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ABSTRACT. 
The current paper describes the Multidisciplinary Combinatorial Approach (MCA), the idea of which is 
to develop discrete mathematical representations, called “Combinatorial Representations” (CR) and to 
represent with them various engineering systems. During the research, the properties of each 
representation and the connections between them were investigated thoroughly, after that they were 
associated with various engineering systems in order to solve related engineering problems.  The CR 
developed up until now are based on graph theory, matroid theory and discrete linear programming. 
The approach opens up new ways of working with representations, reasoning and design, some of 
which are reported in the paper, as follows: 

- Multidisciplinary representation – systems which contain elements from different fields are 
represented by the same CR. Consequently, a uniform analysis process is performed on the 
representation, and thus on the whole system, without concerning about the specific disciplines the 
elements belong to. 

- Deriving known methods and theorems – new proofs to known methods and theorems are 
derived in a new way, this time on the basis of the combinatorial theorems embedded in CR. This 
enables to develop a meta representation of engineering as a whole, through which the engineering 
reasoning will become convenient. In the current paper this issue is illustrated on structural 
analysis. 

- Deriving novel connections between remote fields – new connections are derived on the basis 
of the relations between different combinatorial representations. An innovative connection 
between mechanisms and trusses, shown in the paper, has been derived on the basis of the mutual 
dualism between their corresponding CR. This new connection alone has opened new avenues of 
research, since knowledge and algorithms from machine theory are now available for usage in 
structural analysis and vice versa. Furthermore, it opened opportunities for developing new design 
methods,  in which structures with special properties  are developed based on known mechanisms 
with special properties and vice versa, as demonstrated in the paper.  

1 INTRODUCTION. 
This paper presents an overview on a general approach, called Multidisciplinary Combinatorial 
Approach (MCA). During the research conducted by this approach, first the representations based on 
discrete mathematics, called Combinatorial Representations (CR) were developed. At this stage, the 
properties, theorems and methods embedded in each of the CR were investigated thoroughly and the 
connections between individual CR were established.  At the next stage, the CR have been applied to 
represent engineering systems and then to solve engineering problems from different fields.  
From the results already achieved, it appears that the approach contributes to both practical and 
theoretical wings of engineering. In the current paper, few of these results are provided, while 
preserving its main objective to give a comprehensive perspective on MCA as a whole.  This objective 
is achieved through 6 sections, each presenting a different aspect of the approach, as follows: 
 
Section  2  starts with  providing the mathematical foundation  to the main two types of CR used in 
MCA : graph and matroid  theories. The latter is an advanced topic in discrete mathematics that is not 
familiar to the engineering community and therefore graph theory terminology was employed in its 
explanation in order to make it as apprehensible as possible. In the current paper four graph 
representations are introduced, which are: Flow Graph Representation (FGR) which is applied to 
represent static systems; Potential Graph Representation (PGR) employed to represent mechanisms; 
Resistance Graph Representation (RGR) with its two embedded methods, employed to represent 
electrical, dynamical, hydraulic systems and indeterminate trusses; and the  Line Graph Representation 
(LGR) that represents planetary gear systems. One matroid representation called Resistance Matroid 
Representation (RMR) is introduced, and is shown to be a generalization of the RGR.  
 
Section  3 introduces one of  the contributions of MCA, which is deriving new connections between 
remote engineering fields. In this section, based on the duality connection between FGR and PGR a 
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novel connection between trusses and mechanisms is derived. This innovation opens up new avenues in 
research and practical applications, some  being  reviewed in the following sections. 
 
Section  4 gives a brief introduction on the contribution of MCA to the theoretical research. It 
postulates, that the theorems embedded in the CR can be considered to be metatheorems, from which 
known theorems and methods in engineering can be derived. This issue is demonstrated by proving that 
known theorems and methods in structural mechanics are derived from theorem embedded in RGR, 
called: Tellegen’s theorem. This enables a new way of research in which novel theorems and methods 
will be developed on the basis of the knowledge embedded in the CR. 
 
Section  5 highlights the contribution of MCA to dealing with multidisciplinary systems. It is based on 
the  fact that different engineering fields can be represented by the same   combinatorial representation, 
in this case RGR. This opens up a possibility of applying  a unified method to deal with the elements 
from different fields assembling one multidisciplinary system. This section presents an example of a 
system composed of elements from dynamics, statics and electricity that influence each other. The 
graph representation of that system, on the other hand, does not distinguish between those different 
types of elements. 
 
Section  6 introduces a further  application of MCA that enables to check the validity of the engineering 
problem before applying the analysis methods to solve it. One can notice  the similarity to the first 
representations used in AI -   logic representation , where the logic formulas should satisfy syntax rules 
to decide whether they are  well-formed formulas or not (Genesereth and Nilsson 1987). MCA deals 
differently with this issue: its checking rules are based on the knowledge embedded in the CR. 
Demonstration  of this ability is  done in section  6.5, where a problem  of checking the rigidity of a 
truss which was found to be  difficult even for experts,  is easily solved  using  MCA. This issue 
enhances Simon’s postulate: “solving a problem simply means representing it so as to make the solution 
transparent. If the problem solving could actually be organized in these terms, the issue of representation would 
indeed become central” (Simon 1981).  
 
Section  7 introduces a possibility of developing  new design techniques by using properties of MCA. 
Here, the idea for the design is derived from knowledge and  ready designs  from other fields. This idea 
is  carried out in  this section by using the new connection between mechanisms and trusses introduced 
in section  3 
 
The use of graph theory in engineering and AI is widely accepted and many related works  were 
reported in the literature, some of which are  listed below. In structural analysis, the first work was 
done by Kron (Kron 1963), who used the analogy between electrical networks and elastic structures.  
Fenves was the first to develop a software program “STRESS” (Fenves, Logcher and  Mauc 1965) 
which used a method based on graphs and networks for the formulation of the structural problems. 
Structure analysis and optimization using graph theory has been performed by Kaveh (1991,1997). In 
machine theory, the first study of graph theory as a representation of mechanisms was conducted by 
Freudenstein and Dobrjanskyj (1964) . In dynamics, Andrews (1971) associated vector algebra with 
graph theory, and called it the “vector-network model”. Computer programs based on this formulation 
have been reported, for example: VECENT (Andrews and Kesavan 1975). An approach, which uses 
graph theory in a more general perspective, was published by Bjorke (Wang and Bjorke 1989). Bjorke 
found out that network theory is probably the best foundation to establishing of a unified theory to 
represent a manufacturing system.  
In like manner, many works published in Artificial Intelligence used graphs for knowledge 
representation. One of the first applications was to represent the state-space by graphs, in which 
vertices corresponded to states, and edges  to the operators causing the change of the states (Nilsson 
1971). Additionally, other special graphs, such as the conceptual graphs (Sowa 1984) and others. 
The usage of matroid theory to represent engineering systems is less known in the literature. In 
structural mechanics, the known works  are due to Kaveh who used matroid theory to represent 
structures (Kaveh 1997).  From a more theoretical side Rescki used matroids  to represent electrical 
networks and  to check the rigidity of trusses (Recski  1989). An extensive list of matroid theory 
applications can be found in (Iri 1983). 
. 
The approach  adopted in this paper is different from the works reported above. In this approach, 
first the research focused entirely on developing the Combinatorial Representations   and 
investigating their properties and interrelations. Only then, the CR were applied to represent 
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engineering systems and solve the related engineering problems.  This conception provided general 
engineering knowledge representations, which enabled to obtain the results reported in this paper.   

2 COMBINATORIAL REPRESENTATIONS. 
Combinatorial Representations (CR) are special representations based on discrete mathematics  used in 
MCA to represent various engineering systems. Combinatorial representations are based on graph 
theory, matroid theory and discrete linear programming. Table 1 lists combinatorial representations 
used in the paper and the engineering systems to which they are applied.  
 

The Combinatorial Representation Have been applied to Section in the 
current paper 

Flow Graph Representation (FGR) determinate trusses  2.2 
Potential  Graph Representation (PGR) mechanisms, planetary gear  

systems. 
 2.3 

Resistance Graph Representation (RGR) mass-spring-damper 
dynamic  systems,
electric circuits, 
hydraulic systems, 
multidimensional 
indeterminate trusses 

 2.4 

Resistance  Matroid Representation  (RMR) indeterminate trusses  2.5 
Line Graph Representation (LGR) planetary gear systems.  2.6 

Table 1: Combinatorial representations, their applications and the corresponding sections in 
current paper. 

2.1 Mathematical foundation of the Combinatorial Representations. 
Current section gives a brief introduction to the mathematicaltopics, on which the combinatorial 
representations developed in this paper are based. These mathematical topics are: network graphs and 
matroid theory. Network graphs are used in four graph representations: Flow Graph (FGR), Potential 
Graph (PGR), Resistance Graph (RGR) and Line-Graph (LGR) representations. The matroid theory is 
used in the Resistance Matroid Representation (RMR). 

2.1.1 NETWORK GRAPHS. 
The current section provides the reader with a brief survey on the graph theory terminology.  More 
details can be found in (Shai 1997, Shai and Preiss 1999b)  or books  on graph theory, such as (Swamy 
and Thulasiraman 1981). 
A graph is defined by the ordered pair G=<V,E>, where V is the vertex set and E is the edge set, and 
every edge is defined by its two end vertices. If each edge in the graph is assigned a direction, then the 
graph is known as a directed graph.  The directed graph is a network graph, if each edge and vertex has 
properties of flow and potential, respectively.  
For convenience, this paper uses a linetype attributes, which are: 

 
a solid line    –  represents an edge with unknown value of flow or potential difference.  

a bold line     –  represents an edge for which the flow or potential difference is known. 
a dashed line –  represents a chord, which is an edge  not included in the spanning tree. If the 

value of flow in the chord is known, then it is both dashed and bold.  
a double line –  represents a branch of a spanning tree. 

 
 In order to deal with the graph representations used in the paper, one should first define cutset and 
circuit matrices in their vector and scalar forms. Given a connected network graph, choosing a 
spanning tree within it, defines its branches and chords. 
A cutset in a connected graph is a minimal set of edges whose removal results in a disconnected graph. 
It can be proved (Swamy and Thulasiraman, 1981) that a cutset separates the graph into two 
components (maximal connected subgraphs).  When a cutset includes only one branch of the spanning 
tree it is called a “fundamental cutset”. This paper deals only with fundamental cutsets, hence for 
brevity they will be called cutsets. Each cutset is defined by the corresponding branch and is labeled 
with its  branch index. The direction of the cutset is defined by the direction of its branch , as shown in 
Figure 1a ,  
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Figure 1. Example of a vector cutset matrix (a) The cutsets of a graph  (b) The vector cutset 
matrix. 

The vector cutset matrix Q
r

 is a matrix that describes all the cutsets, but contains only topological 
information. The matrix has e(G) columns (corresponding to the edges of the graph) and v(G)-1 rows 
(corresponding to the cutsets or branches that define them).  The value of the matrix element [ Q

r
]ij 

may be +1, 0, or -1. It  is +1 if edge ‘j’ is included in the cutset  that is defined by branch ‘i’ and  has 
the same orientation as the cutset, -1 if it  has the opposite orientation, and 0 if it is not included in the 
cutset. The vector cutset matrix of the graph of Figure 1a. is shown in Figure 1b.  

The scalar cutset matrix Q is obtained from the vector cutset matrix Q
r

 by multiplying each column 
with a unit vector in the direction of the edge to which it corresponds. For example, the scalar cutset 
matrix of the graph of Figure 2a is given in Figure 2b. 
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Figure 2. Example of scalar cutset matrix (a) The cutsets of the graph. (b) The scalar cutset 

matrix. 

A circuit is a set of edges that form a closed path. A circuit is called a fundamental circuit if it 
includes exactly one chord.  This paper deals only with fundamental circuits, and for brevity 
they will be called circuits. Each circuit will be labeled with the name of the chord that defines it. 
The direction of the circuit is defined by the direction of its chord, as shown in Figure 3a. 
The vector circuit matrix B

r
, demonstrated in Figure 3b, has e(G) columns as for the vector cutset 

matrix and e(G)-v(G)+1 rows corresponding to the circuits. Each circuit is defined by a chord, 
therefore the number of rows is equal to the number of chords defined by the spanning tree. The 
element [ B

r
]ij= +1 if edge ‘j’ is included in the circuit  defined by chord ‘i’, and  has the same 

orientation as the circuit, -1 if it  has opposite orientation,  0 otherwise.  
 b a
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Figure 3. Example of a vector circuit matrix. (a) The circuits of a graph. (b) The corresponding 
vector circuit matrix. 
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Every edge is assigned a vector  called the flow and designated by )e(F
r

 and  can  correspond to a 
force, flow of liquid, money, goods or the like1.  
Every vertex is assigned a value called the potential2 and designated by )v(π

r
. The potential may 

represent a physical quantity such as displacement, pressure or voltage, but it can also be used for other 
attributes. For instance in the shortest path algorithm it represents the lower bound of the distance (or 
the combined weights of the edges) from the current vertex to the target vertex   (Shai 1997). The 
potentials of the vertices of edge e=<v1,v2> define the potential difference of the edge, as follows: 

)v()v()e( 12 π−π=∆
rrr

     (1) 

2.1.2 BASICS OF MATROID THEORY. 
Matroid is a discrete mathematical representation that possesses various important properties while the 
main one is its generality: among other things,  it can be considered to be a generalization of graph 
theory.  To simplify the explanation, matroid theory is introduced in this paper using terminology of 
graph theory,  although some of the cases covered  are those, in which matroid theory can be used to 
represent engineering systems while graph theory  cannot. Matroid representation is used in MCA to 
represent various engineering systems, whereas in this paper it is used to represent and analyze 
indeterminate trusses.  
Definition: If we denote S to be a finite set and F to be a collection of certain subsets of S, then the 
pair M=<S,F> is called a matroid if the following  properties are satisfied:  
1) ∅ ∈F   
2) If FX ∈  and Y X⊆  then Y F∈  must also hold. 

3) If FX ∈  and Y F∈  and X Y>  then there exists an element x X Y∈ − , so that    
Y x F∪ ∈{ }  
S is said to be the underlying set of matroid M. The subsets of S which belong to F are said to 
be independent subsets, otherwise they are called dependent subsets. 
Maximal independent sets of M, i.e. independent sets which are not contained in any other independent 
set of M are called bases of M. For every base of M there is a corresponding cobase which is the 
complement of the base to S.  It can be proved (Recski 1989) that the sizes of  all the bases of a matroid 
are equal. In graph theory terminology a base is a spanning tree over the matroid.Thus, every matroid 
can be described by the collection of all its bases T, instead of the collection of all its independent sets 
F.  
Minimal dependent sets of M, i.e. dependent sets which do not contain other dependent sets are called 
circuits of M. The collection of all the circuits of M  is  denoted by C. It also can be used to describe 
the matroid instead of F. 
Definition of a matroid cutset: The subset X S⊆  is called a cutset of M if and only if it satisfies 
the following conditions: 
a) ∅≠X  
b) 1YX ≠∩  for every CY∈  
c)  X is minimal with respect to these properties. 
Since a base is a maximal possible set of independent elements, adding an additional element to the 
base turns it into a dependent set, i.e. a set that contains a circuit. Therefore every cobase element 
defines exactly one circuit which contains the element itself and all the other elements are from the 
base only. Such a circuit is called a fundamental circuit.  
It can also be shown that every base element defines a unique cutset that contains the element itself and 
all the other elements are cobase elements. Such a cutset is called fundamental cutset. 

2.1.2.1 Representing graph as a matroid.  
Consider the graph of Figure 4a and its corresponding vector cutset matrix in Figure 4b.  
 

                                                           
1 In control theory, this is called the “through variable”, but the word “flow” is more suitable for the 
work reported here. 
2 The potential difference between the vertices defining an edge is known in control theory as the 
“across variable”. 
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1
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 1 2 4 6 3 5 7
 1 1 0 0 0 1 1 1
 2 0 1 0 0 1 1 1
 4 0 0 1 0 0 1 1

6 0 0 0 1 0 0 1

Q
r

    =

(a) (b)

Figure 4. Graph to be represented by matroid. 
 

One can define a matroid associated  with this matrix as follows: MQ = <SQ, FQ> , where the underlying 
set SQ is equal to the set of columns of Q

r
and the family of independent set FQ is the collection of all 

sets of columns which are linearly independent.   From this definition, every set of graph edges that 
corresponds to a minimal dependent set of columns forms a circuit in the graph. By matroid properties  
such a set is also a circuit in the matroid. Thus, the circuits in MQ completely correspond to the circuits 
in the graph. Moreover,  this claim is true for the bases of MQ and spanning trees of the graph, cutset in 
MQ and cutset in the graph, etc. 
One can see for example, that  columns 1,2 and 3 of Q

r
 are linearly dependent, whereas edges 1,2 and 

3 form a circuit in the graph. On the other hand, columns 1,2,4 and 6 of the matrix form maximum 
possible idependent set of columns, i.e. the base of MQ, whereas edges 1,2,4 and 6 in the graph form a 
spanning tree.  
 

2.1.2.2 Representing matrix as a matroid.  
Previously, it was explained that every vector cutset matrix of a graph can be considered as a matroid 
and that such a matroid actually represents the graph. In the current section, this issue is expanded and 
it is shown that every matrix corresponds to a matroid. This time it can occur that this matroid does not 
have a corresponding graph.  
 Let Q be a m x n matrix. The matroid MQ={SQ,FQ} can be defined as follows: 
1) The underlying set SQ is the set of n column vectors of  Q. 
2) Every subset of linearly independent columns of Q belongs to FQ. 
Consider for example matrix of Figure 5 
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
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Figure 5. Matrix to be represented by the matroid. 

 
The underlying set SQ of the matroid representing the matrix of Figure 5 is: 
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Some of the independent subsets of FQ are: 
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the first two of which are also the bases of MQ, since any additional column from SQ will cause a 
linear dependence. 
And some of the circuits (elements of CQ) are: 
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2.2 The Flow Graph Representation (FGR).  
Definition of the Flow Graph Representation (FGR): A network graph G is a flow graph, 
designated by GF, if the flows in the edges are independent of the potential differences and satisfy the 
Flow Law, stated as follows: the vector sum of the flows in every cutset of G is equal to zero.   
 The flow law may be recognized as a generalization of the well-known Kirchhoff’s Current Law 
(KCL). Note that KCL is restricted only to one dimension which is appropriate for electrical circuits, 
while the flow law can be multidimensional, thus  it can be used also for structures and other 
engineering systems, that require two or three dimensions.  
 The matrix form of the Flow Law is: 

 0FQ  = 
rr

⋅           (2) 
where F

r
is the vector of the flows, or Flow Vector. 

The FGR can be used to represent various engineering systems, such as: simple electrical circuits, 
mass-cable systems in force equilibrium etc.  
The important property of the flow graph is that it should not contain cutsets consisting entirely of the 
flow sources. For if such cutsets of sources exist, then, by the flow law, there  is a linear dependence 
between the flows in these sources,  violating the  definition of the flow sources. To assure that it won’t 
happen,  the spanning tree of the flow graph should be chosen in such a way that it does not include  
flow sources.   

2.2.1 USING FLOW GRAPH REPRESENTATION 
FOR MASS-CABLE SYSTEMS. 
Figure 6 shows an example of a system of masses connected by cables which is known to be in static 
equilibrium. The objective it to find the gravitation force acting on the mass B.  

T4

T1

B

D

C

A

T2 T3

T5

MBg=?

MAg=10N
 

Figure 6. System of cables and masses  in static equilibrium. 

Since the system is in static equilibrium, it is obvious, that it should be solved using statical equations 
relating  the forces acting in the system.  The most convenient representation for this purpose is FGR.  
Each edge in FGR corresponds to an acting force, no matter whether it is tension in the cable or an 
external force. Each vertex will correspond to a point or a body on which number of forces is acting, 
like mass or a pulley. 
The flow graph representing the system of Figure 6 is shown on Figure 7. 
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Figure 7. FGR representing the system of Figure 7. 

The analysis equations for this graph are as follows: 
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Note, that since the engineering system of Figure 6 is one-dimensional, its vector and scalar cutset 
matrices are identical.  

2.2.2 EMPLOYING  FLOW GRAPH 
REPRESENTATION (FGR) IN REPRESENTING DETERMINATE TRUSSES.  
The conventional procedure used to analyze determinate trusses is based on building the force 
equilibrium equation for each joint of the truss and for each coordinate axis. This strongly correlates 
with the flow law, according to which, sum of the flows at each vertex of the graph is equal to zero. 
Accordingly, one can represent a determinate truss by d(G) one-dimensional FGRs, each corresponding 
to a different coordinate axis. For example, a plane determinate truss of Figure 8a is represented by two 
flow graphs – one corresponding to the X coordinate (Figure 8b) and the other to Y coordinate (Figure 
8c).  
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Figure 8. Plane determinate truss and two one-dimensional FGRs. 
(a) Plane determinate truss (b) (c)FGR corresponding to the X (Y) coordinate  

The graphs presented on Figure 8b and Figure 8c are of the same topology as the represented truss. One 
can think of FGR, as if the flow comes out from vertex O through the flow source (external force), 
flows through the edges (rods) and returns back to the vertex O through the reaction edges. Vertex O is 
called the “reference vertex” since it  assures that the sum of all the external forces acting  on the 
truss is also equal to zero. The reference vertex can be considered a generalization of the “earth” in 
electrical circuits. 
One can see, that if the flows in the edges of the corresponding truss are equated to the correct forces in 
the truss, they would be legal, i.e. would satisfy the flow law.  
In order to perform the statical analysis of the truss there is a need to use the angles of the rods and 
external forces. The latter knowledge affects the ratio between the flows in the two FGR’s 
corresponding to the X and Y coordinates.  The most efficient way to store such information is by 
merging the two one-dimensional graphs into one two-dimensional and setting the angle of some of the 
flows to be constant. In other words, instead of representing the truss by two FGR’s with one 
dimensional flow in each, one FGR with multidimensional flow is used, as explained below. 
The steps for representing the truss by a multi-dimensional flow graph are: 
1. Create a vertex in the graph for every pinned joint in the truss. 
2. For every rod create an edge in the graph, called a “truss edge”; its end vertices correspond to the 
joints that connect the corresponding rod to the truss. Assign an arbitrary orientation to each truss edge 
and a unit vector )e(r̂  directed from the tail joint to the head joint. The engineering meaning of the 
flow in the edge corresponding to a rod  is the force applied  on the head vertex (joint) by the  rod in the 
direction of the unit vector )e(r̂ , which is, of course, equal to the force that the tail vertex (joint)  
applies  on the rod.   One can see, that if the flow in the edge is positive, then the rod is in the state of 
compression, otherwise it is in a state of tension, as is explained in detail in (Shai 2000a). 
3.  Create a reference vertex or choose one of the vertices corresponding to the joint connected to the 
hinged support reactions to be the reference vertex  of the graph.   
4.  For each external force and reaction, add an edge as follows: 
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   For each external applied force a “flow source edge”  is added.  Its tail vertex is the reference vertex  
and the head vertex is the vertex corresponding to the joint upon which  the external force acts.  As 
explained earlier , these edges should always be chosen to be chords. Since flow source edges are 
chords, the flows for which are known, they appear in the graph as bold dashed lines.  
   For each mobile support  reaction a “reaction edge” is added. Its tail vertex is the vertex 
corresponding to the joint upon which the reaction acts and the head vertex is the reference vertex.  The 
reaction edge is assigned an angle equal to the inclination angle of the  plane. For each  hinged support 
(except for the one corresponding to the reference vertex), two “reaction edges” are added, the first 
having the corresponding angle equal to 1800  and second 270o. 
  
In statically determinate trusses the sum of forces at every joint is equal to zero. In the terminology of 
the flow graph representation, this means that in the graph corresponding to the truss, the flow law is 
satisfied. Thus the force analysis process of the truss is transformed into searching for flows that satisfy 
the flow law in the corresponding graph.  
Example of a truss, its corresponding graph and the equations written according to (2) is given in 
Figure 9. 
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Figure 9. Example for analysis of determinate truss using the flow graph representation.  
(a) Statically determinate plane truss. (b) Corresponding flow graph. (c) Force analysis equations 

in the scalar cutset matrix form. 

 

2.3 The Potential Graph Representation (PGR). 
Definition of a Potential Graph Representation (PGR)- Let G∆ be a network graph the potential 
difference on the edges of which is independent onthe value of the flow in that edge. In addition, every 
circuit satisfies the Potential Law, which states: 
The Potential Law  - For every circuit in the graph, the sum of the potential differences of the circuit 
edges of the circuit is equal to zero. In matrix representation this is written:  

0B  ∆ =⋅
rr

            (3) 
where ∆

r
  is the vector of  potential differences, or Potential Difference Vector. 
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Proof of the potential law: In the summation of potential differences of all circuit edges, each potential 
appears twice - once for the head vertex and once for the tail vertex, with opposite signs. Therefore this 
summation is equal to zero. 
This law is a vectorial generalization to several dimensions of KVL (Kirchhoff’s Voltage Law) which 
is stated for a one dimensional or scalar system. 
The important property of PGR is that there can be no circuits consisting of only  potential difference 
sources. For if such circuits of sources exist, then, by the potential law, there is a linear dependence 
between the potential differences in these sources, thus violating the definition of potential difference 
sources. To assure that it won’t happen,  the spanning tree of PGR should be chosen so that it includes 
the potential difference sources. 

2.3.1 THE  POTENTIAL GRAPH REPRESENTATION 
OF A MECHANISM. 
The main property of mechanisms is that the vector sum of the kinematic relative velocities is equal to 
zero in every circuit formed by its links. This property suffices for the analysis, so it is reasonable to 
represent it as a PGR. In this representation, the potential difference of the edges will correspond to the 
relative velocities of the links in the mechanism. Note that this is different from the graph 
representation that is commonly used for mechanisms  
 The steps for representing a mechanism by PGR: 
1. For every joint of the mechanism having individual velocity create a corresponding vertex in the 
graph. The potential of vertex ‘i’, designated )i(π , is equal to the linear velocity of the corresponding 
joint.  The velocity of all the fixed joints in the mechanism is zero, thus all these joints are represented 
by the same vertex. 
2. For every link of the mechanism create a corresponding edge in the graph; its end vertices 
correspond to the joints that connect the link to the mechanism. The potential difference of this edge, 
designated  )e(∆

r
 is equal to the relative velocity of the corresponding link, and can be written: 

)e(v̂)e(V)e(V)e( ⋅==∆
rr

, where V(e) is the magnitude of the relative linear velocity and )e(v̂ is 
a unit vector in the direction of the relative linear velocity of the link. 
3. Label the edge corresponding to the driving link with a bold line since its potential difference 
(corresponding to the relative linear velocity between its end vertices) is known. This edge is called the 
“source edge”.  
4. The relative velocity of a link is the velocity of the head vertex  minus the velocity of the tail vertex. 
The property for analyzing the velocities in mechanisms is that in each circuit of links, the sum of the 
relative velocities of each link is equal to zero. Since the relative velocity of a link is represented by the 
potential difference of the corresponding edge, this property is the implementation of  the Potential 
Law. 
Figure 10 shows an example of a mechanism and its corresponding PGR.  

 B
A

O2
O1

(a)

a
 b

o

(b)

VA/01

VA/B

VB/O

 
Figure 10.  Example of  representing a mechanism by Potential Graph Representation.  

(a) The mechanism. (b) The PGR. 

The Analysis Algorithm 
 
The algorithm is based on the principle that every fundamental circuit must satisfy the potential law. 
Every circuit is defined by a chord, as is described in the following steps: 

Step 1- Find a spanning tree, and label each branch with a double line. Every chord defines a circuit. 
Step 2 - For this spanning tree, write the vector circuit matrix B

r
, as defined in section  2.1.1. 
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Step 3 – On base of equation (3), write the equations:   

∆∆
∆

∆ ⋅−=⋅→=⋅ 







∆∆
∆
∆

)  (
rrrr

r

r
rr

BB0BB             (4) 

where ∆B
r

 is the part of the vector circuit matrix corresponding to the potential difference sources and 

∆∆
r

 is the vector of potential differences in the potential difference sources (driving links). 

Step 4 - Solve the ( )( )1)G(dr)G(v)G(e*2 −−−  equations  obtained in step 3. 
An example of using this algorithm is shown in Figure 11. 
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Figure 11. Kinematic analysis of the mechanism using PGR. 
  (a) A mechanism.  (b) the corresponding potential graph.  (c) the set of equations for its 

analysis. 
 

2.4 Resistance Graph Representation (RGR) . 

2.4.1 DESCRIPTION OF THE REPRESENTATION. 

The Resistance Graph Representation (RGR) is a generalization of FGR and PGR.  RGR is a network 
graph, where  there are edges with a dependence between the flow and the potential difference. Such a 
dependence  is characterized by either a scalar or a matrix. The scalar is used, if there is an explicit 
dependence between the vector magnitudes of the flow and potential difference, otherwise the matrix is 
used. For both scalar and matrix possibilities there are two presentations – resistance presentation 
(designated by R(e) and R(e) respectively) and conductance presentation (designated by G and G 
respectively), as follows: 
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)e(F)e(R)e(
rr

⋅=∆ ;          )e()e(G)e(F ∆⋅=
rr

   (5) 

  )e(F)e()e(
rr

⋅=∆ R ;          )e()e()e(F ∆⋅=
rr

G      (6) 

where  )e(∆
r

 is the potential difference in edge ‘e’ and )e(F
r

 is the flow. 
 Flows and potential differences of the resistance graph must satisfy the flow and potential laws 
respectively. 
 When dealing with resistance graph representation an important theorem from the graph theory, called 
the orthogonality principle becomes essential. The orthogonality principle  states  that vectorial cutset 
and circuit matrices are orthogonal: 

0QB =⋅ t
rr

    (7) 
 

As it is shown in (Swamy and Thulasiraman, 1981), from this principle the following equations can be 
established: 

T
t ∆∆
rr

⋅= Q     (8) 

C
t FBF
rr

⋅=     (9) 

where T∆
r

is the vector of potential differences in the branches of the spanning tree ‘T’ and CF
r

is the 
vector of flows in the chords of the graph. 
The edges in the resistance graph are divided into three principal groups: flow sources, potential 
difference sources and resistance edges. Flow sources, denoted by bold dashed lines, are edges for 
which the value of the  flow is known and is independent of the potential difference. Potential 
difference sources, denoted by bold solid lines, are the edges in which the potential difference is  
known and is independent  of  the flow in that edge. Resistance edges, denoted by black solid lines, are 
the edges at which there is a dependence between the flow and the potential difference in the edge. 

2.4.2 CONDUCTANCE CUTSET METHOD  (CCM) 
FOR ANALYZING THE RGR. 
The analysis problem for the resistance graph is: given the flows in the flow sources, the potential 
differences in the potential difference sources and the resistances (or conductances) of the resistance 
edges, to find the flows and potential differences in all the e(G) edges of the graph.  
The obvious method for solving the resistance graphs is to write all  the  equations based on equations 
2, 3, 5 and 6  and then solve them simultaneously.  This method has a high computational complexity, 
and in the next two sections efficient methods based on graph theory theorems will be shown, whereas 
the method called the ‘Conductance Cutset Method’  (CCM) will be explained first.  
The first step in solving the resistance graph is to find a suitable spanning tree,  which for the reasons 
explained in sections  2.2 and  2.3, contains all the potential difference sources and does not contain any 
flow sources.    
Then using equation 10, derived from   (2), (3), (5) and (6) in (Shai 1999), a set of linear equations is 
obtained: 

PF'T
t

RRR'T'T
t

R'TRR'T )()( FQQGQQGQ
rrrrrrrr

⋅−⋅⋅⋅−=⋅⋅⋅ ∆∆ ∆∆              (10) 
where ∆ and P are the edges corresponding to the potential difference and flow sources respectively, 
and R are  all the rest edges of the graph - the edges with resistance. T’ are those branches of the 
spanning tree which are not sources.  
For convenience, the matrix )( t

R'TRR'T QGQ
rr

⋅⋅ is designated as GT’ and is termed the “conductance 

matrix of the spanning tree T’ ”. Matrix )( t
RRR'T ∆⋅⋅ QGQ

rr
 is designated as G∆ and is called ‘the 

conductance matrix of the potential sources’. These are shown in equation 11.  
(GT’)⋅ 'T∆

r
= P) FQG

rrr
⋅−⋅− ∆∆  ∆(      (11)  

The elements of the conductance matrices can be derived based on linear algebra considerations, as 
follows:  
[GT’]ij is  the sum of conductances of the edges which belong to both cutsets i and j which are defined 
by branches with resistance; the sign of the conductance is taken positive if it is directed similarly 
relative to both cutsets, negative otherwise.  
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ij][ ∆G   is also the sum of conductances of the edges that belong to both cutsets i and j but this time j 
is a branch which is potential difference source, while ‘i’ is as before a branch with resistance. 
After solving equation 10 or 11, all the potential differences in the branches are known. All the 
potential differences in the graph are obtained by using equation 8 and after that all the flows in the 
graph are obtained by equation 5 or 6. 

2.4.3 RESISTANCE CIRCUIT METHOD (RCM) 
FOR SOLVING THE RGR. 
It is well-known in the literature that each RGR (Balabanian 1961) has its dual graph. It properties are 
as those of the regular dual graph in graph theory, except for the fact that the resistance of the edge in 
the dual graph is equal to the conductance of the corresponding edge in the original graph. Thus one 
can develop a new method for analysis of resistance graph by just rewriting the CCM method in the 
terminology of the dual resistance graph. This method is called Resistance Circuit Method (RCM) 
method and its equation is (Shai 1999): 

∆⋅−⋅⋅⋅−=⋅⋅ ∆
rrrrrrrr

P'CP
t
PRRR'C'C

t
R'CRR'C )(*)( BFBRBFBRB         (12) 

where RR is a square diagonal matrix the components of which correspond to the resistances in the 
resistance edges. For convenience, the matrix )( t

R'CRR'C BRB
rr

⋅⋅ is designated as RC’ and is termed 

the resistance matrix of the set of chords C’. Matrix )( t
PRRR'C BRB
rr

⋅⋅  is designated as RP and is 
called the resistance matrix of the flow sources. Using those notations we rewrite equation 12 in the 
following way: 
   ∆∆ ⋅−⋅−=⋅ ∆

rrrr
'CPP'C'C )()( BFRFR                 (13) 

The elements of the resistance matrices can be derived based on linear algebra considerations, and they 
are as follows: 
[RC’]ij is the sum of the resistances of the edges which belong to both the circuits i and j, defined by the 
chords with resistance. The sign of the resistance is positive if the corresponding edge is directed 
similarly relative to both circuits, negative otherwise. 
[RP]ij is calculated the same way, except that the circuit j is defined by the chord which is the 
flow source. 
Equation 13 is actually the set of linear equations, the unknowns of which are the flows in the 
resistance chords of the graph. After solving it, all the flows in the graph are obtained by using equation 
9 and after that all the potential differences in the graph are obtained by equation 5 or 6.  
From the way the RCM equation has been developed, it follows that  CCM and RCM are mutually dual 
methods. That means that CCM method applied to resistance graph G is equivalent to the RCM method 
applied to the resistance graph G* which is dual graph to G.  

2.4.4 REPRESENTING ONE-DIMENSIONAL 
ENGINEERING SYSTEMS WITH RESISTANCE GRAPH 
REPRESENTATION (RGR). 
The current section shows how to represent various engineering systems with the resistance graph. The 
fact that the same representation has been applied to represent systems that belong to remote 
engineering fields opens two far going possibilities: first to use methods developed in one field for the 
other field, and second – to solve combined multidisciplinary engineering systems. Both issues are 
described  later in the paper.  
The systems that are described in this section are: electrical systems, dynamic systems, statical systems 
and hydraulic systems. More detaild discussion on their representation can be found in (Shearer et al. 
1971). 
The first step in representing the engineering system by the resistance graph is to define the engineering 
interpretation of the graph edges and vertices and their flows and potentials (or potential differences)  
These interpretations of the graphs variables are presented in Table 2, whereas the interpretations of the 
vertices and edges are given in Table 3. 
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Flow  Potential  Potential difference 

Electrical circuit 
 

Electrical current in 
the circuit element 

The electric potential 
(voltage) in the 
circuit junction 

The voltage on the 
circuit element. 

Dynamical system 
 

internal force in  
dynamic system 
elements 

The velocity of 
junction 

Relative velocity 
between the end 
junctions of dynamic 
element. 

Hydraulic system 
  

Fluid flow rate in the 
element. 

Pressure at specific 
system junction. 

Pressure drop in the 
element.  

Statical system  force in the element displacement of a 
joint. 

relative displacement 
of the element end 
joints.  

Table 2 Engineering interpretation of the resistance graph variables.  

 
 
 
 
 

Edge  Vertex End vertices of the 
edge 

Electrical circuit 
 

Corresponds to 
electrical elements:  
resistor, condenser, 
coil, current or  
voltage source. 

Junction in the 
circuit. 

Vertices that 
correspond to the 
junctions connected 
to the element. 

Dynamical system 
 

Corresponds to 
dynamical elements:  
mass, dashpot, string, 
external force, initial 
tension or velocity. 

Junction having 
independent velocity. 
 

For strings, dashpots 
– vertices that 
connect the element 
to the system. 

Hydraulic system 
 

Corresponds to 
components of the 
hydraulic system: 
pipes or containers. 

Junction having 
independent pressure 

Junctions adjacent to 
the component. 

Statical system Correpsonds to a  
system element with 
an internal force.  

Joint connecting 
system elements. 

Joints connected to 
the element. 

Table 3. Edges and vertices in the resistance graph.  
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Table 4 lists the different types of resistance edges corresponding to elements of engineering systems. 
For each such edge the terminal equation is given, i.e. the equation describing the relation between the 
flow and potential difference that edge.   
 

Engineering 
system 

Name of the 
element  

Constant Terminal equation 

Resistor resistance Ri iii RF=∆  
Condenser capacity Ci 

ii
i

ii sC
dt

dCI ∆=
∆

=  

Electrical  
circuit 

Coil  inductance 
Li ii

i
ii FsL

dt
dFL ==∆  

Mass mass mi 

sm
F

i

i
i =∆  

Spring stiffness 
ki 

i

i
i k

sF
=∆  

Dynamical  
system 

Dashpot  damping 
bi sm

F

i

i
i =∆  

Fluid resistance 
(narrowed pipe) 

Fluid 
Resistance  
R 

iii FR ⋅=∆  

Fluid capacitance 
(container) 

Fluid 
capacitance 
C 

ii
i

ii sC
dt

d
CF ∆=

∆
=  

Hydraulic system 

Fluid internance  Fluid 
internance L ii

i
ii FsL

dt
dF

L ==∆  

Statical system Stiff rod/cable  Element 
stiffness: 

L
AEG =  

ii GF ∆⋅=  

Table 4 Terminal equations of graph edges.  

2.4.4.1 Applying RGR to analysis of electrical systems. 
The current section shows an example of how a one dimensional engineering system - an electrical 
circuit is represented by RGR and how it is analysed using the algorithms embedded in the 
representation. Figure 12 shows an example electrical DC circuit. 

R5
R4 I7

R6

R3R2

R1

R1=1Ω   R2=2Ω   R3=2Ω

R4=1Ω   R5=2Ω   R6=1Ω

 I7=1A

 
 

Figure 12. Example of an electrical system. 

The resistance graph representing the system appears in Figure 13. 
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R5
R4

I7 R6

R3R2

R1

 
Figure 13. The RGR representing the electrical system of Figure 12. 

The solution equations derived by applying the CCM to the graph of Figure 13 are as follows: 
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2.4.5 USING RESISTANCE GRAPH 
REPRESENTATION FOR ANALYSIS OF MULTIDIMENSIONAL  
TRUSSES.  
Let d(G) be dimension of the engineering system, i.e., the  number of dimensions of  potential and flow 
vectors. The explanation  provided is for two dimensions, but  the approach  is valid for three 
dimensions ,either. 
Equation 6 can be rewritten :  

∆
rr

⋅= GF  
where G is  built from the conductivity matrices of the resistance  edges, each being  a square matrix  
of size d(G) x d(G)  
Figure 14 shows the initial and deformed states of  a  rod: 

∆ xinitial state of
the rod

deformed state of
the rod

∆ y

α

v

v’
||∆
r

=D

u  
Figure 14. Rod deformation 

 
Let )e(i∆

r
 correspond to the potential difference between the two end vertices of edge ‘e’ in 

coordinate direction ‘i’. As one can see from Figure 14, under the small deflection assumption, the 
following equation describes the scalar magnitude of the potential difference as a combination of its 
coordinate components: 

α⋅∆+α⋅∆=∆ sin)e(cos)e(|)e(| yx

r
                           (14) 

where α is the angle of the element. 
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Combining (6) and (14) we obtain: 
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               (15) 

where the square matrix G(e) is the ‘conductance matrix’ of the element. 

This two dimensional conductance matrix of the graph edges (designated by G(e)) is the product of the 
constant conductivity G(e) and the transformation matrix. For edges corresponding to  hinged  support 
reactions, the constant should be taken as 0, since there is no dependence between  the displacement of 
the support and the reaction force, hence both conductance and resistance of the reaction edge are zero.    

In indeterminate trusses the forces in the bars cannot be determined by the laws of statics alone, and 
one must also consider compatibility conditions. In the terminology of graph representation, this means 
that the corresponding graph of the indeterminate truss should be analyzed by using the flow and 
potential laws simultaneously.  

The components of the potential vector correspond to the displacements of the joints in the directions 
of the coordinate axis. The flow in an edge corresponds to the internal force in the corresponding rod.  
 
Thus  the process of building of the RGR corresponding  to an indeterminate truss can be summarized 
as follows: 
Build a graph following the same steps as were explained in section  2.2.2 for building the FGR of a 
determinate truss. The FGR becomes the RGR when we assign resistances (or conductances) to all its 
edges that are not sources, as shownin Table 5.  
 

 Type of edge The conductance of the edge 
a. Truss rod – Resistance edge 

with finite conductance 








αα⋅α
α⋅αα

⋅
⋅

2

2

sincossin
cossincos

)e(L
)e(E)e(A  

b.  Fixed and mobile supports- 
on inclined surface.  
 
 

zero 

c. Applied force on the truss – 
Flow source edge 

The force is independent of the 
displacement difference between 
the joints which correspond to the 
end vertices of the flow source 
edge. 

Table 5. Types of Resistance Edges in the Graph Representation of an Indeterminate Truss.  

The analysis process is based on applying the CCM to the RGR of the indeterminate truss. The first 
step is choosing a suitable spanning tree. Since the potential differences in the reaction edges are 
known to be equal to zero, these edges are somewhat similar to the potential difference sources. Thus, 
the spanning tree  must include the reaction edges whereas it should not include the flow source edges.  

An example of an indeterminate truss, its corresponding graph, the spanning tree and the cutset 
conductance matrix is given in Figure 15. 
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Figure 15.   Statically indeterminate truss and its resistance graph. 

(a) The truss. (b) Corresponding RGR. (c) CCM analysis equations. 

 
 

2.5 Resistance Matroid Representation (RMR). 
 The graph theory was used above to derive from CCM in RGR the method for analysis of 
indeterminate trusses. However, this approach has been shown to have its limitations, one of which is 
the fact that RCM is not applicable to trusses, i.e. the method dual to CCM (Shai 1999). This is due to 
the fact that the conductance matrices of truss edges are singular. Thus, it does not have an inverse 
matrix, hence the rod edge in RGR cannot be assigned a resistance matrix.  
It is known from the literature, that matroid theory, whose definitions and properties are given in 
section  2.1.2, is a generalization of graph theory. Therefore, representing engineering systems by 
matroid theory enables obtaining a more general perspective. Such a generalization is demonstrated in 
this section by representing indeterminate trusses by Resistance Matroid Representation (RMR). The 
direct consequence of such a generalization is the fact that RCM in RMR is shown to be applicable to 
indeterminate trusses.  

2.5.1  MATROID REPRESENTATION FOR 
INDETERMINATE TRUSSES. 
The first step of representing an indeterminate truss by a matroid is to represent it by a resistance graph 
(section  2.4.5).  Let GR be the resistance graph representation of the indeterminate truss, and  Q(G)  its 
scalar cutset matrix. The scalar cutset matrix defines the matroid MQ=<S,F> where S is the set of 
columns of Q(G) and F is a family of all linearly independent subsets of S. The  subscript  Q  in  MQ is 
used  to emphasize that the matroid corresponds to the scalar cutset matrix Q.  Each element of MQ is a 
scalar cutset matrix column that in its turn corresponds to a truss element,  which is one of the 
following: rod, external reaction or external force.   
An example of a truss with its corresponding matroid is given in Figure 16a and Figure 16d 
respectively. 
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21 3
P2

1 3

P
 

(a)     (b) 

(c)     (d) 
Figure 16. Example of a truss and its corresponding matroid.    

(a) The truss (b) The graph G (c) The  scalar cutset matrix Q(G) (d) The matroid. 

2.5.2  STRUCTURAL INTERPRETATION OF 
MATROID  COMPONENTS. 

2.5.2.1 Dependent sets of MQ. 
The flow law for RGR is given by  

0FQ =⋅)G(       (16) 
where F is the vector of force scalar values acting in the truss elements. 
Therefore the non-zero entries of the vector F define a set of linearly dependent columns of the scalar 
cutset matrix. By definition, such a set is also the set of dependent  elements in the matroid MQ.  Thus, 
a dependent set in MQ corresponds to a set of truss elements in which internal forces can act 
simultaneously, i.e. the truss elements that have nonzero internal forces during some state of self-stress. 
Such a set  forms an indeterminate subset of truss rods (a subtruss). 

2.5.2.2 Circuits of MQ. 
A circuit of the matroid is a minimal dependent set, i.e. removing even one of  its elements results in an 
independent set. Therefore in the terminology of structures, a circuit in MQ corresponds to a minimal 
indeterminate subtruss, which is a rigid subtruss indeterminate to the first degree. Such a subtruss has 
the properties of a circuit, since removing any of the rods from such a truss will create a determinate 
truss or even a mechanism.  

2.5.2.3 Base of MQ. 
The base of a matroid –  is the maximal independent subset of S,   i.e. adding any element to the base 
results in a dependent set.  Thus, the base in MQ corresponds to a determinate subtruss  that contains all 
the pinned joints of the truss.  It is well known, that adding a rod to a determinate truss, without adding 
a pinned joint, makes the truss indeterminate.  
In the sake of consistency with the graph theory, the base of the matroid representing the truss, is 
chosen so, that it doesn’t  contain any external forces (flow sources) acting on the truss. 

2.5.2.4 Cobase of MQ. 
The cobase of M, i.e. the set of elements, which are not in the base, is the set of external forces and 
redundant rods of the truss.  
The notation that is used in this paper for graphs (section  2.1.1), is applied also to matroids. For this 
reason, the base elements (the determinate subtruss elements) are represented by double lines, the 
cobase elements (redundant truss elements and external forces) by dashed lines, whereas the cobase 
elements which correspond to the external forces are both dashed and bold. 
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Figure 17 shows the truss from Figure 16, with highlighted  base and  cobase elements (a)  and the two 
fundamental circuits (circuits containing only one redundant rod or only one external force)   (b) and 
(c). 
 

 P

2
1 3

21 3
21

P

 
(a)    (b)   (c) 

Figure 17. Example of fundamental circuits in the matroid of a truss. 
  (a) The base and cobase of M.    (b) A fundamental circuit defined by redundant 3.  (c) A 

fundamental circuit defined by external force P. 

2.5.2.5  Circuit Matrix of MQ. 
By definition of circuit in matroid, each fundamental circuit in MQ corresponds to a set of linearly 
dependent columns in Q. In other words for each fundamental circuit Ci, it can be written: 

0Q =λ∑
∈

↓
icj

jij       (17) 

where j↓Q  - is the jth column of matrix Q. In the terminology of trusses λij is the force acting in the 

truss element ‘j’ while the state of self-stress    produced by a force in the redundant truss element ‘i’. 
The set of fundamental circuits is represented by a special matrix B(MQ), called a circuit matrix of MQ. 
The rows of B(M) correspond to the cobase elements of M and the columns to all the elements of M. 
An entry ‘ij’ of the matroid circuit matrix -  is defined:   

ijij)]M([ λ=B       (18) 
Obviously, equation 23 still holds, when  for some i, all λij are multiplied by  same arbitrary scalar. 
Therefore it is legitimate to ‘normalize’  the circuit matrix, i.e. to multiply the rows of B(M), so that  
the matrix is written as follows: 

( )IBB |)M()M( T=      (19) 
where I is a unit matrix  whose size is equal to the number of cobase elements,  and  B(M)T is a matrix  
with rows and columns corresponding to the cobase  and base elements respectively.   In structural 
mechanics terminology   the value of  [B(M)]ij becomes:  the force in  truss rod or reaction  ‘i’ when a 
unit force is applied in a redundant element ‘j’  and  in all the other redundant elements the forces are   
set to zero. 
For example, the circuit matrix of matroid MQ that represents the truss of Figure 16 is developed as 
follows:  
for cobase elements 3 and P, equations based on (17) are written respectively: 
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Hence the circuit matrix of MQ is: 
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Proposition 1:  Every admissible force vector F is a linear combination of rows of B(M). 
Proof : Forces in the determinate subtruss (base) are uniquely defined by the forces in the redundant 
elements. Moreover, each row of B(M) corresponds to the forces in the determinate subtruss yielded by 
a unit force in the corresponding redundant element. Therefore, by the superposition principle, every 
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admissible force vector is derived by summing over all the rows of B(M) each multiplied by the force 
in the corresponding redundant element. 
Proposition 2:  The matroid potential law:  
B(M)⋅D = 0      (20) 
where D is a vector of scalar displacements in truss elements. 
Proof: According to the definition of matroid MQ, each row of B(M) corresponds to a state of self 
stress, which is a vector of admissible flows in GR. From the other hand, vector D corresponds to a 
vector of  admissible scalar potential differences in GR.  Thus, according to the  equilibrium between 
the internal strain energy of the truss and the work done by the external forces (West 1993),   
multiplication of every row in B(M) by vector D is equal to zero. 

2.5.2.6 The Cutset Matrix of Matroid. 
The cutsets of a matroid are represented by a cutset matrix as explained below.  
Proposition 3: The matrix Q(M)= )|( t

TBI −  is the cutset matrix of matroid MQ, i.e. each row of 
Q(M) defines a fundamental cutset in the matroid. 
Proof:  To prove this property we have to prove that every row of Q(M) satisfies the conditions of a 
cutset (as shown in section  2.1.2). 
     Conditions (a) and (c) of the section  2.1.2 are satisfied since Q(M) contains a unit matrix,  
whose rows are non-empty and do not contain other rows of the matrix.  
Condition (b) requires that for any circuit ‘i’ and any cutset ‘j’ the number of common elements is not 
equal to one. This can be easily proved by considering the form of circuit and cutset matrices (Figure 
18). The number of common elements in circuit ‘i’ and cutset ‘j’ is the number of elements 
corresponding to the nonzero entries in rows ‘i’ and ‘j’ in the circuit and the cutset matrices 
respectively.  From Figure 18 one can see that this number can be either 0 or 2 depending on whether 
element Bij is equal to zero or not. Thus, the number of common elements in circuit and cutset can 
never be equal to one.  
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Figure 18. The form of circuit and cutset matrices. 

 
Proposition 4:  The orthogonality principle:  

Q(M)⋅Bt(M)=0      (21) 
Proof: By substituting equation 19 into equation 21 we obtain  

 Q(M)⋅Bt(M)= ⋅








I
B t

T)M( ))M(|( t
TBI −    (22) 

After the multiplication we get: 0BB =− t
T

t
T )M()M( . 

Proposition 5:  Matroid flow law:  
Q(M)⋅F = 0      (23) 

Proof: By proposition 1, every admissible force vector F is a linear combination of B(M) rows. 
According to proposition 4, Q(M) is orthogonal to B(M), hence it is orthogonal to every linear 
combination of its rows, i.e. F. 
Because of the validity of propositions 1 to 5, the flow, potential and orthogonality laws are all valid 
for matroid M. Such a matroid is called a Resistance Matroid. Since equation 13 was derived using 
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only these properties of the resistance graph,  it is also valid for the matroid MQ. Substituting to 13 the 
matrices corresponding to MQ instead of those corresponding to G, we obtain: 

DP'CP
t
PRRR'C'C

t
R'CRR'C ))M()M(())M()M(( DBFBRBFBRB ⋅−⋅⋅⋅−=⋅⋅⋅   (24) 

2.5.3  EXAMPLE OF APPLICATION OF THE RCM 
IN RMR TO AN INDETERMINATE TRUSS. 
The method derived above is demonstrated in the following example. First  RGR representing the truss 
of Figure 19a is built (Figure 19b). At the next stage, the cutset matrix of the RGR is found - Figure 
19c.  Finally the circuit matrix of the RMR is build from the cutset matrix of the RGR - Figure 19d. 
The elements of the circuit matrix were substituted into (24) and the analysis equations were obtained 
(Figure 19e).  
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Figure 19. Example of analysis of indeterminate truss using RMR.  
(a). Indeterminate truss, (b). RGR of the truss, (c) scalar cutset matrix of RGR of the truss,  

(d,e,f) circuit matrix of RMR of the truss and its components (g) analysis equations based on 
RCM in RMR. 

 

A base (statically indeterminate subtruss) is obtained by removing from the truss the redundant rods 7 
and 10. Hence the cobase elements of the resistance matroid representing the truss are 7, 10 and P, 
whereas the latter is the flow source. The circuit matrix Figure 19d is now built by calculating three 
self-stresses each having a unit force in one of the cobase elements. Then the parts of the circuit matrix 
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are substituted into  (24) and the analysis equations are obtained (Figure 19g). After solving the 
equations of Figure 19g, the flows in all the cobase elements are known and by (9) the flows in all the 
rest elements of the matroid are obtained. Then using the resistance relations, the potential differences 
are obtained as well. 

2.6 Line Graph Representation (LGR). 
Line Graph Representation (LGR) – is  the only graph representation dealt with in this paper, which has 
no knowledge embedded in it. LGR is a regular graph, the main property of which comprises in the 
way it is used to represent engineering systems. In contrast to FGR, PGR and RGR, the elements of the 
engineering system are represented in LGR not by edges, but by vertices. This enables to use the edges 
of LGR in order to describe the connections between the elements. LGR was used to represent 
planetary gear systems, traffic control problem (Shai 1997), and various network optimization 
problems (Shai 1997). Current paper uses LGR to represent the planetary gear systems.  

2.6.1 LGR FOR PLANETARY GEAR SYSTEMS.  
All the links of a planetary gear systems are represented by vertices in LGR, whereas the connections 
between them are represented by the edges connecting the corresponding vertices. There are two types 
of connections, so there are two types of edges, marked as bold and double as explained below. 
 
a. Bold edge (bold line) – by knowing the ratio of the connected gear wheels one can calculate the ratio 
between the angular velocities (potentials) of the gear wheels. In the terminology of this paper the latter 
edge is a dependent potential source and for this reason it appears in the graph as  a bold  line. 
b. Regular edge  (double  line) - an edge which represents a turning connection. It will be shown below 
that the turning edges form a spanning tree.  
Other information about the labeled edges and the vertices is added to the representation as follows: 
c. Labeled double line - every double line (turning edge) has a label which represents the level, being 
the location of the rotating connection. 
d. Reference vertices - the distance between each pair of connected gear wheels must be constant all the 
time, being maintained by a link or planet carrier. This is called in the literature (Freudenstein 1971) a 
‘transfer vertex’. In the terminology of this paper, the name ‘local reference vertex’ is more suitable. In 
this representation, all the turning edges on one side of the local reference vertex are at the same level, 
and those on the opposite side of the local reference vertex are at a different level. 
e. Labeled bold line – every bold line (gear edge) has a label which represents the planet carrier (local 
reference vertex) that maintains the distance between the two gear wheels which correspond to the end 
vertices of the gear edge. In addition, the bold line has a sign, where the ‘plus’ (or minus) sign means 
that the transmission of movement between the two gear wheels is internal (or external). 
f.  Labeled gear wheel vertex – every vertex that corresponds to a gear wheel has a label that represents 
its center level. 
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Figure 20.  A planetary mechanism (a) and its line graph representation (b). 

 
Note, that Figure 20a is a standard representation in engineering drawing for a gear system. 
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3 NEW CONNECTIONS BETWEEN ENGINEERING FIELDS.  
 Current section shows the application of MCA to obtaining novel relationships between engineering 
fields. These were obtained through the mathematical relationships between the corresponding  CR.  
More specifically, on the basis of the dualism between FGR and PGR, which will be developed in 
section  3.1.1, a new mutual relationship between determinate trusses and mechanisms is established in 
 3.1.2.   This relation  postulates that for every determinate truss there exists a specific mechanism, 
called the “dual mechanism”. In this mechanism there is a link for every rod of the truss, such that the 
force in the rod is equal to the relative velocity of the corresponding link.  
This innovation opens up a new avenue of research and practical application, by creating favorable 
conditions for cooperation between structural and mechanical engineers, since information, algorithms 
and new technologies developed in one field can now be applied to the other.  One of the possible 
applications  of that research direction is developing of a new design technique in engineering, shown  
in Section  7. The potential inherent in the innovations of this section can be appreciated from its 
applications given in sections  6.5  and  7.  
 

3.1 Duality between trusses and mechanisms based on the duality of their 
corresponding CR.  

3.1.1 DUALITY BETWEEN FLOW AND POTENTIAL 
GRAPHS 
 
This section introduces the duality connection between the flow and potential graph representations 
from which the dualism between trusses and mechanisms  was derived by applying the following 
inference rules: 
RULE 1:  IF   G  is  FGR, i.e G = GF   THEN    0FQ =)G(*)G( FF

r
,  

RULE 2: IF  G  is PGR, i.e G = G∆       THEN   .)G*)G( 0B =∆∆ (∆
r

  
FACT1:  Q(G) = B(G*)  (according to duality between graphs, (Swamy and Thulasiraman 1981)) 
CONCLUSION 1:  FACT1  AND  RULE 1    0FB =)G(**)G( F

r
 

CONCLUSION 2: CONCLUSION 1 AND G*=G∆    )G(*)G( F
rr

=∆  
 
So a graph, dual to the FGR is the PGR and its potential difference vector is identical to the flow vector 
of the former. 
 

3.1.2 DUALITY BETWEEN TRUSSES AND 
MECHANISMS. 
Based on the dualism connection between FGR and PGR given in the previous section, a new relation 
between determinate trusses and mechanisms is derived. This ‘invention’ has been achieved by 
applying the following rules: 
FACT 1:  for every flow graph there exists a dual potential graph and vice versa (section  3.1.1). 
FACT 2: Determinate trusses are isomorphic to flow graphs (section  2.2.2)  
FACT 3: Mechanisms are isomorphic to potential graphs (section  2.3.1) 
CONCLUSION: FACT 1 AND FACT 2 AND FACT 3  for every mechanism there exists a dual 
determinate truss and vice versa. 
 
This reasoning is outlined in Figure 21. 
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Figure 21. Diagram explaining the duality between determinate trusses and mechanisms. 

Description of a dual mechanism – Let T be a statically determinate truss, G(T) its FGR and G*(T) 
be its dual PGR. Each rod of the truss has a direction unit vector )e(r̂  and each link of the mechanism 
has a unit vector )e(v̂  representing the direction of linear relative velocity of the end joints of the link. 
Mechanism M is called a “dual mechanism to truss T” if G*(T) is its potential graph and for every edge 
(rod) ‘e’ in graph G(T) its corresponding edge (link) ‘ 'e ’ in the dual graph G*(T), the equality (25) is 
satisfied. 

)'e(v̂)e(r̂ =         (25) 
Table 6 summarizes the attributes of the duality between trusses and mechanisms. 
 

IN A MECHANISM LINK     IN  A  TRUSS   ROD 

∆
r

 - Relative velocity vector. F
r

 - Force vector. 
Circuit. Cutset. 
Potential difference. Flow. 
Potential difference of edge ‘e’= 
relative linear velocity of the corresponding link 
‘e’ = )e(v̂*)e(V)e( =∆

r
. 

Flow in edge ‘e’ = force acting in rod ‘e’ = 
)e(r̂*)e(F)e(F =

r
 

)e(v̂  -relative linear velocity unit vector. )e(r̂ - unit vector in the rod direction.  
 

ω i /0  - Angular velocity of link i = linear 
velocity/length. 

Fi
Li

- Force per unit  length. 

Table 6. The Duality Attributes 

 
Figure 22 shows a  four-bar mechanism (a) and its dual truss.  
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Figure 22   Example of a mechanism, its dual truss and the corresponding matrix representation. 
(a)  The mechanism. (b) The potential graph and its dual (dashed line).     (c) The dual truss.    

(d,e) The corresponding matrices. 
 
More detail on the duality connection between trusses and mechanisms can be found in (Shai 2000). 

4 META LAWS AND THEOREMS . 
 
As it was mentioned in section  2, each combinatorial representation contains combinatorial theorems 
called “embedded theorems”, which have been thoroughly studied and investigated. The embedded 
theorems are actually metatheorems that provide additional knowledge and enable to derive theorems 
exclusively from the representation. Therefore, when CR are used to represent an engineering problem, 
its embedded theorems become available as well. For example, when the resistance graph 
representation was applied to represent indeterminate trusses (section  2.4.5), its two analysis methods 
became available and were used. In this section, it is shown how theorems and methods in structural 
mechanics can be derived from a theorem embedded in RGR, called: Tellegen’s Theorem. Moreover, 
from the dualism law in RMR a new proposition is deduced, that states  that displacement and force 
methods are actually dual methods (Shai 1999).  
All these results show the potential inherent in applying MCA to enable in the future the derivation of 
new theorems and methods from the knowledge embedded in the CR.  

4.1 Tellegen’s theorem embedded in RGR. 
The  theorem discussed in this section was developed by Professor B. D. H. Tellegen (Tellegen, 1952) 
and therefore bears his name.  The main use made of this theorem nowadays is in electric circuit theory 
(Penfield et al., 1970; Chua et al.,1987). Since electric circuits are represented in MCA by RGR, it is 
derived that this theorem can also be employed in other engineering systems represented with RGR. 
This is done in this section. According to section  2.4.5, indeterminate trusses are represented by RGR, 
therefore Tellegen’s theorem, which is a metatheorem in RGR is applied, and engineering theorems 
and methods are derived.  
Theorem 1. Tellegen’s Theorem (combinatorial representations formulation): Let GF and G∆ be 
two isomorphic graphs, whereas the first is flow graph and the second is potential graph, then:     

                0)e()e(F
edges
all

e
G

t
FG =∆⋅∑ ∆

rr
                            (26) 

The theorem deals with two isomorphic graphs, one of which (GF) satisfies the flow law and the other 
the potential law (G∆). It postulates that the sum of scalar multiplications between the flows in the 
edges of GF and potential differences in the corresponding edges of  G∆ is equal to zero. 

(d) (e) 
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4.1.1 EXPLANATION OF TELLEGEN’S THEOREM 
USING THE ELECTRICAL NETWORKS. 
 
In order to facilitate the understanding, Tellegen’s theorem is first  applied  to electrical circuits.  
Consider two different electric circuits with same topology shown in Figure 23(a,b). Their 
corresponding graphs appear in Figure 23 (c,d).  

 

R5 4Ω

R4 12Ω

∆9 8V F7 12A

F8 1A

∆10 8V R6 2Ω

R3  2Ω

R2  2ΩR1  10Ω

R5 3Ω

R4 3Ω

R9 3Ω R7 6Ω

R8 1Ω

R10 3Ω R6 3Ω

∆3  12V

R2  3ΩF1  6A

( a ) ( b )
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( c )

 ∆1=56.25V  ∆ 2=12.75V

 ∆ 3 =-12.75V

 ∆ 4 =-33

 ∆ 5 =41V

 ∆ 6 =-14.75V

 ∆ 7 =-81.25V

 ∆ 8 =-55.75V

 ∆ 9 =8V

 ∆ 10 =8V

V

 

Figure 23. Applying Tellegen’s theorem to electrical circuits.  
(a),(b) different electrical circuits possessing the same topology. (c) G∆ – RGR representing the 

system (a).  (d) GF- RGR representing the system (b). 

 
Analysis of the electrical systems gives the results shown on Figure 23 beside the edges in the 
corresponding graphs.  
We can now choose the graph representing the system of (a) to be G∆ and the graph representing the 
system of b to be GF. These graphs satisfy the requirements of theorem 1. Substituting the results into 
(26) confirms the Tellegen’s theorem: 

0)G('F)G(
10

1i
Fii =⋅∆∑

=
∆    (27) 

 

4.1.2 APPLICATION OF TELLEGEN’S THEOREM 
TO TRUSSES.  
The example that appears in the preceding section concerns with one-dimensional systems. However, 
one can deduce from equation 26, that the theorem can be applied to the multidimensional systems as 
well.  
The multidimensional trusses are represented by RGR, hence the multidimensional Tellegen theorem 
embedded in the this representation can be employed in their analysis. The formulation of the Tellegen 
theorem for trusses is as follows: given two trusses with same topology, sum over scalar 
multiplications of the forces in the first and the potential differences in the second.  
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When the angles of the rods of the truss are known, the following scalar formulation can be developed 
(Shai 2000b): 

0)G(D)G(P)G(D)G(F
forces

external
PiFi

truss
theofrods

iFi =⋅−⋅ ∑∑ ∆∆ .      (28) 

This equation will be referred in the paper as the: “Multidimensional Tellegen’s Theorem” for Trusses. 
 

4.1.3 DERIVING THE METHOD FOR ANALYSING 
JOINT DISPLACEMENT BASED ON TELLEGEN’S THEOREM . 
 
In this section, it is shown that the known equation for analysing the displacement of a joint in a truss is 
a special case of the Multidimensional Tellegen’s theorem for Trusses.  
In order to apply Tellegen’s theorem, PGR and FGR will be used. The steps for building the CR are the 
same as was explained in section  2.2.2. An extra edge, called “control edge”, is added.  Its head vertex 
is the vertex whose displacement is to be analysed, and the tail vertex is the reference vertex. 
The combinatorial representations - the flow and potential graphs are used in two different ways as 
follows: 
For the real potential graph RG ∆ the flow values in the source edges are the values of the external 
forces. In the control edge we put a ‘potential difference measurement’, which corresponds to a 
potential difference measuring device (e.g. voltmeter in electrical circuit)  that is located between the 
end vertices of the corresponding edge. The ‘R’ superscript over G indicates, that the potential 
differences in it are due to the  “real” external forces applied to the structure, whereas the structure  
should satisfy only the flow law. 
For the virtual flow graph V

FG  all the source edges which correspond to the external forces are 
assigned flow sources with values equal to zero. One can think about it as a disconnection. In the  
control edge, a unit force is applied in the direction of the displacement that has to be measured.  The 
‘V’ superscript over G indicates that the flows in the graph are not the real forces in the structure, but 
the forces  due to a virtual external force applied to the structure.  
 Applying the Multidimensional Tellegen’s Theorem to the two graphs, gives: 

0)G(D1)G(D0)G(D)G(F
forces

external
controlPi

truss
theofrods

iFi
RRRV =⋅−⋅−⋅ ∑∑ ∆∆∆    (29) 

From here,  the well-known equation (West 1993) for analyzing the displacement of a joint is derived : 

∑ ⋅
⋅⋅

= ∆
∆

truss
theofrods ii

iiFi
control EA

L)G(F)G(F)G(D       (30) 

An example for applying equation (30), is given in Figure 24, where the horizontal displacement of 
joint ‘c’ is to be analysed. 
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Figure 24.  Example of analyzing joint displacement by  the Multidimensional Tellegen’s  
theorem. 

(a) The Truss. (b) The virtual flow graph V

FG .  (c) The real potential graph RG ∆
. (d) Calculation 

of the displacement of joint ‘c’ in the direction of the x axis. 

   

4.1.4 DERIVING BETTI’S LAW FROM A 
THEOREM EMBEDDED IN RGR. 
Previous section showed an example of derivation of a known method in structural analysis from the 
RGR embedded knowledge. In the current section it is shown that known theorems can also be derived 
from the embedded knowledge. This is demonstrated by deriving Betti’s law from Tellegen’s theorem. 
Given a truss and two different sets of external loads applied on it. The first set of external loads - 1P

r
 

causes joint displacements 1π
r

, internal forces 1F
r

 and deformations 1D
r

. The second set of external 

loads 2P
r

, causes joint displacements 2π
r

, internal forces 2F
r

 and  deformations 2D
r

. 
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Since both sets of loads act on the same truss, and the forces (potential differences) satisfy the flow 
(potential) law, then according to Tellegen’s Theorem (equation (16)) multiplication of forces from one 
set by the potential differences  from the other set is equal to zero, as follows: 

( ) 2P
t

12
t

1
2P

2t
1

t
1 *F0 π

π
rrrrr

r

r
rr

⋅=→=








−
⋅ PD

D
PF      (31) 

2
t
1

diagonal
isRcesin

2
t

12
t

1

relation
cetanresis

2
t

12P
t

1 )()( FDFRFFRFDFP
rrrrrrrrrr

⋅=⋅⋅=⋅⋅=⋅=⋅π    (32) 
Another form of the Tellegen theorem for the two graphs is: 

( ) 1P
t
21

t
2

1P

1t
2

t
2 π

π
rrrr

r

r
rr

⋅=⋅→=








−
⋅ PDF0DPF      (33) 

Combining the last two equations gives: 

1P
t
22P

t
1 ** ππ

rrr PP =          (34) 
     
This is the  reciprocity theorem or Betti’s law, which is well-known in the literature (Hibbeler 1984).  

4.2 The Relation between the Conductance Cutset Method for Analyzing 
Indeterminate Trusses and Other Known Methods. 
In the current section it is shown that a known method in structural mechanics  is  derived from CCM. 
Many methods for analyzing indeterminate trusses have been reported in the literature, most of them 
based on virtual work and minimum energy. In the displacement method (Hibbeler 1984), for each axis 
along which the joint is able to move, a variable is designated as the “unknown displacement”. In the 
conductance cutset method, the absolute potential of a vertex is the displacement of the vertex relative 
to the reference vertex.   
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(c) 
Figure 25. Indeterminate truss analysis.  

(a) Indeterminate truss, (b) the corresponding graph and (c) the corresponding 
equations 
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In the example of Figure 25, since all the cutsets are such that they contain exactly one vertex in one of 
the two sides of the cutset, the cutset conductance matrix is equal to the incidence matrix, a well-known 
in graph theory literature (Fenves and Branin 1963; Deo 1974).  
Therefore, the displacement matrix of the displacement method (Hibbler 1984) is same as that obtained 
from the resistance graph, as shown in Figure 25.  
To derive the displacement method, one starts with the incidence matrix (Deo 1974), the rows of which  
are linearly dependent on the vector cutset matrix. The flow law (equation 2) can be written by using 
the incidence matrix as follows:  

PAFA
rrrr

PR −=                  (35) 
Since any resistance edge e=<u,v> satisfies equation 6, equation 35 becomes : 

PAGA
rrrr

PRR −=∆        (36) 
Since the potential difference of an edge is equal to the difference between the potentials at the end 
vertices, this can be written in matrix form:  

π∆
rrr

t
R A=        (37) 

that gives us:  
PAAGA
rrrrr

P
t

R −=π     (38) 

The matrix t
R AGA
rr

is actually the ‘stiffness matrix’, and the element [ t
R AGA
rr

]ij is the sum of 
the conductances of the rods that meet both joint ‘i’ and joint ‘j’ (in the case i=j it equals the sum of 
conductances of all the rods meeting joint ‘i’).  
It is important to note that a dual method of the CCM, i.e. RCM, for analyzing indeterminate trusses 
does not exist in the graph representation. This is due to the fact that determinant of the conductance 
matrix of each rod is equal to zero and it has no inverse. However in section  2.5 it was  shown that a 
dual to CCM method for trusses does exist when the trusses are represented by RMR. 

5 A GLOBAL MULTIDISCIPLINARY PERSPECTIVE. 
 One of the immediate  contributions made by MCA  is enabling one to obtain a global perspective on 
various disciplines.  The general perspective is achieved by applying the same combinatorial 
representation  to different engineering fields. For example, Figure 26a shows a complex system 
composed of interacting dynamic, electric and indeterminate truss elements.  Even though the system 
contains different types of engineering systems, the integrated system is represented by  one resistance 
graph as shown in Figure 26b. Therefore all the different elements are dealt with in  the same way 
when an MCA analysis algorithm is  applied .  



Published in AIEDAM - AI for Engineering Design, Analysis and Manufacturing, Vol. 15, No. 2, 
pp.109-144, April, 2001. 

 
 

34

 

 14

A

7 9

13
12

1

2

3

4

5

II

I

 P1

1

2

3

4

5

13

14

15
12

7

8

9

 10 P2

16

6

P1

(a)

(b)

108 P2

 
Figure 26. Representing integrated engineering system with RGR. 

 (a) The integrated system. (b) corresponding RGR.  

 

6 CHECKING THE VALIDITY OF ENGINEERING SYSTEMS ON THE 
BASIS OF COMBINATORIAL REPRESENTATIONS.   
This section shows a further contribution of MCA, which is the ability to check the validity of the 
engineering systems, before applying to them the analysis process or starting to manufacture the 
products. The idea behind this issue is the same as  the one behind  all the rest MCA applications, 
which employed the knowledge embedded in the CR. In the current section this knowledge is applied 
to check whether there exists a contradiction between the representation of the engineering system and 
the rules and theorems embedded in the CR. 
The  current section  is concerned with checking the validity of: truss topology and geometry; planetary 
gear systems and geometric constrained in CAD systems.  

6.1 Checking the Topological Validity of Trusses . 
In section  2.2.2 it was explained how to represent trusses by the FGR, and the knowledge embedded in 
the CR was applied for analyzing. In this section, it is shown how to use the properties of the CR to 
check the validity of the topological rigidity. This issue contributes to other engineering fields, such as: 
checking the validity of mechanisms and geometric constraints in CAD. 
The checking of the validity of a determinate truss is performed on its corresponding combinatorial 
representation – the FGR (section  2.2). Whenever, the analysis equations obtained from the flow graph 
are not soluble, this indicates that the truss represented by it is not stable. The word ‘rigidity’ is used in 
the paper when referring to the truss structure without its supports, and ‘stability’ for the one including 
the supports. In order to check the validity of truss support as well the following steps are to be 
performed:  
 
1) Create two extra vertices called ‘X’ and ‘Y’ and connect them with an edge.  
2) For every pinned support create two edges connecting the vertex corresponding to the support, with 
the X and Y vertices. 
3) For every mobile support create an edge connecting the corresponding vertex with X (or Y) if the 
support is immobile on the vertical (or horizontal) plane, respectively. If the support is mobile on some 
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inclined plane, create an additional vertex and connect it using three edges, to the vertices named X and 
Y and to the vertex corresponding to the support.  
Note that edges representing applied loads do not affect the topological consistency of the graph, so 
they are to be removed from the graph when the validity is checked.  
Figure 27b shows the graph that corresponds to the truss of Figure 27a. Since pinned-joint ‘a’ is 
connected to a fixed support, two edges, one for each coordinate, appear in the graph, and for the 
mobile support ‘d’ there is only one edge ‘dx’. 

 

c

e

a d

y x

b

(a) (b)  
Figure 27. Example for checking the stability of determinate truss using FGR. 

(a)A determinate truss.(b) the graph that represents it. 

 

6.1.1 RELEVANT THEOREMS EMBEDDED IN THE 
FGR. 
 

Most of the published literature on the subject of rigidity of trusses deals with determinate trusses 
(Laman 1970). There then exists a fixed relation between the number of rods e and pinned-joints v, or 
in the terminology of the graph,  
e(G) = 2 * v(G) – 3     (38) 
Maxwell (1864) proved that if the relation e(G’)≤ 2*v(G’)– 3 holds for every sub-graph G’ of G, then 
the corresponding determinate truss is rigid.  About 100 years later, Laman (1970) proved that this 
condition is not only necessary, but also sufficient. 
The connection between the rigidity of determinate and indeterminate trusses is established by the 
following theorems.  
Theorem.  Let G be a graph that corresponds to an indeterminate truss. Then G is rigid if and only if 
(iff) there exists in G a connected subgraph G’ which includes all the vertices of G. 
Proof: If G’ is a determinate truss and is rigid, adding edges (rods) does not  affect the property of 
rigidity. The inverse connection between G and G’ follows directly from the definition of an 
indeterminate truss. Suppose that in G there are k redundant rods, G then is said to have a redundancy 
of k. When deleting those k edges from the graph of G, the truss represented by G’ remains 
determinate. 
For a determinate truss, the necessary and sufficient condition for checking whether the truss has a 
well-formed topology is shown in the following theorem. 
Theorem. A determinate truss is rigid if and only if (iff) when doubling each edge in turn in the 
corresponding graph, all the edges can be covered by two edge disjoint spanning trees. 
From this theorem one can derive the algorithm of section  6.1.2 for checking the well-formedness of 
the topology of determinate trusses. 

6.1.2  ALGORITHM FOR CHECKING THE WELL-
FORMEDNESS OF THE GRAPH OF A DETERMINATE TRUSS. 
 
1) Build the graph corresponding to the truss as was explained in section 3.1. 
2) For every edge in the graph do: 
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  double the edge and search  for two edge disjoint spanning trees by using known algorithms (Swamy  
and Thulasiraman 1981). 
3) If step 2 is successful for every edge in the graph, then the graph has a well-formed topology, 
otherwise not. 
 
For example, Figure 28 shows a truss (a) and its corresponding graph (b). It can be proved to be stable, 
since when doubling each edge in turn, it has two edge disjoint spanning trees. Figure 28c shows an 
example of two edge disjoint spanning trees covering the graph when  edge ‘1’ is doubled.  
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Figure 28. Example of a proof that a determinate truss (a) is stable.  
(a). The truss.   (b). The corresponding graph.  (c). Two edge disjoint spanning trees when 

doubling edge ‘1’. 

More details on checking the validity of determinate trusses can be found in (Shai and Preiss 1999a). 

6.2 Checking the Validity of Dynamic Systems. 
A similar process as above for trusses can be applied to a dynamic mass-spring-damper oscillator 
system. In this section, it will be shown that one can find a contradiction in the topological structure of 
a dynamic system with given initial conditions, by analyzing the RGR. Given a dynamic system with 
initial conditions, there can be a solution only if its graph is consistent with the validity rules, i.e. there 
is no contradiction between the graph topology and the validity  rules. 
 



Published in AIEDAM - AI for Engineering Design, Analysis and Manufacturing, Vol. 15, No. 2, 
pp.109-144, April, 2001. 

 
 

37

6.2.1 THE RGR OF THE DYNAMIC SYSTEM. 
 
Using the information given in Table 2, Table 3 and Table 4 , the resistance graph corresponding to a 
dynamic system can be built.  
Here, we shall only expand the representation steps of expressing the initial conditions in the graph 
representation, as follows: 
 
1) Every spring with initial tension will be represented by two parallel edges. On the basis of the 
superposition principle, one edge will represent the flow source with the value of the initial tension of 
the spring and the other will represent the flow (force) change in the spring caused by the changes of 
the dynamic system.  
2) Every mass with initial velocity will be represented by two serial edges. Based on the superposition 
principle, one edge represents the source of potential difference with a value equal to the initial velocity 
value of the mass, and the other represents the change in potential (velocity) with time in the dynamic 
system.  
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Figure 29. Representing a dynamic system with RGR.  

(a) A dynamic system. (b) its corresponding graph. 

 

6.2.2 THE METHOD FOR CHECKING THE 
VALIDITY OF THE DYNAMIC SYSTEM WITH INITIAL CONDITIONS. 
 
In order that Flow Law and Potential Law will be satisfied, one has to check the following two validity 
checking  rules: 
validity rule of cutsets: there should not be a cutset of only flow sources (bold dashed edges). 
validity rule of circuits: there should not be circuits consisting only of potential sources (bold solid 
edges).  
The reason for these restrictions is derived from the property of the source edge. For example, if there 
were a cutset of only flow source edges the sum of flows over a cutset might not be equal to zero, in 
contradiction with the Flow Law. A similar reason holds for the potential source edges. 
An example of a dynamic graph representation that  contradicts the cutset validity rule is shown in 
Figure 30.  The contradiction  occurs because the graph of Figure 30 has  a cutset with only bold 
dashed lines. For such a graph the initial forces around junction 3 might possibly not satisfy the 
condition of equilibrium of forces. 
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Figure 30. An example of dynamic system with initial conditions that contradicts the syntax rules 

of the graph. 

6.3 Checking the Validity of a Planetary Gear System using the LGR. 
As it was explained in the introduction, one of the aims of this approach is to derive CR and perform 
the reasoning on  it. One of the  purposes  of that, is to  enable to use the knowledge embedded in the 
CR. The work reported in this section,  employs this possibility, and the domain knowledge consists of 
the topological validity rules of the graph. Therefore, the process of checking the validity of planetary 
gear systems becomes a process of checking whether there exists a contradiction between the domain 
knowledge and the graph representation of the given system.  

6.3.1  TOPOLOGICAL VALIDITY RULES OF THE 
GRAPH. 
Part of the embedded properties in the graph representation of the planetary gear system, given below, 
are based on Erdman (1993), who published a set of necessary conditions which he used for a different 
purpose: for mechanism synthesis. The paper uses this knowledge to deduce the validity of the system. 
 

Rule 1: Planetary gear system is a kinematic chain → There is no circuit formed exclusively by turning 
edges. 

Rule 2: Circuit of turning edges → locked mechanism OR kinematic chain with degree of freedom 
greater that 1. 

Rule 3: Every link has at list one element around which it → every vertex is incident to at least one 
turning edge. 

Rule 4: Each connected gear pair should operate while a constant distance between their centers is 
preserved  →  subgraph of the turning edges forms a connected subgraph 

Conclusion 1: Rule 1 AND Rule 2  → the turning edges constitute a spanning tree. 
Rule 5: Since each gear pair is located on a different turning edge level AND the distance between the 

centers should maintain constant → there is one and only one planet carrier in the fundamental 
circuit defined by this gear pair. 

Rule 6: planet carrier = local reference vertex → In each fundamental circuit, there is one and only one 
local reference vertex . 

Rule 7: The geometric center of a gear wheel and its local center of rotation must coincide → In each 
fundamental circuit, the levels of the vertex representing a gear wheel and the turning edge 
incident to it must be identical. 
 

 
With this representation, checking the validity of the system becomes a problem of checking whether 
there is a contradiction between the domain knowledge (in this case the embedded properties and 
propositions) and the representation of the given system. 
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Example of deducing the validity of planetary gear system 
The computer program using this representation (Polomodov and Gershon 1995; Preiss and Shai 1996) 
found that the system in Figure 31 is not valid, and explained why. In addition, it is possible to arrange 
that the computer program advises the designer what to change in the gear kinematic chain, in order to 
make it valid. 

 

The system is not valid because there is a contradiction with  rule 4. In
circuits {6,0,3} and {6,0,3,4} there is no local reference vertex. The level
of the turning edge (06) is ‘c’ while the level of vertex 6 is ‘d’, which
contradicts   rule 5.

The explanation to the user is: The connection between wheels 6 and 3
is not legal because the distance between their centers is zero.
The same problem occurs with the connection between wheels 6 and 4.
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Figure 31. Example of topological analysis of a planetary gear system, with the computer  
program output shown. 

6.4 Checking the validity of constraint systems using the flow graph 
representation. 
 One of the main topics in CAD system research, is  the problem of checking whether a geometric 
constraints system is well-constrained.  In other words, to find whether the given geometric form is 
uniquely and validly defined. It was found, according to (Owen 1996; Hoffmann 1995) that such a 
constraint system can be represented by a special graph. In the terminology adopted in MCA, such a 
graph is actually FGR. 
The steps for representing the geometric constraint system by a flow graph are as following: 
each element of the geometric system, like line, point, arc etc. is represented by a vertex in the graph, 
each constraint  represented  by an edge in the graph. Therefore, an edge connecting  two vertices 
corresponds to the constraint imposed on the corresponding two elements.  
Theorem. Geometric constraint system is  valid (well constrained)  if and only if its corresponding 
graph is rigid.  
Proof. Each element represented by a vertex  has two unknown parameters and is actually substituted 
by a point in the plane, having two degrees of freedom. Each constraint relating the parameters of the 
elements makes the number of unknowns in the system to decrease by one. Exactly like a solid line 
connecting to points in the plane decreases the overall degree of freedom of the system by one. Those 
claims are valid not only for the whole system but also for each of the subsystems. A more detailed 
proof can be found in (Owen 1996; Hoffmann 1995). 
Hence, the process of checking the validity of a geometric constraint system is performed as follows:  
1) build the FGR representing the geometric constrained system. 
2) check the rigidity of the graph using methods explained in section  6.1. 
Consider for example, the geometric constraints system of Figure 32. 
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Figure 32. Geometric constraints system and the corresponding graph.  
(a) Geometric constraints system. (b). Corresponding graph. 

In the geometric constraint system presented on Figure 32a there is one arc – ‘a’ and three straight 
sections ‘b’, ‘c’ and ‘d’.   There are 15 constraints: eight for the  interconnection between the elements; 
one  for  the distance between points ‘A’ and ‘D’ ; one for the angle between sections ‘c’ and ‘d’;  one 
for the angle between sections ‘d’ and ‘b’; the radius of the arc ‘a’ ; two for the constraint requiring the 
elements ‘c’ and ‘b’ to be tangent to element ‘a’. Futhermore, vertex ‘x’ in th graph corresponds to an 
element not appearing on the sketch – the center of the arc. Checking whether the given data defines a  
well constrained geometric system of Figure 32a  requires first to build  the  corresponding flow graph. 
Each element is  represented by a vertex and each constrained by an edge. Such a graph appears on 
Figure 32b. 
It can be checked by one of the methods given in section  6.1 (for instance, the two edge disjoint 
spanning trees method), that the flow graph presented on Figure 32b is determinate and rigid. Thus by 
the theorem presented in the beginning of the section, the original system of Figure 32a is valid. 

6.5 Employing the connections between the CR in checking the validity of 
engineering systems. 
 
One of the main contributions of MCA, is the ability that it provides to use knowledge from one field 
in other fields on the basis of the connections between CR. This property is used in this section to turn 
the validity checking of the mechanism mobility  into checking the rigidity of the its dual truss and vice 
versa. This new way enables to use knowledge and theorems from machine theory  in structural 
analysis and vice versa.  

6.5.1 USING THE DUALITY RELATION TO CHECK 
THE RIGIDITY OF DETERMINATE TRUSSES.  
On the basis of the mutual dualism between trusses and mechanisms (section  3.1.2), one can deduce the 
following rule:  
dualism validity rule: determinate truss is valid if and only if its dual mechanism is valid, in other 
words:  determinate truss is rigid if and only if its dual mechanism configuration is mobile. 
 
Hence instead of checking the stability of the truss directly, one can build its dual mechanism and the 
problem will become a problem of checking the mobility of a mechanism. In many cases checking the 
instant mobility of mechanisms can be carried out quickly by applying known theorems from 
mechanism and machine theory. 
Consider  as an example the truss presented on Figure 33a. While it is not easy to conclude about its 
rigidity, its dual mechanism Figure 33b is obviously stuck. Therefore, the original truss is not rigid. 
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Figure 33. Checking the validity of truss, by checking the validity of its dual mechanism.  

(a) a truss. (b) its dual mechanism. 

6.5.2 CHECKING THE MOBILITY OF 
MECHANISMS USING STRUCTURAL ANALYSIS.  
Previous section has adopted the principle, that a truss is valid if and only if its dual mechanism is also 
valid. The principle was used in order to check the stability of trusses, by checking the mobility of their 
dual mechanisms instead. Current subsection demonstrates the dual possibility: it checks the mobility 
of a mechanism by means of stability of its dual truss: 
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Figure 34. Checking the validity of mechanism by checking the validity of its dual truss.  

(a) A mechanism. (b) Its dual truss. 

Consider for example the mechanism presented on Figure 34a. It is difficult, even for experts in 
mechanisms, to decide whether the mechanism in Figure 34a is mobile or stuck.  
On the other hand, its dual truss presented in Figure 34b, obviously possesses redundancy in its right 
part, so its left part lacks rods and hence the whole truss is unstable. Thus, the original mechanism of 
Figure 34a is not valid, i.e. stuck. 

7 USING MCA FOR DESIGN. 
Design of special trusses, using special mechanisms.One of the main contributions of MCA, is the 
ability to use knowledge from one field  in the other fields. This property is achieved by using the 
connections between individual CR. This section, shows a new  application of this property, which is 
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developing a new technique in design. The example given here, is based on using the connection 
between trusses and mechanisms,  established in section  3. 
The main idea behind this approach lies on the fact that when a mechanism has a special property,  its 
dual truss should also have that property, and vice versa. This idea is demonstrated on the following 
small example.  
Suppose one needs to design a truss, such that when a small force is applied to one of its joints, a 
magnified force is produced in a specific rod. Applying  the approach transforms  the  problem  into a 
problem in the dual mechanism.  
This is done by first finding a known mechanism having similar velocity characteristics. Namely, a 
mechanism that for a small relative velocity in its driving link produces in  its other link a much greater 
relative velocity. One of many mechanisms satisfying this requirement is presented on Figure 35a. The 
relative velocity of link ‘1’ of this mechanism is considerably larger than that of the link 5. The truss 
dual to this known mechanism is presented on Figure 35b. According to the duality property the truss 
possesses the same force characteristics as the velocity characteristics of the mechanism, i.e. a small 
external force F causes a much greater force in the rod ‘1’.  
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Figure 35. Employing truss-mechanism duality in design.  
(a) A known mechanism design. (b) Its dual truss with the same properties.  
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CONCLUSIONS. 
 
The paper has introduced the idea behind the MCA (Multidisciplinary Combinatorial Approach), which 
was implemented as follows: first combinatorial representations were developed and the properties of 
each and their interrelations were thoroughly investigated. Afterwards, these CR were applied to 
represent engineering problems from different fields,  which gave raise to interesting results. Part of 
these results appeared in the paper.  
The paper has shown that representing engineering problems by CR enables to get a general 
perspective on different engineering fields. Moreover, new relations between engineering fields have 
been derived. This issue has been demonstrated by introducing a new connection between mechanisms 
and trusses, which had been derived from the relation between their corresponding CR: PGR and FGR.  
The theorems and methods embedded in the CR have been found to be valuable both for theoretical 
research and practical applications. From the theoretical point of view,  they enable to derive theorems 
and methods in engineering. For instance, known methods, such as the displacement method in 
structures, have been proved to be special cases of the methods embedded in RGR. On this base, 
connections between known methods have been derived as well.  From the practical point of view, it 
makes possible to apply knowledge, algorithms and methods from one field to others.  
In addition, the paper has obtained a general perspective that enables to represent  multidisciplinary 
systems  as one whole and to deal with them in a unified way.  
The concept of MCA has reaffirmed the postulate that when encountering a difficult problem,   an 
effective solution strategy is to change its representation so as to make its solution transparent.  
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NOTATIONS. 
 
0      zero matrix. 
A     incidence matrix. 
B       scalar circuit matrix.  
B   vector circuit matrix. 
B(M)  circuit matrix of a matroid. 
C  set of matroid circuits.  
D   vector of scalar displacements in truss elements. 
dim( F

r
)  dimension of the forces acting in the truss.  

E      set of graph edges. 
e(G)         number of edges in graph G.  
F
r

     flow vector. 

)e(F
r

     flow in edge e. 
F(e)      value of the flow in edge e. 
F  independent subsets of matroid. 
G  graph.  
G*    the dual graph of  graph  G. 
GF  flow graph 
G∆  potential graph 
G(e)   scalar conductance of edge e. 
G(e)  matrix conductance of edge e. 
GR  resistance graph. 
GR  square matrix containing the conductances of the resistance edges of a graph 
GT’  conductance cutset matrix. 
G∆  conductance cutset matrix of the potential difference sources. 
M  matroid.  
MQ   matroid defined by matrix Q.  

P
r

   vector of flows in the flow sources. 
Q    scalar cutset matrix.  
Q
r

  vector cutset matrix 
Q(M)  cutset matrix of a matroid. 

)e(r̂     unit vector in the direction of edge e. 
R(e)   scalar resistance of  edge e. 
R(e)   matrix resistance of edge e. 
RC’  resistance circuit matrix. 
RP  resistance circuit matrix of the flow sources. 
RR  square matrix containing the resistances of the resistance edges of a graph. 
S  underlying set of a matroid.  
T  spanning tree branches. 
T’  spanning tree branches, which are not sources.  
T  set of matroid bases. 
V
r

A/B    linear velocity of joint A relative to joint B.  
V    set of  the graph vertices. 
v(G)   number of vertices in graph G.  
∆
r

    potential difference vector. 
)e(∆

r
   potential difference in  edge ‘e’ 

)i(π     potential of vertex ‘i’ 
∅  empty set 
CCM  Conductance Cutset Method 
CR  Combinatorial Representations             
FGR  Flow Graph representation 
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PGR  Potential Graph Representation 
LGR  Line Graph Representation 
RCM  Resistance Circuit Method 
RGR  Resistance Graph Representation 
RMR   Resistance Matroid Representation 
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