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Planar Kinematics and Statics
This paper provides geometric insight into the correlation between basic concepts under-
lying the kinematics of planar mechanisms and the statics of simple trusses. The impli-
cation of this correlation, referred to here as duality, is that the science of kinematics can
be utilized in a systematic manner to yield insight into statics, and vice versa. The paper
begins by introducing a unique line, referred to as the equimomental line, which exists for
two arbitrary coplanar forces. This line, where the moments caused by the two forces at
each point on the line are equal, is used to define the direction of a face force which is a
force variable acting in a face of a truss. The dual concept of an equimomental line in
kinematics is the instantaneous center of zero velocity (or instant center) and the paper
presents two theorems based on the duality between equimomental lines and instant
centers. The first theorem, referred to as the equimomental line theorem, states that the
three equimomental lines defined by three coplanar forces must intersect at a unique
point. The second theorem states that the equimomental line for two coplanar forces
acting on a truss, with two degrees of indeterminacy, must pass through a unique point.
The paper then presents the dual Kennedy theorem for statics which is analogous to the
well-known Aronhold-Kennedy theorem in kinematics. This theorem is believed to be an
original contribution and provides a general perspective of the importance of the duality
between the kinematics of mechanisms and the statics of trusses. Finally, the paper
presents examples to demonstrate how this duality provides geometric insight into a
simple truss and a planar linkage. The concepts are used to identify special configura-
tions where the truss is not stable and where the linkage loses mobility (i.e., dead-center
positions). �DOI: 10.1115/1.2181600�
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1 Introduction
Engineering science provides a number of duality principles

�1�, for example, the principle of duality between the points and
lines of the projective plane, are elements of a two-dimensional
projective domain, so that there is a projective geometry of points
as well as of lines �2�. A principle of duality is used in the theory
of screws to map homogeneous coordinates to screw coordinates
�3,4�. This technique was employed by Pennock and Yang �5� to
obtain closed-form kinematic equations for serial robot manipula-
tors and by Tarnai �6� to prove the duality between plane trusses
and grillages. Davies �7� used the principle of duality in a study of
mechanical networks relating to wrenches on circuit screws. An-
other example is the duality between serial robot manipulators and
parallel, or platform-type, manipulators �8,9�. The principles un-
derlying the kinematics and the statics of these two types of ma-
nipulators are the same which makes them dual to each other. An
in-depth study of first-order instantaneous kinematics and statics
by Duffy �10� contributed to a better understanding of both serial
and parallel robot manipulators. Davidson and Hunt �11� extended
this work to the kinetostatics of spatial robots and presented rela-
tionships between kinematically equivalent serial and parallel ma-
nipulators. A more recent investigation �12� illustrates the duality
between the statics of a variety of systems and the kinematics of
planar, spherical, and spatial mechanisms.

It is well known that instantaneous kinematics and statics pro-
ceed alongside one another, the important principle of reciprocity
linking the two together �13�. The duality between first-order ki-
nematics and statics has proved to be an important concept in
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engineering practice �14�. The correlation is based on the principle
of virtual work which implies an orthogonality between the kine-
matic and static variables underlying the behavior of a mechanism
and a truss. In general, the mathematical basis is linear algebra
and the relations can be traced through similarities in the corre-
sponding matrices. Shai �15� presented relationships between pla-
nar linkages and determinate trusses based on graph theory. The
duality between linkages and trusses was described in some detail
and insight into the statics of a truss was obtained from the kine-
matics of a planar linkage, and vice versa. The focus of this cur-
rent work is the correlation between basic concepts underlying
kinematics and statics and not between specific linkages and
trusses. The goal is to provide the reader with a more general
perspective on the duality between the sciences of kinematics and
statics.

The paper begins with a definition of a new entity in statics;
namely, the equimomental line. For two arbitrary coplanar forces
there is a unique straight line in the plane where the two forces
apply the same moment; i.e., the moments caused by the two
forces at each point on this line are equal. This line is referred to
throughout this paper as the equimomental line. A correlation be-
tween planar kinematics and statics is observed based on the dual
relation between the instantaneous centers of zero velocity �hence-
forth referred to as instant centers� of a planar mechanism and the
equimomental lines of a simple truss. This correlation provides a
new approach to transforming knowledge between the domains of
kinematics and statics. The theorems related to instant centers in
single-degree-of-freedom and two-degree-of-freedom linkages
can be extended to theorems in statics. Moreover, by employing
the duality relation between a linkage and a simple truss, special
properties of a linkage can be related to the equimomental lines of

the dual truss. This will be demonstrated by transforming a prop-
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erty of the secondary instant centers for mechanisms with kine-
matic indeterminacy �16,17� to a counterpart property in statics.
Then the result will be used to identify dead-center configurations
of a linkage and unstable configurations of the dual truss.

The paper is arranged as follows. Section 2 presents an original
theorem in statics regarding the existence of an equimomental
line; i.e., a unique line where the moments about each point on the
line, due to two coplanar forces, are equal. The authors believe
that the concept of an equimomental line is a basic concept and
the importance of equimomental lines in statics can be compared
to the importance of instant centers in kinematics. Section 3 de-
velops the correspondence between kinematic and static principles
based on the duality between instant centers and equimomental
lines. The paper then shows that well-known theorems in the ki-
nematics of mechanisms can be transformed to original theorems
in the statics of trusses. Section 4 explains the duality relation
between planar linkages and determinate trusses using the concept
of a face force �18�. The face forces in a truss are analogous to the
linear velocities of the corresponding joints in the dual mecha-
nism. A kinematic joint corresponds to a face �i.e., a non-bisected
area� closed by the truss elements; i.e., the rods, external forces, or
internal reaction forces in the rods. Face forces allow equimomen-
tal lines to be used in a direct manner in the static analysis of a
determinate truss.

Section 5 presents the dual Kennedy theorem which is an origi-
nal graphical technique for the static analysis of a truss. The sec-
tion also includes a kinematic synthesis technique using instant
centers which is then transformed to a synthesis technique in stat-
ics. The approach in statics remains the same as in kinematics
with the important difference that equimomental lines are used in
place of instant centers. Section 6 investigates special configura-
tions of a truss and dead-center positions of a linkage. To illustrate
the correspondence between the kinematic and static theorems
presented in this paper, two practical examples are included;
namely, a determinate truss and the double flier eight-bar linkage.
For a special configuration, the truss is not stable which indicates
that the dual linkage is in a dead-center position. The double flier
eight-bar linkage is used to illustrate the correlation between in-
stant centers and equimomental lines when a linkage is in a dead-
center position. Finally, Section 7 presents an overview of the
work in the paper, important conclusions and suggestions for fu-
ture research.

2 The Equimomental Line
A rigid body moving in a single plane can be defined as an

entity that determines the vector field of linear velocities; i.e.,
each point in the body is associated with a linear velocity vector.
However, there is a point fixed in the body which has zero veloc-
ity, referred to as the instant center. The concept of an instant
center for two rigid bodies in planar motion was discovered by
Johann Bernoulli �19� and is a powerful graphical tool for the
analysis and design of planar mechanisms �20,21�. Instant centers
are useful for determining both the velocity distribution in a given
link and the motion transmission between links �22� and are help-
ful in the kinematic analysis of mechanisms containing higher
pairs, for example, gear trains and cam mechanisms �23�. The
method of instant centers has proved to be very efficient in finding
the input-output velocity relationships of complex linkages �24�.
When combined with the conservation of energy, instant centers
also provide an efficient method to obtain the input-output force
or torque relationships.

The statics of a rigid body can be investigated using an ap-
proach similar to the method of instant centers in kinematics. A
force acting on a rigid body can be defined as an entity that de-
termines the vector field of moments; i.e., a moment vector is
associated with each point fixed in the body. A new concept, de-
fining the locus of points where two coplanar forces apply the
same moment, is presented here in the form of a theorem.
THEOREM. For two arbitrary forces acting in a single plane,
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there exists a unique line in the plane where the moments about
each point on the line, due to the two forces, are equal.

Proof. Consider the two coplanar forces F� 1 and F� 2 which act
along the skewed lines of action l1 and l2, respectively, as shown
in Fig. 1. The plane is represented by the fixed Cartesian reference
frame XOY where O denotes the origin of the reference frame.

Consider the point A in the plane where the moments due to the
two forces are equal; i.e., the moments satisfy the constraint

M� 1→A = M� 2→A �1a�
Equation �1a� can be written as

r�1 � F� 1 = r�2 � F� 2 �1b�

where r�i �i=1 and 2� is the vector from point A to an arbitrary
point Bi on line li. Equation �1b� can be written as

F1x�yA − y1� − F1y�xA − x1� = F2x�yA − y2� − F2y�xA − x2� �2�

where Fix and Fiy are the x and y components of force F� i, �xA ,yA�
are the Cartesian coordinates of point A, and �xi ,yi� are the Car-
tesian coordinates of point Bi. Rearranging Eq. �2� gives the equa-
tion of a unique straight line; i.e.,

yA = axA + b �3a�
where the slope and the intercept, respectively, are

a =
F1y − F2y

F1x − F2x
and b =

F1xy1 − F1yx1 − F2xy2 + F2yx2

F1x − F2x
�3b�

Note that this line, denoted as m12 in Fig. 1, must pass through the
point of intersection of the lines of action l1 and l2. The conclu-
sion is that the locus of all points, where two coplanar forces exert
the same moment, is a unique straight line henceforth referred to
as the equimomental line. In the special case where the two co-
planar forces are parallel then the equimomental line must also be
parallel, and in the plane of, the two forces.

Table 1 presents a summary of important correlations between
three basic concepts in kinematics and statics. In particular, note
that the new concept of an equimomental line in statics is analo-
gous to the well-known concept of an instant center in kinematics.

Additional correlations between the domains of kinematics and
statics will be presented in the following section. Two new theo-
rems and formal proofs of the theorems will also be detailed in
this section.

3 Relationship Between Instant Centers and
Equimomental Lines

The Aronhold-Kennedy theorem, also referred to as the theo-

Fig. 1 Forces F� 1 and F� 2 acting along lines of action l1 and l2
rem of three instant centers, is commonly used to locate the sec-
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ondary �or the unknown� instant centers of a single-degree-of-
freedom planar mechanism �22�. The theorem states that the
instant centers associated with links i, j, and k of the mechanism
�denoted here as Iij, Iik, and Ijk� must lie on a unique straight line.
This theorem will now be transformed to the domain of statics
resulting in a new theorem, henceforth referred to as the equimo-
mental line theorem.

THE EQUIMOMENTAL LINE THEOREM. The three equimomental
lines defined by three arbitrary coplanar forces must intersect at a
unique point.

Proof. Consider the three equimomental lines m12, m13, and

m23, defined by the three coplanar forces F� 1, F� 2, and F� 3, see Fig.
2. The point of intersection of lines m12 and m13 will be denoted
as point D. Since this point lies on the equimomental line m12 then

the moment exerted about point D due to the forces F� 1 and F� 2
must satisfy the relation

M� 1D = M� 2D �4�

Similarly, since point D lies on the equimomental line m13 then

the moment exerted about point D due to the forces F� 1 and F� 3
must satisfy the relation

M� 1D = M� 3D �5�

Therefore, the moment exerted about point D due to the forces F� 2

and F� 3 must satisfy the relation

M� 2D = M� 3D �6�

The conclusion is that the equimomental line m23 must pass
through point D as shown in Fig. 2.

The authors believe that the equimomental line theorem �docu-
mented in the right-hand column of Table 2� can play an important
role in a static analysis, or synthesis, of trusses. For the purpose of
comparison, the Aronhold-Kennedy theorem is presented in the
left-hand column of Table 2.

3.1 Statically Indeterminate Trusses and Indeterminate
Mechanisms. A structure is referred to as statically indeterminate
when the unknown force variables �for example, an external force
or an internal reaction force� cannot be determined uniquely from

Table 1 Correlations between planar kinematics and statics
Fig. 2 The equimomental lines for the three coplanar forces
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the force equilibrium equations. The forces cannot be determined
without consideration of the deformations within the elements
constituting the structure. The difference between the unknown
variables and the number of independent equilibrium equations is
commonly referred to as the degrees of indeterminacy of the
structure. An indeterminate structure has the important property of
self-equilibrating forces �25�, i.e., when an internal force is acting
in the redundant element, the forces in the structure can still be in
self-equilibrium. This property is also referred to as a state of
self-stress, widely used by the community investigating tensegrity
systems �26�, and adopted in this paper. From a more general
perspective, a statically determinate system can be regarded as
containing a self-stress when the external force is viewed as a
regular rod that contains an internal force. For the purposes of this
paper, the degrees of static indeterminacy are considered to be the
number of independent self-stresses, including those originating
from the external forces. The term, “the degree of indeterminacy,”
will be used consistently to designate the number of independent
force variables that are required to uniquely define the static be-
havior of a truss.

There is a class of single-degree-of-freedom planar mechanisms
where some, or all, of the secondary instant centers cannot be
located from the direct application of the Aronhold-Kennedy theo-
rem �27,28�. These mechanisms are commonly referred to as
mechanisms with kinematic indeterminacy or as indeterminate
mechanisms �29�. A graphical technique to locate the secondary
instant centers for an indeterminate mechanism was presented by
Foster and Pennock �16,17�. The technique is based on the con-
cept that a secondary instant center of a two-degrees-of-freedom
planar mechanism �i.e., two independent inputs are required for a
unique output� must lie on a unique straight line. The kinematics
of an indeterminate mechanism is dual to the statics of a truss with
two degrees of indeterminacy whose behavior is uniquely deter-
mined by two independent forces.

The dual static theorem states that all of the equimomental lines
for a truss, with two degrees of indeterminacy, must pass through
the same point. For the convenience of the reader, the kinematic
theorem �for links i and j� and the dual static theorem �for forces

F� i and F� j� are presented in the left-hand and the right-hand col-
umns of Table 3, respectively.

THEOREM. The equimomental line for two arbitrary coplanar
forces, in a truss with two degrees of indeterminacy, must pass
through a unique point.

Proof. Consider the two forces F� i and F� j in a plane defined by
the fixed Cartesian reference frame XOY where O denotes the
origin, see Fig. 3.

The vectors r�Oi and r�Oj point from the origin O to the arbitrary

points A and B on the lines of action of the forces F� i and F� j,
respectively. The vectors r�iI and r� jI point from A and B, respec-
tively, to a point which is assumed to lie on the equimomental line

Table 2 The Aronhold-Kennedy theorem and the equimomen-
tal line theorem
mij for the two forces �the point is denoted here as Eij�. Finally,
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the vector r�I �=xIî+yI ĵ� points from the origin O to the point Eij.

The moment due to the two forces F� i and F� j, with respect to the
point Eij, can be written as

M� Eij
= M� O − �xIî + yI ĵ� � �F� i − F� j� �7�

where M� O is the moment about point O, and xI and yI are the
Cartesian coordinates of point Eij. For convenience, Eq. �7� can be
written as

M� Eij
= M� O − �xIî + yI ĵ� � F� ij �8a�

where

F� ij = F� i − F� j �8b�

is referred to as the force difference vector. Since point Eij is
assumed to lie on the equimomental line mij then the moment
about this point due to the two forces is zero; i.e.,

M� Eij
= M� Ei

− M� Ej
= 0 �9�

where M� Ei
is the moment about Eij due to F� i and M� E j

is the

moment about Eij due to F� j. Substituting Eq. �9� into Eq. �8a�, and
rearranging, the moment about point O can be written as

M� O = �xIî + yI ĵ��F� ij �10�

Table 3 Kinematic theorem and the dual static theorem

Fig. 3 Point Eij which lies on the equimomental line of two
� �
forces Fi and Fj
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As stated previously, the static behavior of a truss with two
states of self-stress �i.e., two degrees of indeterminacy� can be
defined by two independent force variables. For the purposes of
introducing the dual of the kinematic theorem �17� into statics,
these two forces will be referred to here as generalized forces and
denoted as p1 and p2. The generalized forces are analogous to the
generalized velocities that are used in the kinematics theorem.
Therefore, the moment about point O can be expressed as a linear
combination of the two generalized forces; i.e.,

MO = hM1
p1 + hM2

p2 �11a�

where the coefficients

hM1
=

�MO

�p1
and hM2

=
�MO

�p2
�11b�

Sign convention: Since Eq. �11a� is a scalar equation then the
equation gives a positive value if the moment is counterclockwise
and the equation gives a negative value if the moment is
clockwise.

The Cartesian components of the force difference vector, see
Eq. �8b�, can be expressed as linear combinations of the two gen-
eralized forces; i.e.,

Fxij
= fx1

p1 + fx2
p2 �12a�

and

Fyij
= fy1

p1 + fy2
p2 �12b�

where the coefficients

fx1
=

�Fxij

�p1
, fx2

=
�Fxij

�p2
, fy1

=
�Fyij

�p1
and fy2

=
�Fyij

�p2
�13�

The equation of the equimomental line, see Eq. �3a�, can be writ-
ten as

yI = axI + b �14a�
where the slope and the intercept can be written, respectively, as

a =
Fyij

Fxij

and b = −
MO

Fxij

�14b�

Substituting Eqs. �11a� and �12� into Eqs. �14b�, the slope and the
intercept of the equimomental line can be written as

a =
fy1

p1 + fy2
p2

fx1
p1 + fx2

p2
and b = −

hM1
p1 + hM2

p2

fx1
p1 + fx2

p2
�15�

The ratio of the two generalized forces, henceforth referred as the
force ratio, will be defined as

rf =
p2

p1
�16�

Substituting Eq. �16� into Eq. �15�, and simplifying, the slope and
the intercept of the equimomental line can be written as

a =
fy1

+ fy2
rf

fx1
+ fx2

rf
and b = −

hM1
+ hM2

rf

fx1
+ fx2

rf
�17�

Rearranging these two equations, the force ratio can be written as

rf =
afx1

− fy1

fy2
− afx2

or as rf = −
bfx1

+ hM1

hM2
+ bfx2

�18�

Then equating these two relations, and rearranging, gives

fy1
hM2

− fy2
hM1

fx1
fy2

− fy1
fx2

= a� fx1
hM2

− fx2
hM1

fx1
fy2

− fy1
fx2

� + b �19�

Note that Eq. �19� is the equation of a straight line �in the fixed
Cartesian reference frame in the plane of the forces�. From inspec-

tion of Eq. �19�, a point with the Cartesian coordinates
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x0 =
fx1

hM2
− fx2

hM1

fx1
fy2

− fy1
fx2

and y0 =
fy1

hM2
− fy2

hM1

fx1
fy2

− fy1
fx2

�20�

must lie on this unique straight line. Therefore, independent of the
generalized forces p1 and p2 the equimomental line for the two

forces F� i and F� j must pass through the point whose coordinates
are defined by Eq. �20�. The slope and the intercept of the line,
however, will change in accordance with the force ratio, see Eq.
�17�. The right-hand column of Table 4 presents a summary of this
proof. For the sake of completeness and for the purpose of com-
parison, the left-hand column presents a summary of the kine-
matic theorem.

The following section shows that an expansion of the duality
principle yields a correlation between linkages and trusses. The
topology of the two systems are related by the graph theory dual-
ity principle �15�.

4 The Duality Between Kinematics and Statics
The correlation between basic laws in kinematics and statics

leads to the duality between the kinematics of mechanisms and the
statics of structures. For the first-order kinematic properties of a
mechanism, there is a corresponding property for the dual truss.
The basic proposition of the duality relationship between a link-
age and a determinate truss is as follows. For a linkage L there
exists a truss T satisfying: �i� each element of T �for example, a
member or a rod, an externally applied force of known magnitude,

Table 4 The kinematic theor

Stage Kinematic theorem

For links i and j of a two-degrees-of-freedom
planar mechanism, the instant center Iij must
lie on a unique straight line.

1 The velocity of instant center Iij, in terms of
the velocity of a point A in link i and the an
velocity of link i relative to link j, is

v� Iij
= ẋAi

î + ẏAi
ĵ + �ijk̂ � �xIî + yI ĵ�

2 Setting the above equation to zero, the
coordinates of the instant center Iij are

xI = −
ẏAi

�ij
and yI =

ẋAI

�ij

3 Writing the above equations as a linear
combination of two generalized velocities
�q̇1 and q̇2� defines the velocity of the
mechanism; i.e.,

�ij =hij1q̇1+hjj2q̇2

ẋAi= fxA1q̇1+ fxA2q̇2

ẏAi= fyA1q̇1+ fyA2q̇2

4 Introducing the generalized velocity ratio
rV�=q̇2 / q̇1�, the Cartesian coordinates of the
instant center Iij can be written as
xI=−�fyA1

+ fyA2
rv� / �hij1

+hij2
rv� and

yI=−�fxA1
+ fxA2

rv� / �hij1
+hij2

rv�

5 The relations in Stage 4 constrain the instant
center Iij to lie on the unique straight line

�hij1fxA2
−hij2fxA1

�x1+ �hij1fyA2
−hij2fyA1

�y1

=fxA1
fyA2

− fxA2
fyA1
or an internal reaction force� corresponds to a link of L; and �ii� a
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force acting on an element of T corresponds to the velocity of a
point fixed in a link of L. Note that the links in a planar linkage
can be transformed into a number of interconnected binary links
�21�, therefore, this paper will regard these linkages to be com-
posed solely of binary links. Table 5 lists the transformation rules
defining the correspondence between a linkage and the dual truss
�for more details, and a formal proof of these rules, the reader is
referred to Shai �18��.

The process of constructing a truss that is dual to a given link-
age, or vice versa, is similar to that of constructing a dual graph
�30�. This relationship gives rise to the correspondence between
the equations of static equilibrium in the truss �31� and the veloc-
ity equations of the dual linkage �15�. To facilitate an understand-
ing of this duality, consider the simple truss shown in Fig. 4�a�
which is comprised of two members �or rods� pinned together at

O and subjected to the external force P� 2 acting at this pin. Since
the internal reaction forces in the truss must satisfy the conditions
of static equilibrium then the external force can be written as

P� 2 = F� 3 + F� 4 �21�

where F� 3 and F� 4 are the internal reaction forces in rods 3 and 4,
respectively.

The three elements of the truss are rod 3, rod 4, and the external

force P� 2 and the three faces of the truss are denoted as A�, B�, and
O�, as shown in Fig. 4�a�. Note that the face O� is s special face,
referred to as the reference face, and is analogous to the ground

and the dual static theorem

Dual static theorem

In a truss with two degrees of
indeterminacy, the equimomental line must
pass through a unique point.

r
The moment due to the forces F� i and F� j, in
terms of the moment about the origin
�denoted as point O�, is

M� Eij
= M� O − �xIî + yI ĵ� � F� ij �8a��

Setting Eq. �8a� to zero, the equation
describing the equimomental line is

yI = axI + b �14a��

where a=Fyij
/Fxij

and b=−MO /Fxij
�14b��

Writing Eq. �8a� as a linear combination of
two generalized forces �p1 and p2� defines
the statics of the truss; i.e.,

MO=hM1p1+hM2p2 �11a��
Fxij

= fx1p1+ fx2p2 �12a��
Fyij

= fy1p1+ fy2p2 �12b��

Introducing the generalized force ratio
rf�=p2 / p1�, the slope and the intercept of the
equimomental line can be written as

a= �fy1
+ fy2

rf� / �fx1
+ fx2

rf� and b=−�hM1
+hM2

rf� /
�fx1

+ fx2
rf� �17��

Equation �17� constrains the equimomental lines
to pass through the unique point with the
coordinates
xo= �fx1

hM2
− fx2

hM1
� / �fx1

fy2
− fy1

fx2
�,

yo= �fy1
hM2

− fy2
hM1

� / �fx1
fy2

− fy1
fx2

� �20��
em

gula
link O2�O4� �also denoted as link 1� of the dual linkage. This link-
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age can be obtained from the transformation rules that are pre-
sented in Table 5. The result is a planar four-bar linkage com-
prised of the ground link 1, the input �or driving� link 2�, the
coupler link 3�, and the output link 4�, as shown in Fig. 4�b�.
Links 2� and 4� are pinned to the ground link 1 at O2� and O4�,
respectively, and pinned to link 3� at A and B. Note that joints A
and B of the dual linkage are analogous to faces A� and B� of the
simple truss. Also, note that links 2�, 3�, and 4� correspond to the
elements 2, 3, and 4 of the truss, respectively, such that each link
is perpendicular to the corresponding element in the truss, as il-
lustrated in Fig. 4�a�. This construction guarantees that the direc-
tion of a force in the truss is parallel to either the absolute velocity
of a joint or the relative velocity between two joints in the dual
linkage; i.e., there is a geometrical isomorphism between the truss
and the dual linkage.

In addition, there is a topological isomorphism between the
elements of the truss and the links of the dual linkage. To illustrate
this, consider pin A which connects the input link 2� and the
coupler link 3�, see Fig. 4�b�. The linear velocity of pin A �i.e., the
input velocity� can be written as

V� A = V� B + V� A/B �22�
A comparison of Equations �21� and �22� shows the topological
isomorphism between the elements in the truss and the links in the
dual linkage. The conclusion is that there is a correspondence
between the forces in the truss elements �due to the external force

Table 5 Transformation rules

Linkage terminology

A link; i.e., a rigid body which can be regarded as infinite in extent.

A kinematic pair or a joint �e.g., a revolute joint or a prismatic joint�.
The relative velocity between the two kinematic pairs of a binary link;
i.e., the vector difference of the absolute velocities of the two kinematic
pairs.
The absolute linear velocity of a joint.

The number of degrees of freedom of the linkage.

Fig. 4 Example of the truss-linkage duality. „a… A simple truss
„the dual linkage is superimposed…. „b… The dual linkage.

Table 6 Dual properties

The relative instant center of two links connected by a revolute joint is
coincident with the revolute joint.

The ground link.

The input �or driving� link.

If the relative instant center Iij is coincident with the absolute instant
center I1i then the linkage is immobile �or locked�.
The linkage is mobile if, and only if, there exists a set of all possible
instant centers that satisfy the Aronhold-Kennedy theorem.
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P� 2� and the linear velocities of the joints in the dual linkage �due

to the input velocity V� A�. Since the truss can be scaled up or down
without affecting the magnitudes of the internal forces in members
3 and 4 then the lengths of links 3� and 4� can also be scaled up
or down without affecting the velocity of pin B or the velocity of
pin A relative to pin B.

A face force is the most suitable entity to introduce equimo-
mental lines into the static analysis of a truss. This force variable,
which is defined in Table 5, is associated with each face of the
truss and can be considered the multidimensional expansion of the
mesh currents in an electronic circuit �18�. An internal reaction
force acting in a member of a truss, denoted as member j, can be
written as

F� j = F� R − F� L �23�

where F� R and F� L are the face forces of the two adjacent faces on
the right and left sides �or planes�, respectively, of member j. The
right and left planes are defined according to the direction of the
edge; i.e., the unit vector pointing from the head vertex to the tail
vertex �15�. The equimomental line of the two face forces coin-
cides with the vector difference of the two forces �see Sec. 2�.
Therefore, the equimomental line of two adjacent face forces is
parallel to the line of the rod, the line of action of the external
force, or the line of action of the internal reaction force separating
the two faces. To indicate the importance of a face force, Table 6
lists a number of dual properties between a planar mechanism and
a truss.

The following section will present an original graphical tech-
nique, referred to here as the dual Kennedy theorem, to locate the
unknown equimomental lines of a simple truss. After the locations
of the equimomental lines are known then the face forces and the
unknown reaction forces acting in the truss can be determined. An
advantage of this graphical technique, compared to an analytical
technique, is that the internal reaction force in a specified rod can
be obtained directly without the need to evaluate the internal re-
action forces in other rods of the truss.

5 The Dual Kennedy Theorem
The dual Kennedy theorem and the face force relationship of a

determinate truss are summarized in the right-hand column of

r a linkage and the dual truss

Truss terminology

A truss element �e.g., a rod, an external force, or an internal reaction
force�.
A face; i.e., the area of a plane enclosed by the truss elements.
The force in a truss element.

The face force �defined as the force associated with each face of the
truss�.
The number of degrees of indeterminacy of the truss.

mechanism and a truss

The equimomental line of two adjacent face forces is the line which
separates the two face forces.
The reference face. The face of the truss where, without loss of
generality, the face force is taken to be zero. It is common practice to
chose the outside area of the truss to be the reference face.
The input �or specified� face force. In general, this is the force in the
face located on one side of the external force.
If the corresponding equimomental line mxy is coincident with the
equimomental line mzy then the truss is not rigid.
A truss is stable if, and only if, there exists a set of all possible
equimomental lines that satisfy the equimomental line theorem.
fo
of a
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Table 7. For the convenience of the reader and for the purpose of
comparison, the Aronhold-Kennedy theorem and the angular ve-
locity relationship of a single-degree-of-freedom planar mecha-
nism are summarized in the left-hand column.

The sign convention for Eq. �24� is well-known; i.e., use the
negative sign if the relative instant center I2i lies between the two
absolute instant centers I21 and Ii1 and use the positive sign if the
relative instant center lies outside the two absolute instant centers.

The sign convention for Eq. �25� can be obtained in a system-
atic manner from the sign convention for Eq. �24� using the dual-
ity relation. The location of the relative instant center with respect
to the absolute instant centers is replaced by the direction of the
face forces with respect to the two half-planes formed by the
relative equimomental line. Therefore, use the positive sign in Eq.

�25� if the face forces F� K and F� P acting along the absolute equi-
momental lines mKO and mPO, respectively, are both directed
from one side of the half-plane created by the relative equimo-
mental line mPK to the other side of the half-plane. Similarly, use
the negative sign in Eq. �25� if the two forces are not both directed
from one side of the half-plane created by the relative equimo-
mental line to the other side of the half-plane.

To illustrate the dual Kennedy theorem and the sign convention
consider the simple truss �commonly referred to as the Howe
truss� shown in Fig. 5�a�, in which the common assumption of
pinned joints is implied. The truss is subjected to a known exter-

nal force P� which acts at the pin connecting the five rods 5, 6, 8,
9, and 11.

A typical statics problem is to determine the internal reaction
force in a particular rod of the idealized truss. For the purposes of
illustration, assume that the problem is to determine the internal
reaction force in the lower rod 7.

Recall that a conventional analytical approach to solve a stati-
cally determinate truss problem is to write the force balance equa-
tions for the members of the truss. This produces a set of simul-
taneous linear equations which can be solved in a straight-forward
manner using a computer software package, such as MATLAB or
MATHEMATICA. However, this procedure affords no geometric in-

Table 7 The Aronhold-Kennedy the

Summary of the Aronhold-Kennedy theorem to find the instant centers
of a planar mechanism:
1. Map all the kinematic pairs as the instant centers of the connected
links.
2. Find a set of four links �say i, j, k, and l� for which the relative
instant centers Iij, Iik, Ikl, and Iil are known.
3. The point of intersection of the line connecting instant centers Iij and
Ijk, and the line connecting instant centers Ii1 and Ik1 is the instant
center Iik.
4. Repeat this procedure to locate all the unknown instant centers.
To facilitate the application of this method, use the Kennedy circle as
follows. Associate each link with a vertex on the circle. If the location
of the instant center between two links is known then connect the two
corresponding vertices with an edge. Step 2 is the search for a
quadrangle formed by the edges in the circle, while step 3 results in the
addition of a diagonal to that quadrangle.

The angular velocity of link i can be written in terms of the input
angular velocity �2 as

�i = ±
I2iI21

I2iIi1
�2 �24�

where 1 denotes the ground link and I2iIi1 and I2iI21 are the distances
between instant centers I2i and Ii1 and between instant centers I2i and
I2l, respectively. Equation �24� takes advantage of the fact that the
points on two links, which are coincident with the relative instant
center, have the same linear velocity.
sight and the internal forces in several of the rods must be evalu-
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ated before the internal force in rod 7 can be obtained. Note that
the graphical technique proposed here does not require a knowl-
edge of the internal forces in the other rods in order to determine
the internal force in a specified rod. This graphical technique is
believed to be an original contribution to the literature and is
similar to drawing the Aronhold-Kennedy circle to locate the sec-
ondary instant centers of a single-degree-of-freedom planar

em and the dual Kennedy theorem

Summary of the dual Kennedy theorem to find the equimomental lines
of a determinate truss:
1. Map all the rods as the equimomental lines of the faces they
separate.
2. Find a set of four face forces �say x, y, z, and w� for which the
equimomental lines mxy, myz, mwx, and mwz, are known.
3. The line connecting the point of intersection of equimomental lines
mxy and myz, and the point of intersection of equimomental lines mwx

and mwz is the equimomental line is mxz.
4. Repeat this procedure to locate all the unknown equimomental lines.
To facilitate the application of this method, use the dual Kennedy circle
as follows. Associate each face with a vertex on the circle. If the
location of the equimomental line between two face forces is known
then connect the two corresponding vertices with an edge. Step 2 is the
search for a quadrangle formed by the edges in the circle, while step 3
results in the addition of a diagonal to the quadrangle.

The face force of face K can be written in terms of the face force FP
�i.e., the known external force� as

FK = ±
mPKmPO

mPKmKO
FP �25�

where O denotes the reference face and mPKmKO and mPKmPO are the
perpendicular distances from an arbitrary point on the relative
equimomental line mPK to the absolute equimomental lines mKO, and
mPO, respectively. Equation �25� takes advantage of the fact that two
coplanar forces apply the same moment at each point on the
equimomental line of these two forces.
or
Fig. 5 „a… A simple truss. „b… The faces of the simple truss.

MAY 2006, Vol. 128 / 593



mechanism �20,22�. For this reason the technique is referred to
here as drawing the dual Kennedy circle.

The number of faces of this truss is n=9 and are denoted as A,
B, C, D, E, F, G, P, and O as shown in Fig. 5�b�. The reference
face is denoted as O and the input face is denoted as P. Note that
the external force is between the input face P on the left and the
reference face O on the right. Since the face force in the reference

face is defined as zero then the external force P� is the face force of
face P; i.e., denoted here as FP.

The total number of equimomental lines in this truss is

nl =
n�n − 1�

2
=

9�9 − 1�
2

= 36 �26�

The number of known �or primary� equimomental lines can be
written as

nK = nR + nE + nS �27a�

where the number of rods nR=13, the number of external forces
acting on the truss nE=1, and the number of mobile supports nS
=1. Therefore, the number of primary equimomental lines is

nK = 13 + 1 + 1 = 15 �27b�
The number of unknown �or secondary� equimomental lines is

nU = 36 − 15 = 21 �28�
The procedure to locate the secondary equimomental lines is to

draw a circle �referred to as the dual Kennedy circle� and denote
the faces of the truss in a clockwise manner on the circumference
of this circle, see Fig. 6�a�. Then represent the primary equimo-
mental lines as solid lines and the secondary equimomental lines
as dashed lines in this circle. For example, the secondary equimo-
mental lines mPG, mPC, and mCO are indicated by the dashed lines
on Figs. 6�b�–6�d�, respectively.

Note that the dashed line PG creates the two triangles POG and
PAG in the quadrangle OPAG, see Fig. 6�b�. Therefore, the equi-
momental line mPG must pass through: �i� the point of intersection
of equimomental lines mPA and mAG, namely, between the lines of
rods 2 and 4, respectively, and �ii� the point of intersection of the
equimomental line mPO �i.e., the line coincident with the line of

action of the external force P� � and the equimomental line mGO
�i.e., the line coincident with the line of action of the reaction
force r��. Similarly, the dashed line PC creates the two triangles
CBP and CGP in the quadrangle BCGP, see Fig. 6�c�. Therefore,
the equimomental line mPC must pass through: �i� the point of
intersection of equimomental lines mPB and mBC, namely, between
the lines of rods 5 and 6, respectively, and �ii� the point of inter-
section of the equimomental line mPG and the equimomental line
mCG which is coincident with rod 7. Finally, the dashed line OC

Fig. 6 The dual Kennedy circle „a… The primary equimomental
lines. „b… The secondary equimomental line mPG. „c… The sec-
ondary equimomental line mPC. „d… The secondary equimomen-
tal line mCO.
creates the two triangles OPC and OGC in the quadrangle OPCG,
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see Fig. 6�d�. Therefore, the equimomental line mCO must pass
through: �i� the point of intersection of the equimomental line mPO
and the equimomental line mPC, and �ii� the point of intersection
of equimomental lines mCG and mGO. The equimomental lines
mPG, mPC, and mCO are shown in Fig. 7. The figure also shows the
equimomental lines mPO, mGO, and mCG. For the convenience of
the reader the procedure to obtain the secondary equimomental
lines in a truss is documented in Table 7.

The internal reaction force in rod 7 can be written from Eq. �23�
as

F� 7 = F� G − F� C �29a�

where F� C and F� G are the face forces of the two adjacent faces C
and G on the left and right sides, respectively. The two adjacent
face forces are directed along the absolute equimomental lines
mCO and mGO and can be written from Eq. �25�, see Table 7, as

FC = ±
mPCmPO

mPCmCO
FP and FG = ±

mPGmPO

mPGmGO
FP �29b�

where mPCmPO and mPCmCO are the perpendicular distances from
an arbitrary point on the relative equimomental line mPC to the
absolute equimomental lines mPO and mCO, respectively, and
mPGmPO and mPGmGO are the perpendicular distances from an
arbitrary point on the relative equimomental line mPG to the abso-
lute equimomental lines mPO and mGO. Choosing the arbitrary
points U and V, see Fig. 8�a�, on the equimomental lines mPC and
mPG, respectively, the four perpendicular distances can be mea-
sured from a scaled drawing of the truss.

The sign convention in Eqs. �29b� will determine the direction

of the face forces F� C and F� G. Note that the face force F� P is
directed from the left half-plane, defined by the relative equimo-
mental line mPC, to the right half-plane, see Fig. 8�b�. Therefore,

in order to ensure that F� C produces the same moment at every

point on the equimomental line mPC as F� P then F� C must also be
directed from the left half-plane to the right half-plane as shown

in the figure. Similarly, in order to ensure that F� G produces the
same moment at every point on the relative equimomental line

mPG as F� P then F� G must also be directed from the left half-plane
to the right half-plane. Therefore, the positive signs must be used
in both equations presented in Eqs. �29�.

Substituting the four perpendicular distances that were mea-
sured in Fig. 8�a� into Eqs. �29b� and the results into the vector
equation given by Eq. �29a� will determine the internal reaction
force in rod 7. The sign convention for an internal reaction force is
as follows: The force is taken to be positive if it is in the same
direction as the edge and the force is taken to be negative if it is in
the opposite direction to the edge �15�. This sign convention im-
plies that when the answer for an internal reaction force is positive
then the rod is in compression and when the answer for an internal

Fig. 7 Six of the equimomental lines
reaction force is negative then the rod is in tension.
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Synthesis Example. To demonstrate how instant centers can be
used in the kinematic synthesis of a linkage consider the planar
four-bar linkage denoted as links 1, 2, 3, and 4 �where link 1 is the
ground link�, see Fig. 9�a�. The problem is to change the location
of the coupler link 3 without changing the transmission ratio be-
tween the input link 2 and the output link 4. The transmission ratio
for the linkage depends on the location of the instant center I24.
From the Aronhold-Kennedy theorem, this instant center is lo-
cated at the point of intersection of the line connecting the instant
centers I23 and I34 and the line connecting the instant centers I12
and I14, see Fig. 9�a�. Therefore, the geometry of the coupler link
can only be changed such that the instant center I24 remains in the
same location. The change in the geometry, stemming from a
simple graphical construction, is shown by the dashed lines in Fig.
9�a�. The transformed version of the linkage is shown in Fig. 9�b�.

This kinematic synthesis technique can be transformed to ob-
tain a method for synthesis in statics. From the principle of dual-
ity, the approach in statics remains the same as in kinematics with

Fig. 8 „a… The perpendicular distances to the equimomental
lines. „b… The direction of the face forces F� C and F� G.

Fig. 10 The synthesis technique applied to
position of rod 4. „b… Equimomental lines of

truss.
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the important difference that the equimomental lines are now used
and not instant centers. Consider the simple truss comprised of

rods 2, 3, 4, and 5 and subjected to the external force P� as shown
in Fig. 10�a�. The problem is to reposition rod 4, as indicated by
the dashed line and denoted as 4�, without affecting the ratio of

force P� to the internal reaction force in rod 5. Such a requirement
could arise during the construction of a truss, if it is discovered
that the current position of the rods is incompatible with the en-
vironmental constraints and must be relocated without affecting
other properties of the truss.

In an effort to be consistent with Fig. 4�a�, the four faces of this
truss are denoted as P, O, Q, and T, as shown in Fig. 10�a�. Note
that the internal reaction force in rod 5 can be determined from the

face force F� Q which is defined by the absolute equimomental line
mQO and the relative equimomental line mPQ. The absolute equi-
momental line mQO coincides with rod 5 and the relative equimo-
mental line mPQ is the line connecting the point of intersection of

force P� and rod 5, and the point of intersection of rods 2 and 4, as
shown in Fig. 10�b�. Since the synthesis condition is to maintain
the same internal reaction force in rod 5 then the geometry of the
truss must be modified. The changes, however, must ensure that
the equimomental lines mQO and mPQ remain in the same posi-
tions. One possible solution is to change the orientation of rod 2,
denoted as 2�, such that the point of intersection of rod 2� with
rod 4� will remain on the equimomental line mPQ, see Fig. 10�b�.
The geometry of the modified truss, denoted by rods 2�, 3, 4�, and
5, is shown in Fig. 10�c�.

The following section will illustrate the theorems and properties
of a truss and the dual linkage, presented in the paper, to investi-
gate a special configuration of a determinate truss and a dead-
center position of a linkage with kinematic indeterminacy;
namely, the double flier eight-bar linkage. The section emphasizes

Fig. 9 Kinematic synthesis of a four-bar linkage. „a… Original
geometry of the four-bar linkage. „b… Modified geometry of the
linkage.

simple truss. „a… Original truss and the new
original truss. „c… Geometry of the modified
a
the
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the correspondence between �i� a nonrigid truss and the dual link-
age; and �ii� the equimomental lines in the double flier eight-bar
linkage in an arbitrary configuration and a dead-center configura-
tion.

6 Special Configurations
The problem of finding unstable configurations of a truss is an

important problem in statics. Similarly, the problem of finding
dead-center positions of a mechanism is an important problem in
kinematics �20,21,32�. An algorithm for finding the dead-center
positions for the given topology of a planar linkage was recently
developed by Shai and Polansky �33�. Also, a study of dead-center
positions of single-degree-of-freedom planar linkages using Assur
kinematic chains was presented by Pennock and Kamthe �34�. The
examples presented in this section will use the concepts developed
in this paper to identify dead-center positions of a mechanism.
This procedure will not only determine if a truss is unstable or a
mechanism is in a dead-center position, but will also identify the
dependence between the locations of elements in the system �truss
or mechanism� which causes the system to be in such a configu-
ration. It is commonly accepted that obtaining solutions to this
latter problem is not a straight-forward task.

6.1 A Determinate Truss. Consider the truss shown in Fig.

11�a� which is subjected to a known external force P� 2 acting at the
pin connecting rods 4, 6, and 7. Note that this truss is in a special
configuration; i.e., rods 3, 7, and 8 �or the extension of the three
rods� intersect at a single point. The five faces of this truss will be
denoted as A, B, C, D, and E. Faces B and D are adjacent faces
separated by rod 8, therefore, the equimomental line mBD is coin-
cident with rod 8, as shown in Fig. 11�b�. Similarly, the equimo-
mental line mDE is coincident with rod 3, the equimomental line
mAB is coincident with rod 7, and the equimomental line mAE is

coincident with the line of action of the external force P� 2.
According to the dual statics theorem, the equimomental line

mBE �for the two face forces B and E� is obtained by connecting
the points of intersection of: �i� the equimomental lines mBD and
mDE; and �ii� the equimomental lines mAB and mAE. Therefore, the
equimomental line mBE is the line connecting the point of inter-
section of rods 3, 7, and 8 �or the rods extended� and the pin
connecting rods 4, 6, and 7. In other words, the equimomental line
mBE is coincident with rod 7 �or the equimomental line mAB�, see
Fig. 5�b�. The conclusion is that the truss is unstable in this con-
figuration �see row 4 of Table 6�.

The dual linkage, superimposed on the truss in Fig. 12�a� and
shown separately in Fig. 12�b�, is a Stephenson-III six-bar linkage
in a special configuration; i.e., links 3, 4, and 6 �or the extensions
of the links� intersect at a single point. According to the Aronhold-
Kennedy theorem this unique point is the instant center for the
coupler link 5 �i.e., I15�, see Fig. 12�c�. Recall that the instant

Fig. 11 The rigidity of the truss. „a… The truss. „b… The equimo-
mental line mBE.
center I13 is defined as the point of intersection of the line passing
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through the instant centers I12 and I23 and the line passing through
the instant centers I15 and I35. Therefore, the instant center I13 is
coincident with the pin that connects links 2 and 3; i.e., I13 is
coincident with I23, as shown in Fig. 12�c�. This implies that the
dual linkage is instantaneously locked in this configuration �see
row 4 of Table 6�; i.e., the input angular velocity is zero. The only
constraint for the linkage to be in this special configuration, com-
monly referred to as a dead-center position, is that the instant
center I15 be located on link 3 �or link 3 extended�.

6.2 The Double Flier Eight-Bar Linkage. This single-
degree-of-freedom planar linkage is shown in an arbitrary con-
figuration in Fig. 13�a�. The seven faces of the dual truss will be
denoted as A, B, C, D, E, F, and G, and for convenience are shown
in Fig. 13�a�.

From the equimomental line theorem, see Table 7, the three
equimomental lines defined by faces A, F, and D �i.e., mAF, mFD,
and mAD� must intersect at a single point. Link 3 separates faces A
and F, therefore, the line along link 3 is the equimomental line
mAF. Similarly, link 4 separates faces D and F, therefore, the line
along link 4 is the equimomental line mFD. Therefore, the equi-
momental line mAD must pass through the point of intersection of
links 3 and 4. From a similar argument, the equimomental line
mAD must also pass through the point of intersection of links 11
and 13. Therefore, the equimomental line mAD is the line connect-
ing these two points of intersection, see Fig. 13�a�. In the same
manner, the equimomental line mAB must pass through the point
of intersection of links 8 and 11, and the point of intersection of
link 7 and the equimomental line mAD. Finally, the equimomental
line mBF �if it exists for the double flier eight-bar linkage in this
configuration� must pass through the points of intersections of: �i�
links 6 and 14, �ii� links 4 and 7, and �iii� the equimomental line
mAB and link 3. Note that these three points, marked with circles
in Fig. 13�a�, do not lie on the same straight line. Therefore, the
equimomental line mBF does not exist for the linkage in this con-
figuration. The conclusion is that the linkage is instantaneously
movable in the given configuration; i.e., the mobility is one.

Now consider the double flier eight-bar linkage in the configu-
ration shown in Fig. 13�b�.

Note that the three points of intersections of: �i� links 6 and 14,
�ii� links 4 and 7, and �iii� the equimomental line mAB and link 3,

Fig. 12 The dual linkage in a dead-center position. „a… The
nonrigid truss. „b… The dual linkage. „c… Instant center I13 is
coincident with instant center I23.
again marked with circles in Fig. 13�b�, now lie on the same
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straight line; i.e., the equimomental line mBF. This indicates that
the linkage is in a singular configuration. The linkage can resist
externally applied forces and instantaneously constitutes a struc-
ture; i.e., the mobility is zero.

7 Conclusions
The paper presents the duality relation between the domains of

planar kinematics and statics through two integrated levels: �i� the
level of correlation between the basic concepts and theorems un-
derlying these fields, and �ii� the level of duality between specific
engineering systems. The paper introduces the concept of an equi-
momental line which is a unique line where the moments about
each point on the line, due to two arbitrary coplanar forces, are
equal. The authors believe that equimomental lines are a funda-
mental concept in statics and are a significant contribution to the
literature. Two theorems are then presented based on the duality
between equimomental lines and instantaneous centers of zero
velocity. The first theorem, referred to as the equimomental line
theorem, states that the three equimomental lines defined by three
coplanar forces must intersect at a unique point. The second theo-
rem states that the equimomental line for two coplanar forces

Fig. 13 „a… Double flier eight-bar linkage in an arbitrary con-
figuration. „b… The equimomental line mBF for a singular
configuration.
acting in a truss with two degrees of indeterminacy must pass
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through a unique point. The paper then uses the concept of a face
force to introduce a graphical technique to locate the equimomen-
tal lines of a determinate truss. This technique, referred to as the
dual Kennedy theorem, is a dual form of the well-known
Aronhold-Kennedy theorem in kinematics and is believed to be a
significant contribution to the literature.

The practical examples presented in this paper emphasize the
duality that exists between kinematics and statics. For instance,
fundamental principles in kinematics can be used to check the
stability of determinate trusses and principles in statics can be
used to check the dead-center positions of linkages. A well-known
rule in kinematics for checking if a linkage is in a dead-center
position was transformed to statics to provide a new rule for
checking the rigidity of a truss. The results of this paper afford
engineers from both domains the opportunity to solve common
problems using these new concepts. In addition, research groups
in kinematics and statics will be able to share their knowledge and
expedite their research work. Since the paper operates on the edge
between kinematics and statics, the results presented in this paper
have great potential for practical problems in kinetostatics. There
is reason to believe that the duality relation can be applied to
additional types of engineering systems. Examples include de-
ployable structures which have attracted the attention of the aero-
nautics and astronautics community and tensegrity structures
which have attracted the attention of the robotics and biological
communities �35�.

The duality between determinate trusses and planar linkages
will yield a variety of practical and theoretical applications, in-
cluding new engineering theorems and concepts, and the design of
new systems. The authors believe that this paper makes a signifi-
cant contribution to the theory of duality between planar kinemat-
ics and statics and a stronger contribution to the teaching of this
theory. The authors hope that this duality will be developed fur-
ther in order to derive new theorems in both the kinematics of
mechanisms and in the statics of a wide variety of structures. The
authors continue to explore this possibility and a future paper will
present several new concepts in the kinematic analysis and syn-
thesis of both planar and spatial mechanisms and the statics of
structures consisting of one-, two-, and three-dimensional compo-
nents. Future work will also include analytical techniques to
complement the graphical techniques that are the primary focus of
this paper.
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