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Multidimensional max-flow method and its application for plastic analysis
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Abstract

This paper expands the use of network flows to the multidimensional case, in which network flows are associated with vectors, instead of

the conventionally used scalar values. A method for solving a multidimensional max-flow problem is systematically developed, on the basis

of the primal-dual algorithm. It is demonstrated that upon reduction to a one-dimensional case, the method is transformed to the known Ford

and Fulkerson algorithm.

This multidimensional flow network can be applied to a variety of engineering applications, as the variables underlying engineering

systems frequently possess a vector form. In this paper, the multidimensional max-flow problem is shown to correspond to the problem of

plastic analysis of trusses.

q 2005 Published by Elsevier Ltd.

Keywords: Multidimensional network flows; Plastic analysis; Max-flow problem; Primal-dual algorithm; Trusses
1. Introduction

The paper introduces a multidimensional flow network

problem, its engineering implementation and amethod for its

solution. The discussed network problem is shown to be the

multidimensional expansion of the known max-flow pro-

blem. It is demonstrated that similarly to the one-dimensional

case [1], the multidimensional max-flow problem is

equivalent to the plastic problem in structural analysis. The

method for solving the problem was developed through the

primal-dual algorithm [2]. The algorithm is employed in the

paper to replace the original problem by a series of

transformed-simpler problems, which is performed in a

systematic manner.

The primal-dual algorithm for solving linear program-

ming problems was first formulated in [3]. If applied to the

shortest path and max flow problems, primal-dual algorithm

leads to the known algorithms of Dijkstra [4] and Ford and

Fulkerson [5], respectively.

The paper first explains the essence of the multi-

dimensional max-flow problem, both in the terminology

of networks and the terminology of trusses. This way,
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the isomorphism between the networks and the engineering

problems [6,24] is established. In order to develop the

optimization algorithm for solving this problem, the paper

adopts a less conventional formulation of the primal-dual

algorithm [2], where the solution of the LP problem is

obtained through iterative transformations of the original LP

problem, to the two transformed ones (RP—Restricted

primal, and DRP—Dual Restricted Primal). As is shown in

the paper at each step of the method developed in the paper it

is seen that in one-dimensional case the method reduces to

the Ford and Fulkerson algorithm [5]. The correspondence

between the max-flow problem and the problem of maximal

loading upon trusses, also called a problem of load carrying

capacity, [1] enables to apply the method to trusses, as is

demonstrated in the paper. A short comparison between the

derived method and the known methods of plastic analysis is

provided. Two step-by-step examples of real two-dimen-

sional truss maximal loading problems solved by means of

the obtainedmethod are demonstrated at the end of the paper.

Maximal load determination, or plastic analysis, is the

problem of central interest for the mechanical engineering

community [7].

The method that is systematically developed in the paper

is different from other known plastic analysis methods,

although certain similarities to some of them can easily be

traced. The method is clearly related to the method of
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inequalities [8], based on treating the system of linear

inequalities underlying the statical properties of the

structure. The dual transformed problem, employed in the

paper for detection of the halting point, uses a mechanism

similar to the collapsed mechanism that is also used in the

method of combining mechanisms [9].

The relation between linear and mathematical program-

ming with the problem of plastic analysis was first described

by Charnes and Greenberg [10], but can also attributed to

Prager [1] and was further established in 1970 by Maier

[11]. The duality of linear programming was introduced into

the plastic analysis by Gavarini [12]. Algorithmic approach

for solving the plastic problems with the help of linear

programming formulation was started in 1979 by Kaneko

[13] and continued by Franchi and Cohn [14]. Graph-

theoretic approach to the problem was developed in 1971 by

Fenves and Gonzales-Caro [15]. The primal-dual approach

has been employed in the field of structural optimization

[16], who mainly dealt with topology optimization and not

with plastic analysis.
2. Formulation of the max-flow problem

Prager has shown that the one-dimensional truss maximal

loading problem [1] is equivalent to the max-flow problem

[5] in a network, whose edges are associated with the rods of

the truss, and the vertices with the joints. The flows through

the network edges are equal to the forces acting in the

corresponding truss rods. Accordingly, the capacities of the

edges are set equal to the yield limits of the rods.

In terminology of network flows the original max-flow

problem can be formulated as follows:

Find the maximal flow in the source edge P of the directed

network, so that the flows in the edges do not exceed the

allowed capacities. The flow in the edge is considered

positive if it flows in the direction of the edge, negative

otherwise. Fig. 1(a) presents an example of flow network for

which the max-flow problem will be formulated.

The one-dimensional engineering problem that corre-

sponds to the above formulated max-flow problem is

formulated as follows:

Find the maximal loading P that can be applied upon the
Fig. 1. The correspondence between the max-flow problem and the problem

of maximal loading (a) the flow network problem and (b) corresponding

maximal loading problem upon a one-dimensional truss.
one-dimensional truss, so that the yield limit is not exceeded

in any of the rods. The force in the rod is considered positive

if the rod is in compressed state, negative otherwise.

Fig. 1(b) shows a one-dimensional truss, whose maximal

load problem is equivalent to the maximal flow problem for

the network of Fig. 1(a).

Representing a problem by a network enables formulat-

ing the problem in linear programming through the variables

associated with the network:

cv2V
XMax P

e2E0

Iðe; vÞ$FðeÞC Iðp; vÞ$P Z 0

ce2E0 FðeÞ%bCðeÞ

ce2E0 KFðeÞ%bKðeÞ

ce2E0 FðeÞ%O0

PO0

(1)

where: V is the set of vertices of the network, E 0 is the set of

edges that are not sources. I(e,v) is a function of adjacency

between edge e and vertex v. It equals 1 if v is the head

vertex of e, K1 if it is the tail vertex, 0 otherwise. F(e)—is

the flow in edge e, while bC(e) and bK(e) are the upper and

the lower bounds of the flow through edge e.

It is well known that linear programming provides one

with additional insight upon the optimization problem from

the aspect of the ‘dual problem’—another problem, the

optimal solution of which possesses the same value of the

target function [17]. The dual problem is of a great use in

linear programming, and in particular in the primal-dual

algorithm adopted in this paper. Eq. (2) shows the LP

formulation of the dual problem, as it is derived from the

original formulation of Eq. (1) by applying the LP duality

transformation rules.

Min
X

c edge eZðt;hÞ in the network

gCðt; hÞbCðt; hÞ

C
X

c edge eZðt;hÞ in the network

gKðt; hÞbKðt; hÞ

pðhÞKpðtÞCgCðt; hÞKgKðt; hÞR0

ðfor each edge e Z ðt; hÞÞ

KpðtpÞCpðhpÞR1 ðfor the source edge p Z ðtp; hpÞÞ

p!O0 gCðt; hÞR0 gKðt; hÞR0 ð2Þ

where: h and t are the head and the tail vertices of an edge e;

p(v)—is a variable, associated with every vertex of the

network and thus can be seen as a potential variable of the

network; gK(t,h) and gC(t,h) are associated with every edge

of the network. Since in the constraint they are related to the

subtraction between the corresponding potentials, they can

be considered positive and negative potential differences of

the edge.

The optimal solutions to the original and the dual

problems are related through the following complementary
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slackness relations [18]:

a: gCðeÞðbCðeÞKFðeÞÞZ 0 b: gKðeÞðbKðeÞKFðeÞÞZ 0

(3)

The dual problem is defined upon the variables that are

associated with the network, both through the problem

formulation and the complementary slackness conditions.

Thus, the problem can be interpreted as a problem that is

also associated with the network, and accordingly with the

represented truss.

In the terminology of network flows, the dual problem

can be interpreted as follows:

Find a minimal cutset in the network—so that the sum of

the capacities of its edges is minimal [19]. According to the

complementary slackness conditions, an edge belongs to a

minimal cutset if and only if in the maximum flow solution,

the flows in these edges are equal to their capacity (the edges

are saturated). In the terminology of Eq. (2), p(v) has the
value of 1 if vertex v is from one side of the minimal cutest

(same side as the tail vertex of the source edge), 0 otherwise.

gC(t,h)/gK(t,h)Zequals to 1 if edge (t,h) belongs to the

minimal cutset and is oriented in forward/backward

direction relatively to the cutset.

The corresponding one-dimensional engineering pro-

blem would accordingly be:

In the plastic analysis, the rods reaching the yield limit

are in the plastic mode—they can assume any kinematicaly

required deformation. The problem is to find the ‘minimal

work plastic mechanism’, defined by a set of rods to be put

in the plastic mode in order to turn the truss into a

mechanism [1]. The energy function is defined by the sum

of the yield limits of the plastic rods—that is equal to the

work done upon these rods if the joint of the external force

moves a unit of length in the direction of the external force.
Fig. 2. Multidimensional expansion of the max-flow problem formulation.

(a) The two-dimensional network and (b) the corresponding two-

dimensional truss.
2.1. Two-dimensional expansion of the problems

The two-dimensional expansion of the network flow

defines the flows associated with the edges to be two-

dimensional vectors. The continuity condition for the flows

in the network would now possess a vector form, meaning

that the vector sumof the flows at each network vertex is zero.

By allowing the flows to be vectors, the network can now be

used to represent multidimensional systems, such as plane

and spatial trusses, where each rod and thus its internal force

possess different inclination. Representing trusses through

network graphs is widely reported in the literature [6,20,21].

Since the angle of action of each force in the truss can be

considered constant, the flows of the networks considered in

this paper will be directed at a predetermined angle.

Accordingly the two-dimensional formulation of the

network problem is as follows:

Given a two-dimensional network, where the flows

are vectors with predetermined angles, find the maximal

magnitude of the flow in the source edge P, so that
the magnitudes of the flows in the edges do not exceed the

allowed capacities.

The corresponding two-dimensional engineering pro-

blem is then:

Find the maximal loading P that can be applied upon the

two-dimensional truss, so that the yield limit is not exceeded

in any of the rods [22]. Fig. 2(a) and (b) present an example

of a two-dimensional network and the corresponding two-

dimensional truss for which the optimization problems can

be formulated.

Eq. (4) presents the LP formulation of two-dimensional

optimization problems defined in the above:

cv2V
XMax P

e2E0

Iðe; vÞ$FðeÞ$cosðaðeÞÞ

þIðp; vÞ$P$cosðaðpÞÞ ¼ 0

cv2V
X
e2E0

Iðe; vÞ$FðeÞ$sinðaðeÞÞ

þIðp; vÞ$P$sinðaðpÞÞ ¼ 0

ce2E0 FðeÞ%bþðeÞ

ce2E0 KFðeÞ%bKðeÞ

ce2E0 FðeÞ%O0

PO0

(4)

where F(e) is the magnitude of the flow in edge e and a(e) is

the angle outlining its direction.

The first two constraints in Eq. (4) formulated for each of

the truss vertices are the flow continuity conditions. The first

constraint is responsible for the continuity of the flows in the

x axis, namely, that the amount of flow in the x axis entering

the vertex is equal to the amount of flow in the x axis leaving

it. The flow magnitudes are multiplied by the cosines of the

angles of the corresponding edges and by a sign function,

I(e,v), indicating whether vertex v is the tail or the head

vertex of edge e. Similarly, the second constraint is

responsible for the flow continuity in the y axis.

Third and fourth constrains in Eq. (4) set the minimal and

maximal boundaries for the flow—in the truss they

correspond to the maximal tension and the maximal

compression that can be applied upon the corresponding rod.
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The LP formulation of the dual problem is provided in

Eq. (5).

Min
X
e2E0

bCðeÞ$gCðeÞ

C
X
e2E0

bKðeÞ$gKðeÞ

cðe Z ht; hiÞ2E0 ðpxðtÞKpxðhÞÞ$cosðaðeÞÞ
CðpyðtÞKpyðhÞÞ$sinðaðeÞÞ
CgCðeÞKgKðeÞZ 0

for ðp Z h0; vpiÞ pxðvpÞ$cosðaðpÞÞCpyðvpÞ$sinðaðpÞÞR1

cv2V pxðvÞ;pyðvÞ%R0

ce2E0 gCðeÞ;gKðeÞR0

(5)

In the dual problem, there are four types of variables: px,

py and g
C, gK. The first two are associated with each of the

network vertices, while the latter two are associated with

edges. The first constraint in Eq. (5) is associated with each

network edges defines px and py as the potentials in the two

dimensions of the vertices of the network, while gC and gK

are the magnitudes of the potential difference of the edge. In

the truss problem, the potentials can be seen as the

displacements of the corresponding joints in x and y

directions, gC as an elongation of the rod and gK as a

shortening of the rod. Accordingly, the second constraint in

Eq. (5) can be interpreted as a requirement that the

displacement of the joint upon which the external force is

applied is higher or equal than the unit of length. Fig. 3

demonstrates such an interpretation of the problem variables

upon a deformed truss rod.

Therefore in the terminology of the two-dimensional

networks, the dual problem can be formulated as follows:

Find a minimal two-dimensional cutset in the network—

a set of edges, removing of which will block the flow

through the network.

It should be noted, that the two-dimensional cutset differs

in its properties from the cut-sets accustomed in regular
Fig. 3. Interpretation of the network variables as truss rod deformation.
networks, as not every connected network can be used to

transfer two-dimensional flow.

In the case of a two-dimensional truss the dual problem is

formulated similarly to the one-dimensional case: find

the ‘minimal work plastic mechanism’, defined by a set of

rods to be put in the plastic mode in order to turn the truss into

a mechanism. For each rod there are two possible plastic

modes—compression mode, where the rod can be shortened

to any extent, and another is tension mode where the rod can

be lengthened to any extent. In the engineering terminology,

these modes can be considered as replacement of the rods

with cables and struts depending on the specific plastic mode

chosen. The energy function is defined as the sum of the

products of the yield limits of the chosen rods by their

elongation in the mechanismwhen the joint of external force

is moved by a unit of length in the direction of the force.

Such an interpretation is reinforced by the complemen-

tary slackness conditions, from which it follows that the

variable gC/K (e) can differ from zero only if the

corresponding edge in the dual problem is saturated (i.e.

reaches the maximal or minimal boundary, respectively).

Accordingly, rod e can be deformed only if it is saturated.

The rod can be shortened (elongated) only if it is saturated

by the compressive (tensile) force and accordingly can be

considered as a cable (strut).

This mechanism is actually similar to the so-

called collapsed mechanism used in the method of

combining mechanisms for solving the maximal loading

problem [26].
3. Derivation of the two-dimensional max-flow method

from the primal-dual algorithm
3.1. Description of the primal-dual algorithm in the

terminology of this paper

Following are the steps of the primal-dual algorithm

developed by Papadimitriou and Steiglitz [2]. The math-

ematical linear programming formulations underlying each

of the following steps can be found in the latter reference.

Themain ideaof this algorithm is that for eachgivenoriginal

optimization problem, it constructs, in a systematic manner, a

transformed optimization problem that in many cases is easier

to be solved. Once solved, the solution of the transformed

problem is augmented to the solution of the original problem

after multiplication by a calculated coefficient.
(1)
 The original, or primal—in terminology of Papadimitriou

and Steiglitz [2] problem. The original problem is stated in

the terminology of linear programming, including the

constraint inequalities for the problem variables and the

objective function, the value of which is to be optimized.
(2)
 Some initial solution is given to the problem variables, so

that the problem constraints are satisfied. In many cases,
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a feasible initial solution is when all the variables are set to

be equal to zero.
(3)
 Set of admissible constraints—J: Upon the substitution of

the current values of the variables into the constraints of the

original problem, all the constraints that are satisfied in

equality form a set, designated by J.
(4)
 Transformed problem, called in terminology of Papadimi-

triou andSteiglitz [2]—Dual Restricted Primal problem. In

accordance with the current state of the variables of the

original problem—anotherLPproblem is built bymeans of

the following rules:

a. For each variable in the original problem there is a

corresponding variable in the transformed problem.

b. All the variables in the transformed problems are

restricted to be no greater than one.

c. For each constraint of the original problem, which

belongs to J, there is a constraint in the transformed

problem having the same left-hand side, while its right

hand-side is zero.
(5)
 The dual transformed problem (Restricted Primal in the

terminology of Papadimitriou and Steiglitz [2]). If the

objective function of the dual transformed problem and

thus of the transformedproblem is equal to zero, it indicates

that the optimal solution for the original problem was

found.
(6)
 The optimal solution to the transformed problem is found.

The transformed problem possesses a restricted form in

comparison to the original problem. Only a part of the

constraints appearing in the original problem appears in the

transformed problem, while their right hand side contain-

ing the numeric information about the problem is

eliminated. Thus, finding the optimal solution to the

transformed problem should be a simpler task than finding

the solution to the original problem.
(7)
lemÞKðleft hand sideof constraint j of the original problemÞ

traint j of the transformedproblemÞ

�

ð6Þ
Constant parameter, q, is evaluated from the solutions of

the original and the transformed problems, by means of

Eq. (6).

qZMin
cj;J

ðright hand side of constraint jof the original prob

ðleft hand sideof cons

�

The augmentation coefficient evaluated in Eq. (6) assures

that the objective function of the main problem is augmented

by the maximum possible positive value.
(8)
 The solution of the original problem is augmented through

Eq. (7) and a new solution is obtained.

ðNew value of the variable of the original problemÞ

Z ðOld value of the variable of the original problemÞ

Cq�ðThe corresponding variable

in the transformed problemÞ ð7Þ
(9)
 Return to stage 3 and repeat the process.
The above algorithm is summarized in the diagram of

Fig. 4:

Each iteration of the above algorithm causes monotonic

increase of the objective function (step 8), which as is proved

in [2] reaches the optimum value at a finite amount of time.

3.2. Deriving the two-dimensional network flow through the

primal dual algorithm and its application to plastic analysis

The formulation of the two-dimensional max-flow pro-

blem, upon substitution to the paradigm of the primal-dual

algorithm yields relevant formulations for underlying pro-

blems of the algorithm. This way the primal-dual method for

solving the two-dimensional max-flow problem is obtained.

Following is the description of the steps of the algorithm. Each

step is described through a two columns table—giving the

formulation of the step in the terminology of the two-

dimensional networks and the terminology of the two-

dimensional trusses. The one-dimensional interpolation is

also provided in case it differs from the two-dimensional

formulations to show that the derived algorithm is actually the

extension of the one-dimensional algorithm [5] to multiple

dimensions.

Step 1. Setting the initial feasible solution.

Two-dimensional network

terminology

Truss terminology

Set all the flows in the network to be

zero vectors

Set all the forces in the truss to be

zero vectors
Step 2. Constructing the set of admissible constraints—J

(Table 1).

Step 3. Building the transformed problem.

Applying the construction rules appearing in [2] upon the

original problem, yields the following LP formulation of the

transformed problem:
cv2V
XMax PT

e2E0

Iðe; vÞ,FT ðeÞ,cosðaðeÞÞ

CIðp; vÞ,PT,cosðaðpÞÞZ 0

cv2V
X
e2E0

Iðe; vÞ,FT ðeÞ,sinðaðeÞÞ

CIðp; vÞ,PT,sinðaðpÞÞZ 0

ce2JC 0RFT ðeÞRK1

ce2JK 1RFT ðeÞR0

ce2E0 FT ðeÞ%O0

1RPTO0

(8)
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where the superscript ‘T’ beside the variables indicates the

belonging to the transformed problem.

The problem formulated in Eq. (8) possesses the same

types of variables as the original problem (Eq. (1)), subjected

to somewhat different constraints: while the flow continuity

constrains remained intact, the flow magnitude limitations are

different. Table 2 summarizes the transformed problem in the

terminologies of the two-dimensional network, and the

engineering domain—trusses.

Step 4. Checking the halting condition.

The check of whether the current solution is the optimal

solution of the original problem can be performed by verifying
Table 1

The set of admissible constraints-J

Two-dimensional network terminology

Set J is a set of edges for which the constraints limiting their capacity are found to b

the current stage of the computation. Since there are two types of such constraints,

negative flows, the set J can be divided into two: set JC and set JK, respectively
that the optimal solution of either the transformed or the dual

transformed problems is zero. The two possibilities are

described in the two rows of Table 3.

Step 5. Solving the transformed problem (Table 4).

Step 6. Augmenting the solution (Table 5).

Step 7. Proceed to step 2 for the next iteration.

Step 8. End

As the mathematical foundation of the algorithm

presented above is the primal-dual method, as is

explained in the previous section, it will arrive at the

value of the maximal loading upon a truss in a finite

amount of time.
Truss terminology

e in equality at

for positive and

.

Set J is a set of rods where at the current stage of

the computation the internal force has reached

the maximal yield limit. Since there are two

types of such constraints, for compression and

tension forces, the set J can be divided into two:

set JC and set JK, respectively



Table 3

The halting condition in terminologies of networks and the trusses

Two-dimensional network terminology Truss terminology

Dual transformed problem: If the transformed network is not valid, i.e.

there is no admissible flow that can be initiated from the source then the

optimal solution, or the maximal flow has been reached—stop. For the

one-dimensional case—the condition becomes the failure to find a directed

path through the network

Dual transformed problem: If the resultant transformed truss is not valid, i.

e. no positive external force can be applied on it, then the optimal solution,

or the maximal loading has been reached—stop

Transformed problem: If the saturated edges form a vector cutset (a set of

edges blocking the admissible flow) then the optimal solution has been

found (in one-dimensional case the blocking is produced by those edges

whose removal affects the connectivity of the graph)

Transformed problem: If the transformed truss allows the external forces

to move a unit displacement without producing forces in any of its

members, then the optimal solution has been reached

Table 2

The formulations of the transformed problems

Two-dimensional network terminology Truss terminology

Build a transformed network as follows: If the flow in the original network

edge is saturated at the current stage, then substitute it by a unidirectional

edge allowing only flow opposite to the saturation flow, otherwise the

edge remains as it is. The magnitudes of the flows in the saturated edges

are limited to be no greater than 1

Build a transformed truss as follows: If the force in the rod in the current

state of the original truss is saturated with the compression (tension) force,

then substitute it by a cable (strut), i.e., it can sustain only tension

(compression) force, otherwise the rod remains as is. All the forces in the

saturated rods are limited to be no greater than 1, either if the force is

tension or compression
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4. Examples for plastic analysis of trusses through the

suggested multidimensional method

Fig. 5 shows a truss indeterminate to the first degree for

which the maximal allowed loading is to be determined.

The compressive and tensile yielding of all the truss rods is

equal to 12000[N].

The initial feasible solution is set as PZF1ZF2ZF3Z0.

For the first iteration, there are no saturated rods, thus in the

transformed truss, there is no restriction on the sign of the

forces in the rods. One of possible solutions is obtained by

removing rod ‘3’ from the truss and applying on it a unit

external force as is shown in Fig. 6.
Table 5

Augmenting the solution to the current solution of the original problem

Two-dimensional network terminology

The flows obtained in step 4 are multiplied by the increment coefficient q

qZMincj;J
ðcapacity of edge jÞKðcurrent flow in edge jÞ
ðflow in edge j in the transformed networkÞ

h i
and are added to the

current solution of the problem. In calculation of q, the type of the capacity

(upper/lower) is taken in accordance with the type of the force in the

transformed rod

Table 4

Solution of the transformed problem

Two-dimensional network terminology

Find a set of edges capable of conducting an admissible two-dimensional

flow in the transformed network. In these edges, find the flow distribution

if the source edge conducts a flow of a unit magnitude. (For 1D case-find a

directed path between the head and the tail vertices of the source edge in

the transformed network)
The analysis of the determinate truss of Fig. 6 gives the

following results:

P0 Z 1½N�; F 0
1 Z 1:756½N�; F 0

2 ZK2:02½N�

By Eqs. (6) and (7), this solution is multiplied by the factor:

q=5940.6 and is added to the current solution, thus the current

solution becomes:

P Z 5940:6½N�; F1 Z 10431:7½N�;

F2 ZK12000½N�; F3 Z 0

Rod 2 became saturated by tension, thus it is transferred to

the set of admissible constraints, JK, which includes all the

rods that can be lengthened, in the original truss but cannot
Truss terminology

The forces obtained in step 4 are multiplied by the increment coefficient q

qZMincj;J
ðyield limit of rod jÞKðcurrent force in rod jÞ

ðforce in rod j in the transformed trussÞ

h i
and are added to the

current solution of the original problem. In calculation of q, the type of the

yield limit (compression/tension) is taken in accordance with the type of

the force in the transformed rod.

Truss terminology

In the transformed truss, select a subset of truss elements forming a stable

determinate truss. Apply a unit loading to the truss in the direction of the

external forces and find the forces in the rods of the transformed truss.

There exist a variety of algorithms for treating determinate trusses [25].

Such algorithms can be employed to facilitate the execution of this step



Fig. 5. The truss upon which the method is applied. Fig. 8. Solution of the transformed truss of the third iteration.
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sustain tension. In engineering terminology, this rod is

replaced with a strut.

The optimal solution to the original problem has not yet

been achieved, since in the current original truss there are two

non-saturated rods, 1 and 3, that prevents the movement of

joint A in the direction of the external force.

In the next transformed problem the force in rod 2 is to

be greater or equal to zero, i.e. to be unloaded or in the state

of compression. This can be achieved by removing rod 2

from the original truss and applying the unit external force

upon the new transformed truss, as shown in Fig. 7.

The analysis of the transformed truss of Fig. 7 gives the
Fig. 6. Transformed problem of the truss presented in Fig. 5.

Fig. 7. Solution of the transformed problem in the second iteration.
following results:

P0 Z 1½N�; F 0
1 Z 0:577½N�; F 0

3 ZK1:154½N�:

By Table 5, this solution is multiplied by the factor: qZ
2718 and is added to the previous solution of the original

problem, and the current solution becomes:

P Z 8658:6½N�; F1 Z 12000½N�;

F2 ZK12000½N�; F3 ZK3136:6½N�

Now, there are two saturated rods: rod 1 has reached the

tensile yielding and rod 2 has reached the compressive yielding.

Therefore, in the two saturated sets: JKZ{2} and JCZ{1}.

Turning the two rods into plastic enables movement of joint

A. Nevertheless, the optimal solution has not been yet
Fig. 9. Cable-strut problem equivalent to the dual transformed problem of

the final iteration.



Table 6

Application of the algorithm for the plastic analysis of a compound truss

Original truss Transformed truss Connection

Iteration Solution of the original problem Jcables
C Jstruts

K Solution of the dual transformed

problem

Solution of the transformed pro-

blem

q

1 Zero force in all the rods. : : The truss is stable, hence no

movement of the joints can occur

without causing deformation of

truss members.

Removing rods 5 and 7 and solving

the obtained determinate truss.

4000

2 : {9} rod 9 is

added

Even though rod 9 is replaced by a

strut, the truss remains stable.

Removing rods 9 and 5 and solving

the obtained determinate truss.

2000

3 {1} rod 1 is

added

{9} Joints C and F can do a valid

movement in the direction of the

external forces without causing

deformation in the truss members.

The solution of the dual trans-

formed problem is zero thus the

optimal solution to the original

problem has been reached.
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achieved as from kinematical calculation it is easy to conclude

that A cannot move in the direction of the external force when

rod 2 is a strut and rod 1 is a cable.

In the third transformed truss, rod 1 is limited to be in

tension (cable) and rod 2 is limited to be in compression

(strut). Fig. 8 depicts a possible solution of the new

transformed truss by removing rod 1 from the original truss

and applying a unit external force.

The analysis of the transformed truss of Fig. 8 gives the

following results:

P0 Z 1½N�; F 0
2 Z 0:991½N�; F 0

3 ZK1:721½N�

Since the force in rod 2 in the transformed truss is positive,

and in the original truss it is strut, hence the constraints of

transformed problem have not been violated.

By Eqs. (6) and (7), this solution is multiplied by the factor:

qZ5150.14 and is added to the current solution, which

becomes:

P Z 13808:8½N�; F1 Z 12000½N�;

F2 ZK6896:2½N�; F3 ZK120½N�

One can see, that rod 2 came out from the saturation thus it

has left JK and instead rod 3 has entered JK.

The dual problem (kinematical) is checking whether joint

A in the original truss can move in the direction of the external

force so that the deformation of the structure elements is

minimal while rod ‘3’ is strut and rod ‘1’ cable. The solution of

the problem is shown in Fig. 9: by moving joint ‘A’ in the

direction perpendicular to rod 2 no truss element is deformed

and the vector of the displacement of ‘A’—has a positive

component in the direction of the external force.

Since the transformed problem is solved so that no truss

elements are deformed, the value of the objective function of

the transformed problem (the work needed to be exerted to

move the joint) becomes zero, which guarantees (step 5) that

the optimal solution to the original problem has been achieved,

and is:

P Z 13808:8½N�; F1 Z 12000½N�;

F2 ZK6896:2½N�; F3 ZK120½N�

Table 6 shows application of the algorithm for plastic

analysis of a more complicated truss system.
5. Conclusions and further research

The paper has expanded the network flow optimization

algorithm to a multidimensional case through a systematic

process using the primal dual method. The approach was

shown to be useful for solving real engineering optimization

problems, specifically, it was applied to plastic analysis of

trusses. In general, the solution of the original optimization

problem is obtained by solving a series of simpler, transformed

optimization problems.
The ideas presented in the paper were shown to be derived

systematically to enable employing the approach in other

applications. In the paper, the algorithm for specific

engineering problem—the plastic analysis of trusses, was

derived after it was represented by a multidimensional flow

network, thus the knowledge existing in the latter could be

transformed and applied for solving the former. Although the

algorithm was applied only to plastic analysis, it can certainly

be applied in various operational research applications where

the problem requires treatment of two dependent flows

through the network [23].

As it was explained and demonstrated along the paper, the

algorithm was developed in a systematic way by applying the

primal-dual method from linear programming. This result

indicates on the possibility that other combinatorial algorithms

for solving specific optimization problems in engineering can

be derived by following the same process as the one described

in the paper.
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