� and other works done in the field.
The use of graph-theoretic duality in engineering is well known in
the literature, in particular in electrical networks �17�, and in one-
dimensional engineering systems, such as one-dimensional dy-
namic systems, hydraulics and more �18�. The pioneer in estab-
lishing the graph-theoretic duality in mechanical applications was
Andrews who established the vector-network model �19�, with
which he represented multidimensional dynamic systems, and for
them constructed the dual systems �20�. Recent developments in
this research direction are due to McPhee �21� and Lang �22�.

The approach presented in the paper sees the problem of finding
the dead-point positions for a given topology as a problem in
statics, where one needs to find a geometric configuration capable
of sustaining forces applied upon it.

As is depicted schematically in Fig. 1, such configurations con-
stitute isolated points in the overall space of all the possible geo-
metric configurations corresponding to the given topology. The
problem of enumerating these configurations is therefore a sophis-
ticated problem that does not possess an apparent solution. In Sec.
3 this problem is transformed through the mathematical basis of
graph theory into an isomorphic problem in the dual engineering
domain—kinematics. This new kinematical problem is a problem
of finding possible sets of feasible deformations of the rods in the
dual structure. It will be shown that the sets of feasible deforma-
tions form a subspace within the space of deformation and it can
be straightforwardly spanned by means of the joint displacement
variables corresponding to the structure �Fig. 1�. Accordingly, it is
argued in the paper that upon transforming to the second engineer-
ing domain, the solution to the original problem of detecting the
dead-point positions becomes transparent. The methodology em-
ploying this transformation for finding the dead-point positions of
a given linkage is presented in Sec. 4.

For the sake of convenience of implementation of the method-
ology, in Sec. 5, the method is developed solely in the terminol-

ogy of linkages. In order to make this possible, a new variable,
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which is the dual of the potential in the original graph, is em-
ployed. In physical implementation, the variable is the dual of the
absolute displacement of the joint in the dual truss, and is termed
“face force” �23�.

Section 6 is dedicated to the study of the size of the finite space
of the possible dead-point positions on the basis of the techniques
developed in the paper.

2 Duality Between Kinematics of Planar Linkages and
Statics of Planar Trusses

The term duality �sometimes referred as reciprocity� employed
in the paper corresponds to a powerful concept impacting science
in general �24�, and mechanics in particular �25,26�. The term is
widely used in the literature, sometimes for defining completely
different issues, thus to avoid confusion a special notion for it is
provided below.

One of the widely known duality principles in engineering finds
its origin in the virtual work theorems which result in the orthogo-
nality between the kinematic and the static variables underlying
the behavior of a structure. The mathematical basis in this case is
linear algebra, and the relation can be traced through similarities
in the corresponding matrices. The approach adopted in this paper,
although it also relates between the domains of statics and kine-
matics, is utterly different. The mathematical principle we adopt is
the duality between graphs �17�. Furthermore, the resulting rela-
tion is between two distinct engineering systems, possessing dual
topology, dual geometry—but the same behavior of the variables.
In this respect, the presented approach resonates with other duality
developed in mechanical engineering research based on screw
theory, as appears in �27–29�. In these works it was shown that the
equations underlying the statics and the kinematics of these two
engineering domains are the same. This correspondence makes
them dual to one another, as in the case of the duality relation
between parallel and serial manipulators.

In the previous publications of the author �15� it was proved, on
the basis of graph theory, that there exists a tight mathematical
relation between linkages and trusses. This relation is referred as a
“duality relation,” since it is based on the duality principle of
graph theory as is defined in Proposition 1.

PROPOSITION 1 �Shai, 2001�. For every planar determinate truss,
T, there exists a dual planar pin-connected linkage, L, satisfying:

• Each link in L corresponds to a truss element �rod, external
force, reaction� of T and vice versa.

Table 1 The correspondence between the terminologies of
trusses and linkages.

Terminology of trusses Terminology of linkages

Truss element �rod, external force,
reaction�

Link

Area closed by rods—face Kinematical pair—link joint
Internal force of the element Relative linear velocity of the link

Fig. 1 Schematic illustration of the e
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• The vector of the relative velocity of each link in L is equal
to the vector of the force acting in the corresponding ele-
ment in T.

Table 1 lists the transformation rules �15� defining a complete
correspondence between the determinate truss and the correspond-
ing dual linkage.

From Table 1 one can see that the process of constructing the
truss dual to a given linkage or vice versa is actually quite similar
to that of constructing a dual graph �17�. This relation gave rise to
the correspondence between the equations stating the equilibrium
of forces in the truss and the equations of compatibility of the dual
linkage as will be shown below.

Figure 2�a� shows an example of a simple truss and Fig. 2�b�
shows its corresponding dual linkage that is obtained by applying
the transformation rules listed in Table 1.

The mathematical correspondence between these two simple
systems will now be examined, to facilitate the understanding of
the truss-linkage duality.

The truss of Fig. 2�a� is comprised of three structural elements:
rods 1 and 2 and the external force 3. The linkage, on the other
hand, is built of three kinematical elements—links 1�, 2� and 3�,
while 3� is the driving link of the linkage. Link 3� is chosen to be
the driving link due to its correspondence to the external force 3 in
the truss, which in contrast to other truss elements is associated
with a predetermined force vector. Elements 1�, 2� and 3� in the
linkage correspond respectively to elements 1, 2 and 3 in the truss.
Elements 1, 2 and 3 in the truss meet at the same joint, thus
yielding the following vector equation for the internal static forces
�West, 1993�:

F1 + F2 = F3 �1�

In terms of network theory, Eq. �1� is called the “cutset equation”
�Swamy and Thulasiraman, 1981�.

Links 1�, 2� and 3�, on the other hand, form a contour in the
linkage, thus their corresponding relative linear velocities comply
with the following kinematical vector equation �Norton, 1992�:

ence of the suggested methodology.

Fig. 2 „a… A simple truss with the dual linkage superimposed

and „b… the dual linkage
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V1� + V2� = V3� �2�

In terms of network theory, Eq. �2� is called the “circuit equation”
�17�. As statical equations underlying the truss �Eq. �1�� possess
the same form as the kinematical equations underlying the linkage
�Eq. �2��, it was proved �15� that there is a topological isomor-
phism between these two engineering systems.

One can see from Fig. 2 that the angles of the linkages are
chosen to be perpendicular to the corresponding rods in the dual
truss. Doing that guarantees that the direction of the force in every
truss rod is the same as the direction of the relative linear velocity
in the corresponding link of the linkage. This correspondence con-
stitutes the geometrical isomorphism between the two systems.
Accordingly, the numerical solutions of Eqs. �1� and �2� are the
same, thus

Fi = Vi� �3�

This demonstrates that the static behavior of the truss is isomor-
phic to the kinematical behavior of its dual linkage.

In the next section, based on this result, we will derive a new
hypothesis that constitutes the mathematical foundation of the
proposed method.

3 Duality Between Statics of Dead-Point Positions of
Planar Linkages and Kinematics of Trusses

The linkage in a dead-point position is immobile, which means
that if trying to rotate the driving link, the linkage will produce a
counter force that will cause the system to maintain its original
position. Therefore, the linkage in a dead-point position can be
considered as a static system, not different from a regular truss
that satisfies the law of force equilibrium at each of its joints �Fig.
3�a��.

The same duality principle used in the previous section, can be
applied now to this truss-like configuration of the linkage. Accord-
ing to Table 1 the system dual to the dead-point configuration of a
linkage should possess a topology of a truss. In addition, the
forces in the links of the linkage should be equal to some variable
corresponding to the truss rods possessing kinematical properties,
i.e., satisfying the laws of compatibility. As is shown in the Ap-
pendix, a variable suitable for such a role is the vector of rod
deformation, which is defined to be the vector difference between
the original and the deformed states of the rod �30�. On the basis
of this reasoning, Proposition 2 has been developed �the math-
ematical proof of Proposition 2 is provided in the Appendix�.

PROPOSITION 2 �Appendix�. For each planar pin-joint linkage
in a dead-point position Ldead, there corresponds a deformed state
of its planar dual truss, Tdeform, where the deformation vector of
each rod i defines the angle of the corresponding link in the
linkage.

We shall now examine Proposition 2 upon a simple example
appearing in Fig. 3.

The linkage of Fig. 3�a� is obviously found in a dead-point

Fig. 3 „a… Linkage in a dead-point position and „b… the corre-
sponding deformation configuration of the truss with the dual
topology
position, due to the collinearity of links 1 and 2, thus trying to
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move the driving link will induce forces within the links. In con-
trast to the other links of the linkage, the driving link, as the link
which applies the force upon the rest of the linkage, is drawn in
perpendicular to the corresponding displacement vector in the
truss. There are two joints in the linkage—A and B; at each the
equilibrium of these forces is satisfied, as is formulated in the
following vector equations:

A: F3 = F1

B: F1 = F2 �4�
In the dual truss �Fig. 3�b�� there are three corresponding rods: 1,
2 and 3. For the truss some deformed state is considered, which
presents some geometrical deviation from the original configura-
tion. In order for the truss to maintain its structural integrity, the
deformation vectors corresponding to its elements are subject to
the compatibility law stating that the vector sum of the deforma-
tion of each contour of the truss equals zero. In the truss of Fig.
3�b� there are two contours: one formed by force 3 and rod 1,
other formed by rods 1 and 2. Thus, the behavior of the truss
deformations can be described through the following vector
equations:

A: �3 = �1

B: �1 = �2 �5�

where �i is the deformation vector of element i of the truss.
Equation �5� can be explained in an intuitive way, as follows: in

Fig. 3�b� only joint M is displaced, while the joints corresponding
to the fixed supports remained at place. All the elements of the
truss are connected at one end to M and on the other end to some
fixed point. Therefore the deformations of all the elements are
equal to the displacement of joint M and accordingly equal to one
another as was obtained in Eq. �5�.

As the statical equations underlying the linkage �Eq. �4�� pos-
sess the same form as the kinematical equations underlying the
truss �Eq. �5��, there is a complete correspondence between the
behaviors of these two systems.

One can see from Fig. 3 that the angles of the forces acting in
the links are chosen to be parallel to the deformations of the
corresponding rods in the dual truss. Doing that guarantees that
the direction of the force in every link of the immobile linkage is
the same as the direction of the deformation of the corresponding
rod in the truss. This correspondence constitutes the geometrical
isomorphism between the two systems. Accordingly, the numeri-
cal solutions of Eqs. �4� and �5� are the same, thus:

Fi = �i �6�
In the following section this relation will be employed to system-
atically yield dead-point configurations of the linkage with a given
topology.

4 Method for Establishing Possible Dead-Point Posi-
tions of Planar Linkages

In the previous section it was shown that each feasible set of
deformations of truss rods corresponds to a dead-point position of
its dual linkage. Therefore, in order to find a dead-point position
of a linkage it is enough to find a set of feasible deformations of
the rods in the dual truss.

An arbitrary set of vectors will not necessarily constitute a valid
set of truss rod deformation vectors, as those vectors might not
satisfy the geometric compatibility requirements �30�. The rod de-
formation equals the vector difference between the vectors of dis-
placement of its end joints. In contrast to the deformation vectors,
the joint displacements are not subject to compatibility
requirements—one can “move” truss joints in an arbitrary fashion
and then obtain the deformed states of the rods by drawing a line
between the corresponding end joints. In other words, unlike de-

formation vectors, any set of joint displacements corresponds to a
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valid deformed state of a truss. Therefore, as is demonstrated in
Fig. 4, in order to obtain a feasible set of rod deformations for a
given truss, it is enough to associate each of the truss joints with
an arbitrary vector. The deformation of a specific rod is evaluated
by subtracting the vectors associated with its end joints. Different
sets of feasible deformations are obtained by coming up with dif-
ferent sets of arbitrary vectors associated with the truss joints.

On the basis of the relation developed in the previous section,
the following method is formulated for finding the dead-point
configurations for a given linkage:

1. Use Table 1 to establish a truss dual to the linkage.
2. Associate each joint of the truss with an arbitrary vector.
3. For each truss rod obtain a deformation vector equal to the

vector difference between the vectors associated with its end
joints.

4. Redraw the linkage so that the angle of each of its links is
the same as that of the deformation vector associated with
the corresponding rod in the dual truss. According to Propo-

Fig. 4 „a… Arbitrary displacement vectors associated with
truss joints, „b… yield feasible sets of rod deformations

Fig. 5 „a… Double-butterfly linkage; „b… the str

linkage; „c… the truss possessing the dual topolo

602 / Vol. 128, MAY 2006
sition 2, the resultant configuration of the linkage is a dead-
point configuration.

5. Repeat the process for different arbitrary vector sets in 2 to
obtain other dead-point configurations of the original link-
age. A discussion about the ways of choosing these random
vector sets, consequently about the finiteness of the pro-
posed method, is provided in Sec. 6.

The method is demonstrated on the known double-butterfly �or
double-flier� linkage �14� shown in Fig. 5�a�.

The truss dual to the double-butterfly linkage is shown in Fig.
5�c�. In Fig. 6�a�, arbitrary vectors are associated with the joints of
the dual truss and the corresponding rod deformations are evalu-
ated. In Fig. 6�b� the dead-point position configuration of the
double-butterfly linkage is drawn by taking the angles of the links
from the corresponding rod deformation vectors.

As shown in Fig. 7, additional dead-point configurations of the
double-butterfly linkage are obtained when considering other ar-
bitrary sets of displacement vectors.

Double-butterfly linkages are known to be kinematically inde-
terminate �14�, indicating the impossibility of finding their sec-
ondary instant centers by conventional methods of machine
theory. Therefore, the study of double-butterfly linkages requires
engagement of advanced mathematical tools �31�. Verification of
the dead-point positions of the double-butterfly linkages, pre-
sented in Figs. 6 and 7, was made in �32�. It should be noted that
the three dead-point positions of this linkage are not the only
dead-point positions of the linkage, as additional positions can be
obtained by applying the proposed method to additional displace-
ment vector sets �33�.

ures of the dual truss superimposed upon the
uct

gy
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5 Method for Detection of Dead-Point Positions Di-
rectly Upon Linkages

The methodology formulated in the previous section, although
efficient, requires one to maneuver through the terminologies of
both structural mechanics and kinematics. In this section we will
employ the correspondence existing between linkages and trusses
to derive the dead-point positions directly upon the linkage with-
out the need to perform the transformation to the dual truss.

The only term from structural analysis appearing in the method
formulated in the previous section and not possessing an apparent
counterpart in linkages is the vector of the joint displacements of
the truss. It was found �16� that this variable corresponds to a new
type of variable describing the static behavior of a structure.

The properties of this variable appear in Table 2. According to
Table 2, the new variable has the same units as a force, but, in
contrast to a regular through variable, is associated with the faces
of the statical system, thus is termed face-force �16�.

Following is the description of the properties listed in Table 2

Fig. 6 „a… Arbitrary displacements assigned to all the join
„b… The double-butterfly linkage redrawn in accordance t
applied to the linkage of Fig. 8:

Journal of Mechanical Design
Property 1 of Table 2 implies that faces A, B and O of the
linkage shown in Fig. 8 are associated with a vector variables
designated by FA, FB, FO.

According to property 2, the following relation exists between
the face forces and the forces in the links of the linkage:

F4 = F5 = FO − FB;F3 = FA − FB;F1 = F2 = FA − FO �7�

According to property 3, the face-force FO is zero.
It can be concluded from the properties listed in Table 2 and the

example that the new variable established in static structures that
face force can be thought of as a multidimensional generalization
of the “mesh current” in electrical circuits �33,34�. Both variables
are known to “circulate” within the faces of the engineering sys-
tem and to be the components of the real engineering system
variable. The main difference is that while mesh currents are sca-
lars and produce real currents in circuit elements through scalar

of the truss and the corresponding deformation vectors.
he angles of the deformations.
ts
subtraction, the face forces are multidimensional vectors. This
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implies that the face forces possess geometrical properties and
produce the forces in the links. Thus, if the face forces are applied
to a linkage then they would define a geometry in which real

Fig. 7 Additional dead-point configurations of the double-but
5…. „a… The dead-point configuration obtained, when two of the
the dead-point configuration obtained, when two of the dual tr
forces are produced in the immobile linkage configuration through

604 / Vol. 128, MAY 2006
vector subtraction of the corresponding face forces. Since face-
forces variable is the dual of the absolute linear velocity variable,
in network theory terminology it can be considered also as the

fly linkage obtained by means of the suggested method „Step
ual truss joints, D and F, are assigned zero displacement, „b…
s joints, A and C, are assigned the same displacement vector.
ter
d

dual of the nodal variable �17�.
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Applying the face forces to the method described in the previ-
ous section yields the following method for finding the dead-point
positions:

1. Associate each face of the linkage with an arbitrary vector of
its face force.

2. For each link obtain a force vector equal to the vector dif-
ference between the face forces associated with the faces
separated by this link.

3. Redraw the linkage so that the angle of each of its links is
the same as that of the force vector obtained for it in 2. The
resultant configuration of the linkage is a dead-point con-
figuration.

4. Repeat the process for different arbitrary vector sets in 1 to
obtain other dead-point configurations of the original link-
age. The ways of choosing these vector sets are discussed in
Sec. 6.

Example for employing the above algorithm upon Stephenson
II linkage and yielding its dead-point configuration is shown in
Fig. 9.

Applying instant center method �13� can be used to verify
whether the configuration of the Stephenson II linkage presented
in Fig. 9�c� is the dead-point position. Straightforward application
of Kennedy theorem to this configuration yields that in this spe-
cific geometry, the relative instant center between links 4-5-7 and
the driving link 1 coincides with the absolute instant center of link
4-5-7. By definition of instant center, such a coincidence, indicates
that the configuration is indeed a dead-point position. The con-
figuration of Fig. 9�c� was obtained by applying the technique to a
single set of random face force vectors. Additional dead-point
positions of this linkage �5� can be obtained by applying the tech-
nique to other vector sets, as is explained in Sec. 6.

6 Finiteness of the Suggested Methodology
The final steps of the methods presented in the previous two

sections were concerned with repeating the process of finding a

Table 2 Establishing the pro

Properties of the joint displacement in
truss

1. The variable is a two-dimensional
vector corresponding to each joint
in the truss.

2. Deformation of a truss rod is equal
to the difference between the
displacements corresponding to the
end joints of this rod.

3. The displacement of the fixed joint
is equal to zero.
Fig. 8 The face forces in the linkage in a dead-point position

Journal of Mechanical Design
dead-point linkage configuration, each time originating from an-
other random vector set. The current section provides a possible
algorithm for choosing a finite number of such vector sets, leading
to the establishing of all the possible dead-point positions of the
given linkage topology.

As was shown in the previous section, the space of the dead-
point positions of a mechanism can be spanned by the face-force
vectors. It is customary �5� to consider a specific dead-point po-
sition as a unique combination of kinematical/statical constraints
leading the mechanism to becoming immobile. Accordingly a spe-
cific dead-point position is not determined by a single set of face
force vectors, but by some finite subspace of the above overall
vector space.

Current section demonstrates one of the possible techniques for
establishing these subspaces and thus reducing the output of the
methods presented in Secs. 4 and 5 to a finite, but at the same time
complete, set of dead-point configurations.

Consider a mechanism, M, possessing n faces: F= �1,2 , . . . ,n�.
A subset L= �l1 , . . . , lk � li�F ,k�n� defines a subspace SL of face-
force vectors through Eq. �8�

�F1, . . . ,Fn� � SL if �Fi � 0 for i � L

F j = 0 for i � L
	 �8�

By Eq. �8� each possible subspace SL can contain face-force vec-
tor sets corresponding to at most one unique configuration of
static forces in the mechanism, and therefore corresponds to at
most one dead-point configuration of the mechanism.

Some of the subsets L would not contain a new dead-point
configuration and thus can be eliminated in the process. Such
subsets include L= ��� and those L whose size equals n−1, as
those configurations can be proved to be equivalent to L=F, due
to the potential-like behavior of the face-force variable �Sec. 3�.
Also, if the driving link of the mechanism is defined, the force in
it cannot be zero, thus at least one of its adjacent faces �say 1 and
2� should possess a non-zero face-force, which makes it possible
to eliminate all the 2n−2 subsets L, where �1�L�� �2�L�.

Thus, the upper boundary for the number of subsets L that can
correspond to the dead-point positions is

2n − 2n−2 − n = 3 · 2n−2 − n �9�

Consequently, for each subset L, the algorithms presented in Secs.
4 and 5 should account for only one random vector set
�F1 , . . . ,Fn��SL.

Some heuristic rules can be developed to reduce the complexity
of the methods, such as eliminating from the process those subsets
L which yield dead positions that are equivalent �35�. Guided by
this principle, following is an example for finding all the dead-
point configurations of the known Stephenson III mechanism,
shown in Fig. 10.

The mechanism of Fig. 10 possesses four faces that can be

rties of new statical variable.

Translation to the terminology of the
linkage found in a dead-point position

1. The new variable is a two-
dimensional vector corresponding
to each face �area bounded by the
truss elements� of the linkage.

2. The force in the linkage link is
equal to the difference between the
new variables corresponding to the
faces separated by this element.

3. The new variable corresponding to
the external face of the linkage is
equal to zero.
pe
associated with a set of four face forces: �FA ,FB ,FC ,FD�. Faces
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adjacent to the driving link, 7, are A and D. The possible non-
trivial subsets L for this mechanism are listed in the truth table
�Table 3�.

Accordingly, the method of Sec. 5 can be applied through eight
iterations, yielding eight positions, as is listed in Table 4.

The right-most column of Table 4 provides the general geo-
metrical property identifying the specific type of the correspond-
ing dead-point position. The positions presented in the paper con-
stitute all the dead positions for this linkage with driving link 7
that appear in �5� including additional special-case positions. Fur-

Fig. 9 Example for employing face forces in d
II linkage. „a… Stephenson II linkage, „b… rando
dead-point position.

Fig. 10 Stephenson III mechanism, for which all the possible

dead-point positions are to be found

606 / Vol. 128, MAY 2006
thermore, an explanation is provided on how such a description
has been obtained on the basis of the properties of the face-force
variables. In the course of the research, additional kinematical/
statical tools have been developed for effective identification of
found configurations �32� which enable to find all the configura-
tions corresponding to the subsets L in a fully systematic manner
�35�.

7 Conclusions and Further Research
The paper has demonstrated another view on the problem of

finding the dead-point positions of linkages from the perspective
of graph theory duality. This perspective has led to the develop-

cting dead-point positions of the Stephenson
y chosen face-force vectors, „c… the resultant

Table 3 The truth table listing the dead-point positions of the
Stephenson III mechanism. Unit entry of the table stands for
the corresponding face-force belonging to the subset defining
the dead-point position.

Position
No. FA FB FC FD

L1
0 0 0 1

L2
0 0 1 1

L3
0 1 0 1

L4
1 0 0 0

L5
1 0 0 1

L6
1 0 1 0

L7
1 1 0 0

L8
1 1 1 1
ete
ml
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Fig. 9 Example for employing face forces in detecting dead-point positions of the StephensonII linkage. „a… Stephenson II linkage, „b… randomly chosen face-force vectors, „c… the resultantdead-point position.
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adjacent to the driving link, 7, are A and D. The possible nontrivialsubsets L for this mechanism are listed in the truth table�Table 3�.Accordingly, the method of Sec. 5 can be applied through eightiterations, yielding eight positions, as is listed in Table 4.The right-most column of Table 4 provides the general geometricalproperty identifying the specific type of the correspondingdead-point position. The positions presented in the paper constituteall the dead positions for this linkage with driving link 7that appear in �5� including additional special-case positions. Furthermore,an explanation is provided on how such a descriptionhas been obtained on the basis of the properties of the face-forcevariables. In the course of the research, additional kinematical/statical tools have been developed for effective identification offound configurations �32� which enable to find all the configurationscorresponding to the subsets L in a fully systematic manner�35�.7 Conclusions and Further ResearchThe paper has demonstrated another view on the problem offinding the dead-point positions of linkages from the perspectiveof graph theory duality. This perspective has led to the develop-Fig. 10 Stephenson III mechanism, for which all the possibledead-point positions are to be foundTable 3 The truth table listing the dead-point positions of theStephenson III mechanism. Unit entry of the table stands forthe corresponding face-force belonging to the subset definingthe dead-point position.PositionNo. FA FB FC FDL1 0 0 0 1L2 0 0 1 1L3 0 1 0 1L4 1 0 0 0L5 1 0 0 1L6 1 0 1 0L7 1 1 0 0L8 1 1 1 1606 / Vol. 128, MAY 2006 Transactions of the ASME



Table 4 Applying the method for finding the dead-point configurations of Stephenson III
mechanism.
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ment of two methods introduced in the paper, which employ
properties of the dual static system to detect the dead-point
configurations.

Although the paper is aimed at introducing the derivation of the
methods for the specific problem stated above, the results indicate
the potential to yield more general results. Specifically, one can
derive knowledge about the original engineering system by means
of knowledge and properties of another system from different do-
main. In the paper, this idea was applied to find the dead-point
positions of the given linkage through the knowledge and proper-
ties of the dual system—trusses, from structural mechanics. Addi-
tional duality relations existing between different engineering sys-
tems, such as duality between Stewart platforms and serial robots
�23,27�, planetary and beam systems �23� and others �15� that are
based on the duality principle of graph theory, indicate the possi-
bility of applying the view introduced in the paper to other engi-
neering fields.

The method of finding the dead-point positions can be also
stated as a way to come up with geometries appropriate for sus-
taining static force equilibrium, while originally given only the
topology. This problem is tightly related to the form-finding prob-
lem for tensegrity structures �37�. The latter systems present in-
terest not only to the engineering, but to the biological community
as well �38�.

Appendix. Proof of Proposition 2
Relevant terminology of network graph theory �15,17,19�:

Flow (vectorial through variable)—a vector variable associated
with the edges of the graph and satisfying the “flow law,” stating
that the vector sum of the flows at each graph cutset is zero. The
special case of the flow law is the known “vertex postulate,” stat-
ing that the vector sum of the flows at each graph vertex is zero.
Potential (vectorial nodal variable)—a vector variable associ-
ated with the vertices of the graph.

Potential difference (vectorial across variable)—a vector
variable associated with the edges of the graph and satisfying the
“potential law,” that can be formulated though two equivalent
statements: �a� the vector sum of potential differences in each
circuit of the graph is zero or �b� the potential difference of an
edge is equal to the vector difference between the potentials of the
end vertices of the edges.

Flow graph (designated GF)—a graph where the flows
through the edges are of interest. Potential graph (designated
G�)—a graph where the potential differences of the edges are of
interest.

LEMMA 1. For each linkage in a dead-point position there ex-
ists a flow graph GF that reflects its static behavior.

Proof. The immobility of the linkage in a dead-point position is
reflected in the fact that the driving link cannot cause motion, thus
it can statically sustain forces applied upon it. Therefore a linkage
in a dead-point position can be considered as a static structure
�30�. As was proved in �15�, such a structure can be represented
by a flow graph.

LEMMA 2. For each truss T there exists a potential graph, G�,
that reflects the kinematical behavior of the deformations of its
rods.

Proof. Given the truss T, construct a graph G�, as follows �15�:
associate each pinned joint in T with a vertex in G� and each
rod/external force/reaction in T with an edge in G� associate each
vertex k with a vector �k equal to some linear displacement of the
pinned joint, associate each edge i with a vector �i equal to the
resultant deformation vector of rod i. By definition of deforma-
tions �30� vectors �i and �k satisfy the potential law �15,19�, thus
G� can be considered a valid potential graph representation.

PROPOSITION 2. For each linkage in a dead-point position Ldead,
there exists a deformed state of its dual truss, Tdeform where the
deformation vector of each rod i is parallel to the corresponding
link in the linkage.
Proof. Given the linkage Ldead construct its corresponding flow
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graph GF �Lemma 1�. Construct a graph G�, which is dual to GF
�17�. Associate each edge in G� with a vector �i, so that

�i = Fi �10�

where Fi is the flow in the corresponding edge in GF.
Since G� and GF are dual, the edges forming a circuit C in G�

form a cutset in GF. Substituting Eq. �7� into the flow law for GF
yields an equation of potential law for the circuits of G�, thus, G�

can be considered a valid potential graph, with potential differ-
ences defined by �i.

By Lemma 2, the potential graph representation can be inter-
preted as a representation of some deformed state of truss T,
where each rod corresponds to an edge in G�, which by the dual-
ity principle corresponds to an edge in GF. By Lemma 2 the latter
corresponds to a truss element. Similarly, by Lemmas 1 and 2, and
Eq. �10�, the deformation vector of each truss rod is equal to the
force vector acting in the corresponding link of the linkage in the
dead position. As the linkage in the dead-point position presents a
static structure, the forces in its links are in parallel to the orien-
tation of the links. Thus the vectors of the truss rod deformations
are parallel to the links in the corresponding dual dead-pointed
linkage.
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