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Abstract 
 

Tensegrity devices are special truss-like structures composed of struts in compression and 

cables in tension. In order to keep a tensegrity device rigid, its members must be pre-

stressed. By using actuators to vary the lengths of the struts and cables a tensegrity 

devices can reconfigure its geometry i.e., change its shape. This ability makes tensegrity 

devices suited for applications such as self deploying structures, smart structures and 

even robots. 

 

Two key steps in the reconfiguration of tensegrity devices are form-finding, the process 

of identifying the geometries in which all the device's members are stressed known as its 

singular configurations, and shape change, the process of moving the device from one 

singular configuration to another without loosing its stiffness. 

Current known shape change methods rely heavily on time and processing power costly 

methods, like simulations and large scale optimizations, for these steps. 

 

This work presents a new shape change control strategy which is based on the special 

properties of Assur Trusses. The concept of Assur Trusses (also known as Assur Graphs), 

long known in the field of kinematics, has recently been reformulated by mathematicians 

from rigidity theory community, and new theorems and algorithms have been developed.  

The control strategy developed during the research is fast and does not require a lot of 

processing power. This strategy is applicable to any device whose topology is an Assur 

Graph, of which there is an infinite number. 

 

The proposed shape change algorithm allows the device to move from one singular 

position to another while maintaining its stiffness at all times. The shape change is 

accomplished by changing the length of the device's actuated members.  
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With this algorithm some of the controlled members change their lengths in some 

arbitrary fashion to reach the desired shape, while only one member is controlled in such 

way that will maintain the device's stiffness. 

 

The strategy has been developed and tested on a prototype tensegrity device that was 

designed and built for practical experiments. Experiments with the prototype device 

showed that the new strategy does enable the device to change its shape. 
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1 Introduction 

1.1 Tensegrity 
The word Tensegrity is an abbreviation for Tensile Integrity which was coined by 
Buckminster Fuller (Fuller, 1962). 
There are many different definitions to the word, but they all describe a system that 
contains two types of elements in equilibrium; tensile elements which resist tension 
forces and compressive elements that resist compression forces. 
The “classic” engineering Tensegrity system is a truss-like structure that is composed of 
struts or bars in compression and cables under tension, fig. 1.1 a. 
However there are many other types of Tensegrity systems, for example a balloon in 
which the rubber skin is the tensile element and the gas inside is the compressive 
element, fig. 1.1 b. Another example is the bodies many living organisms, in which the 
bones are the compressive elements while the muscle and tendon fibers are the tensile 
elements, fig. 1.1 c. 
 

     
  a    b    c 
Figure 1.1 - Tensegrity systems, (a) structure (b) balloon (c) human arm. 
 
 
In order to keep a Tensegrity structure rigid, its members must be pre-loaded. 
An important feature of the “classic” Tensegrity structure is that its elements are only 
loaded axially and only in one direction.  Although the global structure may bend under 
an external load, none of its elements is loaded with a bending moment. Furthermore, 
each member is always subjected only to either tension or compression but never to both, 
therefore the tension members can be wires or cables instead of rods. 
There are several advantages to members that are cables or wires over members that are 
rods. They can be designed more efficiently because they are not subjected to buckling.  
They can be rolled to a length much shorter than their extended length for storage. 
They provide opportunities for actuation and sensing (Sultan et al., 2000; Skelton et al., 
2001). 
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Because of these properties the Tensegrity principle can be used to design lightweight 
structures and shape changing structures. 
 

1.2 Shape changing structures 
There are several types of structures that have the ability to change their shape: 
 
An active structure is defined by Soong and Manolis (Soong and Manolis 1987) as one 
consisting of two types of load-resisting members: the static or passive members, and the 
dynamic or active members. 
 
A deployable structure is an assembly of prefabricated members or elements that can be 
transformed from a compact or folded configuration to a predetermined expanded form of 
a complete stable structure capable of supporting loads. 
A structure with an inverse transformation is called a collapsible or foldable structure. 
The functionality and the feasibility of the design of such structures depend not only on 
the structural behavior of the expanded configuration under service loads but also on the 
structural response during deployment and during dismantling. The multiple design 
criteria during deployment and during dismantling as well as in the deployed 
configuration make these structures very different from conventional structures (Gantes, 
2001). 
 
Self deploying structures are active deployable structures in which actuation of the active 
members allows the structure to transform into its expanded form under its own power. 
 
A smart structure is a structure that is capable of sensing and reacting to its environment 
in a predictable and desired manner, through the integration of actuators and sensors. In 
addition to carrying mechanical loads, smart structures may alleviate vibration, 
automatically perform precision alignments, or change their mechanical properties or 
shape on command (Parker, 1994). 
 
When a structure has the ability to change shape involving large displacements it can be 
described as a mechanism or a robot. 
 
Tensegrity devices must maintain forces in their members at all times to prevent collapse. 
Tensegrity devices also have the property that actuation at one location can translate into 
movement at multiple locations, and conversely, movement at one location can be caused 
by multiple actuators. Due to this property, multiple control strategies may exist for a 
single behavior (Paul et al., 2005b).  
Because of that developing a control strategy for tensegrity devices is usually more 
complex than for conventional devices. This work will focus on a new type of control 
strategy for a tensegrity shape changing device.  
 
The process of developing a tensegrity shape changing device can be divided into four 
stages: 

• Selecting the type of the device (its topology). 
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• Selecting two or more shapes for the device (geometries). 
• Developing a method to transform the device from one shape to the other. 
• Building and activating the device. 

 
The following sections will give an overview on each of these subjects. 
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1.3 Types of tensegrity structures 
 
Tensegrity structures can be categorized in several different ways. 
 
One categorization is referred to as the class number, defined by Skelton, as appears in 
(Skelton et al., 2001): 
   
A class k tensegrity structure is a stable equilibrium of axially loaded elements, with a 
maximum of k compressive members connected at the node(s). 
  
A class 1 tensegrity structure has only one compression member terminating at each 
node, class 2 can have 2 etc.  
  
 
A common approach is the categorization of tensegrity structures based on the number 
and type of members in the structure, usually categorization is by the number of rigid 
bars in the structure. 
The naming convention is a capital T followed by the number of rigid bars (T-3, T-4 etc). 
The rigid bars in a tensegrity structure can be connected in many different ways. The 
different possible topologies fit into families of tensegrity structures.   
One of the most studied tensegrity families is called the prism family, the basic structure 
of which consists of two equal end polygons in parallel planes joined by members at their 
vertices.  The end polygons are not required to remain of equal size or in parallel planes 
and may even become skew, but they must be geometrically similar (fig. 1.2).  
 

 
Figure 1.2 - a T-4 tensegrity prism, (a) perspective view (b) top view 
 
Another family of tensegrity structures is based on polyhedra formed from all triangular 
faces with a mobility of zero.  They include the tetrahedron, octahedron, decahedron,  
dodecahedron, and icosahedron (Fig 1.3.). 

 8



 

  
Figure 1.3 - a T-6 tensegrity Icosahedron, (a) top view (b) perspective view (c) side view 
 
 
Two or more tensegrity structures may be combined to create more complex structures, 
the original structures do not have to be identical, but for pacrical purposes they usually 
are (fig 1.4). 

 
 
Figure 1.4 - Two class1 T-4 tensegrity prisms combined into a class 2 tensegrity tower. 
 
The device studied in this work is based on a class one, T-3, tensegrity prism (where the 
end polygons are triangles) (fig 1.5).  
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Figure 1.5 - a T-3 tensegrity prism, (a) perspective view (b) top view 
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1.4 Form finding 
 
After the topology of the device has been selected, its geometry must be decided. Unlike 
trusses, merely examining the topology of a tensegrity structure cannot be used to 
determine whether it is rigid or not. Even if the structure topology is suitable for a 
tensegrity structure, it will be rigid only in specific geometries which are called singular 
configurations. For a shape changing device, at least two geometries are needed, a 
starting geometry and a final geometry, for example, a folded geometry and a deployed 
geometry. Form finding is the process of locating a rigid geometry for a tensegrity 
structure. 
 
1.4.1 Singular configurations 
 
A large number of trusses and mechanisms can move into special positions where they 
become Tensegrity structures.  These positions correspond to specific link lengths of the 
system members that place the device in a singular position.  Only in these specific 
singular positions would the structure not collapse if specified rigid links were replaced 
with flexible tension members. These tensegrity configurations allow the system to be 
pre-stressed, which is required to give a tensegrity system its stiffness. 
In order for a tensegrity structure or device to maintain its rigidity, its geometry must 
correspond to a singular configuration. If the device must move between singular 
positions while supporting any weight, resisting any external forces or simply retaining 
its shape, it must also be in singular positions at all times between the starting and ending 
position.  
It is easy to see that finding these singular positions, commonly referred to as the form 
finding problem, is one of the main issues in any work relating to tensegrity. 
 
 
1.4.2 Methods of finding tensegrity structures' singular configurations 
 
C. Sultan developed a method of identifying singular configurations by checking 
"prestresbility conditions"; a set of nonlinear equations and inequalities. 
In order to derive the general prestressability conditions they applied the principle of 
virtual work (Sultan et al., 2001): 
 
Assuming E tendons and N degrees of freedom, the total virtual work W is given by: 
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where  
T is the vector of tendon tensions 
l is the vector of tendon lengths 
q is the vector of generalized coordinates (state variables) 
δq is the vector of virtual displacement of the generalized coordinates 
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The elements of the matrix A(q), called the equilibrium matrix, are given by 
 
 

 
Since the virtual work must be zero for every virtual displacement δq, there must be 

 
Since at a prestresable configuration all tendons must be strictly in tension, that is,  
must be positive for every j, the prestressability conditions are 

jT 

E,1,jfor  0T and 0A(q)T j …=>=  
A necessary condition for T to have positive elements is that the kernel of A(q) is 
nonzero. In terms of A(q) this condition gives rise to the following: 

 
If N<E the kernel of A(q) is guaranteed to be nonzero. 
Solving the general prestressability conditions is difficult. Previous research has focused 
on numerical solutions. Sultan presented several Tensegrity structures for which the 
prestressability conditions can be analytically solved for certain configurations.  
 
 
W. Whittier developed a form finding method based on finding the "boundary of non-
assembly" (Whittier, 2002). The method is based on the fact that in any structure or 
mechanism a set of link lengths can be found that does not allow the system to be 
assembled. Bar systems can also be constructed of link lengths such that they exist on the 
boundary of non-assembly.  An example of this is shown in figure 1.6.  
 

  
  (a)   (b)    (c) 
 
Figure 1.6. Four bar mechanism with different bar lengths. 
 
 
In mechanism (a) it is obvious that the chosen set of link lengths allows assembly. The 
links of mechanism (b) on the other hand have been chosen such that they cannot be 
assembled. Mechanism (c) has been built so that it is on the edge of being able to be 
assembled, on the boundary of non-assembly. 
Stable positions for Tensegrity structures lie on the boundary of non-assembly. 
Mechanism (c)'s ground link can be replaced with a strut and the other links with cables 
and the mechanism would become a Tensegrity structure. 
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This same principle is also valid for three-dimensional structures and mechanisms.  
 
The ideal method for finding Tensegrity positions for a given topology would be to find 
and define the whole region of non-assembly for the topology. Completely defining the 
region of non-assembly is difficult for the complex three-dimensional tensegrity 
structures, however, it is easier to find specific positions on the boundary of non-
assembly.  
 
The following algorithm for finding tensegrity positions has been implemented in a 
MATLAB program. The program starts with a set of members connected in truss form 
that may or may not be in a Tensegrity position.  A numerical root finding method is used 
to find the position of the truss that satisfies the kinematic constraints for each link. 
 
Using numerical methods, moving the structure into the Tensegrity position is attempted 
by adjusting the length of one chosen link. 
 
If the structure starts in a truss position in which assembly is possible, then the chosen 
link will be changed in length (tension member shortened or compression member 
lengthened) to move the structure towards the boundary of non-assembly.  The chosen 
link is adjusted in length until the closure equations (kinematic constraints) begin to 
become unsolvable.  This shows that the structure is on the boundary of a non-assembly 
volume and has reached a prestressable configuration. 
 
If the structure were to have started with link lengths such that assembly is not possible, 
the chosen link would be changed in length (tension member lengthened or compression 
member shortened) to move back towards an assembly region until all constraint 
equations just began to be met.  This would also cause the structure to be on the boundary 
of non-assembly.   
 
To verify that the truss is indeed in a Tensegrity position, a check is performed using 
static force analysis.     
 
Using this approach, the Tensegrity position corresponding to the given set of link 
lengths can always be found.  At this point, a new set of link lengths (all but one) can be 
chosen to make a new structure, and the process can be repeated to find the 
corresponding Tensegrity position.    
 
In this work the approach to form finding was similar to Whittier's  (Whittier, 2002) in 
that it also starts with an arbitrary geometry and then one link length is changed in length 
until a singular position is reached. The difference was that instead of using a program to 
numerically solve the problem for a model, the actual link length in the prototype device 
was changed until the device became pre-stressed, at which point the link's length is 
measured by a sensor instead of needing to be calculated. 
The approach developed in this study does not require the formulating and solving of 
static or kinematic equations. 
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Williamson (Williamson et al., 2003) characterized the singular configurations of 
tensegrity structures as configuration where all string elements are in tension, all bar 
elements are in compression and all nodes are in a state of static equilibria (with or 
without external forces).  
The authors used vectors to describe the structure's elements and the forces in it, 
eliminating the need to use direction cosines and the subsequent non-linear functions that 
follow their use. They used matrices to describe the relations between the elements. By 
enlarging the vector space in which they characterized the problem, the mathematical 
structure of the equations allowed treatment by linear algebra methods. This reduced the 
form finding problem to a series of linear algebra problems. 
 
 
Another approach for finding singular configurations being developed by our team is 
based on the connection between tensegrity, trusses and mechanisms. 
Any truss which is under a unique self stress can be turned into a tensegrity by replacing 
the bars under tension with cables and bars in compression with struts. A similar process 
can be used on mechanisms which are in dead-end positions. 
Therefore any method developed in the fields of structures and mechanisms to find self 
stressed configurations or dead-end positions may also be applied for finding tensegrity 
singular positions. 
 
For example, figure 1.7 shows a truss and a tensegrity device which share the same 
topology (known as "triad") and geometry. 
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Figure 1.7 - A truss (a) and tensegrity device (b) with identical topology and geometry. 
 
There are several ways to characterize the singular position. For above topology all 
singular positions occur when the continuation of lines 1, 2 and 3 intersect at a single 
point (fig 1.8.) (Shai and Polansky, 2006). Using this geometrical constraint, a closed 
analytical definition of the singular position of the tensegrity device can be defined. 
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Figure 1.8 - (a,b) sample singular configurations. 
 
Ben-Horin and Shoham (2006) analyzed the singularity in a class of Gough–Stewart 
platform mechanisms. The topology of one member of this class matched the topology of 
the T-3 tensegrity prism (fig. 1.9). 
 

  
  (a)     (b) 
 
Figure 1.9 - (a) Stewart platform (b) T-3 tensegrity prizm 
 
They discovered that for this class the singular configurations occur precisely when four 
planes, defined by the positions of the joints, are concurrent in a point. 
Using this geometrical constraint, a closed formula analytical definition of the singular 
position of the T-3 tensegrity prism has been defined. 
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1.5 Shape change 
 
Shape change is a process in which by adjusting the lengths of some of a tensegrity 
device's members, the geometry of the device is altered, usually for the purpose of 
changing its position and orientation along a prescribed path while maintaining its 
stiffness.  
 
Kanchanasaratool and Williamson (2002) studied two path tracking algorithms; a quasi-
static algorithm based on an open loop piecewise constant input, and a gain scheduling 
algorithm based on an interpolation of “locally designed” controllers. 
 
The authors used a system of nonlinear differential equations where u is the control input, 
z is the state of the device and y is the performance output. 

(1.5.1) 

)(
);(

zhy
uzfz

=
=

 

 
In general, given the tracking time T and the initial state z(0), a finite time path tracking 
problem can be formulated as an approximate “inverse problem” in which the control 
signal u(t) is to be computed from the given trajectory y(t) so as to minimize the integral 
of the tracking error. 
As a result of the nonlinear nature of the model, no solution to this problem is available, 
and so instead, the authors divided the trajectory into R segments with endpoints y1..yR, 
and seek a sequence of inputs u1..uR such that yi is an equilibrium condition for each 
given ui. 
 
If there exists an invertible function H such that yi = H(ui) than a suboptimal tracking 
solution is given from the inverse function 

(1.5.2) 
ui = H-1(yi)  
 
However, even if an inverse were known to exist, an explicit form would be unlikely. 
Based on the assumption that an inverse exists, the authors used an artificial neural 
network approximation to H-1. As is well-known, a neural network must be 
“trained” using a data obtained from input-output data of the steady state system. 
The training data consisted of 1456 pairs of steady state input-output data obtained from 
simulations for various bar lengths. 
 
Various simulations were then performed with different values for R and T and the 
following observations were made:  
For a constant time increment ∆t, tracking performance improves as R increases. 
For a constant number of increments R, tracking performance improves as ∆t increases. 
For a constant number of tracking time T, tracking performance improves as R increases 
(∆t decreases). 
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The tracking performance significantly deteriorated for T < 50 seconds, and the inability 
to further reduce the tracking time is consistent with the open loop nature of this quasi-
static approach to tracking. To overcome this problem the authors used a “gain 
scheduling” control algorithm. This algorithm divided the shape change process into a 
constant number of operating points and for each point sought a nonlinear feedback 
controller whose gains were determined from the linearized model of the system at the 
operating point. Between the operating points the controllers used gains that were 
interpolations of the gains at the operating points. 
  
Sultan and Skelton (2003) presented a shape change strategy based on the existence of a 
set of equilibrium configurations. In the state space this set is represented by an 
equilibrium manifold. For this strategy the equilibrium manifold to which the initial 
equilibrium configuration and final equilibrium configuration belong must first be 
identified. 
This strategy is best suited to symmetrical deployment of tensegrity devices, since the 
symmetrical parametrization limits the dimension of the manifold. Figure 1.10 
graphically illustrates the equilibrium manifold of a 6 bar tensegrity device. The device 
has 6 actuators but it needs only 3 parameters to describe its position because of the 
symmetry requirement.  
Due to the small number of parameters, the allowable configurations of the tensegrity 
structure can be conveniently visualized as an equilibrium surface plotted in the three 
dimensions of the parameters. Each dot on the graph represents an allowable equilibrium 
(singular) configuration that has been identified and the black line represents the desired 
shape change path. Without the symmetry requirement the device will need at least 6 
parameters to describe it position which would require a six dimensional manifold which 
would be much harder to generate. 
 

 
Figure 1.10 - Graphic illustration of a 3 dimensional equilibrium manifold. 
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The main idea is to conduct the deployment such that the deployment path is close 
enough to this manifold. The advantage in doing so is that, due to the proximity of the 
deployment path to this manifold, the successive configurations the structure passes 
through are not much different from the equilibrium ones. If these equilibrium 
configurations have certain properties (for example, all tendons are in tension and 
sufficient clearance between the isolated rigid bodies exists), then the deployment can be 
conducted slowly enough such that the intermediate configurations the structure passes 
through posses the same properties. 
One way to ensure that the deployment path is close to the equilibrium manifold is by 
letting the control variables take values only in the set of the equilibrium manifold 
controls. That is to say the controls are allowed to take only values corresponding to 
equilibria which belong to the equilibrium manifold. If the change in control variables is 
smooth enough, then the system undergoes slow motions, remaining close to this 
manifold. 
 
Pinaud et al. (2003) used the above mentioned strategy for symmetrical deployment but 
observed that there is a rapid increase in the number of independent parameters when 
asymmetrical shapes are considered. For the six bar device mentioned above the number 
of parameters can be as high as 36, compared with 3 for the symmetrical deployment 
case. In cases when there are many independent parameters the equilibrium manifold 
becomes immensely large and a search to characterize this space would most likely be 
fruitless and yield no special insight. 
 
The tendon trajectories for shape change of an asymmetric tensegrity device were 
computed using iterative nonlinear optimization programs which allowed for easy 
specification of constraints on the geometry of the device. 
 
In this shape change method, the desired shape change is divided into n stages. 
 
For each ith stage of the n stages, a non-linear optimization program is activated with 
inputted constraints which are based on the tensegrity equilibrium requirements and the 
desired trajectory of the device. The program returns a solution pi which contains the 
geometrical properties of the device on the ith stage. 
At the end of each optimization iteration, the solution pi is used to compute the members' 
lengths and so construct the tendon length trajectory. In addition, the solution pi is used as 
an initial guess to the solution pi+1 of the next iteration that follows. This ensures every 
solution is the closest solution to its two neighboring solutions. 
 
After the n iterations have been run, the constructed member length trajectories become 
the open loop control laws that are used to change the shape of the device. 
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Van de Wijdeven and de Jager (2005) developed the following method for shape change. 
First a reference trajectory for the nodal positions of the tensegrity structure is found 
solving a series of optimization problems. Due to the number of nodes in a non-trivial 
structure, the optimization was a larger scale one. It was also non-convex and nonlinear. 
Due to the scale of the problem, no dynamics were included in the constraints. Dynamic 
effects were handled by a feedback controller. 
 
To obtain an actual reference trajectory, the desired shape change and time span were 
divided into N sub-shape changes and time steps. At every time step on the total time 
span, the sub-shape change was optimized while the constraints were met. When all the N 
optimizations are feasible, they result in (sub-)optimal values for the design variables and 
a total shape change that was obtained by carrying out the sub-shape changes 
sequentially. 
 
The reference signals contained only a limited number (N) of operating points on the 
trajectory. To generate data between two operating points, linear interpolation of the 
reference signals was applied. Note, however, that moving from one operating point to 
the next still led to discontinuous first derivatives due to the linearly interpolated 
reference trajectory. This resulted in excitation of the structure. 
 
Depending on the material used for the tendons, a tensegrity structure can have little 
damping. When the reference trajectory is only used for feedforward control, this lack of 
damping can lead to poorly damped structural vibrations during and after the shape 
change. To reduce vibrations a feedback controller is introduced. 
The linearly interpolated desired nodal positions and tendon forces are used as reference 
signals for the controller. 
 
 
In the above mentioned methods the shape changing process is divided into many stages 
and for every stage a form finding must be performed. The method presented in this work 
requires form finding only twice, for the starting position and for the final position. 
 
 

 19



 

1.6 Experimental Devices 
 
Despite the large body of theoretical work in the field of Tensegrity, only few smart 
Tensegrity devices that have actually been built are mentioned in the literature. 
 
At University  of California’s Structural Systems and Control Lab Pinaud et al. (2003) 
experimented with the Tensegrity device shown in fig. 1.11 
 

 
Fig 1.11 - Class 1 Tensegrity mast. 
 
The device was a class 1 two stage mast, composed of two stages, each based on a T-3 
prism. It was built to demonstrate the feasibility of a method to accomplish shape control 
of Tensegrity structures. The device utilized six D.C. motors as tendon actuators. Each of 
the six motors controlled one pair of identical tendons in the structure for a total of twelve 
actuated tendons (Fig 1.12). 
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Figure 1.12 - Tendon actuation motors. 
 
The tendon trajectories for reconfiguration of the tensegrity device were computed using 
iterative nonlinear optimization programs. The trajectory of the center of mass of the top 
plate was used to generate constraints for the geometry optimization process.  
This method utilized the direct computation of the admissible static equilibrium 
configurations that are at the same time solutions to the inverse kinematic problem for the 
desired end-effector path. 
The motion of the structure was assumed to be quasi-static so the dynamics of the 
reconfiguration could be ignored. An open loop control strategy based on slowly moving 
from one stable equilibrium state to another was used to track the trajectory. Stability 
along the deployment path was assured only if the movement was slow enough, unlike 
the prototype device presented in this work which maintains its stability over a wide 
range of speeds. 
 
Another device studied by Pinaud et al. (2004) and by Masic and Skelton (2004) at CSSL 
is shown in fig. 1.13. The device was a class 2 mast composed of two stages, each based 
on a T-3 prism. The device was only capable of symmetric vertical deployment. 
 

 21



 

 
 
Figure 1.13 - Class 2 tensegrity mast 
 
A Programmable Integrated Circuit (PIC) microcontroller and two stepper motors were 
used to actuate the deployment of the tower.  
Each actuator controlled the lengths of three tendons for a total of six actuated tendons 
(Fig 1.14). 
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Figure 1.14 - Tendon actuating stepper motors. 
 
By exploiting the modularity of the structure that enables a simplified equilibrium 
analysis, a solution for its equilibrium geometry was found. Based on this result, a string 
rest length open–loop control law was computed analytically. This control algorithm 
drives the structure through a sequence of configurations that remain in close proximity 
of the equilibrium manifold. Reconfiguration is accomplished in a quasi-static manner, 
ignoring dynamic effects. 
 
Because of the limitations of the stepper motor and microcontroller, the motor commands 
(and therefore tendon length) are discrete and so cannot accurately implement a 
continuous trajectory (Fig 1.15). The blue graph and red dotted graph correspond to the 
lengths of the tendons controlled by the two actuators.  
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   (a)      (b) 
 Figure 1.15 – Tendon trajectories for deployment (a) and stepper motor commands (b). 
 
In contrast, the prototype device presented in this work uses six DC motors instead of the 
two stepper motors which allow it to implement a continuous trajectory and does not 
limit it to symmetric vertical deployment. 
 
E. Fest et al. (2004) constructed the active structure shown in figure 1.16 at the Applied 
Computing and Mechanics Laboratory (IMAC) at the Swiss Federal Institute of 
Technology in Lausanne (EPFL). 
 

 
Figure 1.16 - Five module Tensegrity structure 
 
The structure consisted of five modules arranged in an asymmetric configuration. Each 
module contained 6 struts and 24 cables. For the five module tensegrity, 30 telescopic 
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struts have the potential to be adjusted. The number of active struts has been chosen as 
10. 
 
Each actuator consistes of an electromechanical jack which produced linear energy from 
rotary energy. Rotary energy was created by an electric asynchronous motor via a bevel 
gear system (worm and wheel) and a screw nut system. Each actuator is equipped with a 
LVDT to measure displacement of the piston. The LVDT was used as a feed back control 
sensor. For unpredictable situations, the piston stroke displacement is bounded by a 
displacement limiter which, when touched, shut off the motor (Fig. 1.17). 
 

 
Figure 1.17 - Actuator and sensor 
 
All the devices were multiplexed on a serial bus. The control area network (CAN) (Bosch 
1993) bus, under CANopen protocol enabled one to communicate in real time between 
devices. Information is provided via a PC interface card run by a program written in 
LabView. The program permits automated application of a control command.  
 
The goal of shape adjustment was to maintain the initial slope of the structure’s upper 
level after a load has been applied to change it. The initial state of the structure was 
disturbed by a load. The structural response was then introduced as input to a search that 
included a predictive model.  
 
The model was based on the geometry, topology and material properties of the structure 
analyzed using the dynamic relaxation method, a nonlinear analysis method, which has 
been shown to be reliable and accurate for this application by Fest et al. (2003). 
 
The search is made by taking into consideration objectives and constraints, such as the 
slope and elastic limit of the cable. The search result consists of a set of strut elongations 
applied to the loaded structure. The new structural response was then measured to 
quantify the effectiveness of shape control. 
Search time for most load cases was between one and ten minutes, while in extreme cases 
it could take less than 10 seconds or up to one hour. 
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Quasistatic control strategy, consisting of splitting the full command into increments and 
applying them strut by strut with simultaneous measurements, lead to a safe procedure for 
meeting the serviceability criterion and provided opportunities by which to identify 
potentially better commands leading to the full command.  
 
 
C Paul et al. (2005a) at Cornell University introduced the concept of using a Tensegrity 
structure as the basis for land based locomotor robots. The Tensegrity robot shown in Fig. 
1.18 demonstrated the ability to produce forward locomotion.  
 

 
Figure 1.18 - Tensegrity locomotor robot 
 
Aluminum tubes were used for the struts, and nylon covered rubber elastic cable was 
used for the cables. The transverse cables of the robot were actuated using servomotors 
mounted on the struts.  During walking each servomotor was controlled to alternate 
between its maximum and minimum position value, producing an approximately 2cm 
change in the length of the cable.  
 
The actuation strategy was developed using a simulated robot and a genetic algorithm. 
The control of the simulated robot was accomplished by periodically changing the rest 
lengths of the cables from the maximum to a minimum value. Each actuator was 
contracted once during each gait cycle. The point in the gait cycle at which the actuation 
began, the duration of the contraction, and its amplitude were determined by the genetic 
algorithm independently for each actuator. The period of the gait is also determined by a 
genetic algorithm. The genetic algorithm and simulation were also used to explore 
strategies involving different actuation amplitudes although in the physical robot only 
fixed 2 cm amplitudes were used. During evolution each individual is evaluated for 
10,000 time steps in a dynamics simulation. The initial condition for each individual at 
the first time step is at position [0, 0] in the x-y plane. The fitness of the individual is 
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determined at the end of the evaluation period, and is considered to be the distance 
traveled in the y-direction with respect to the origin. 
 
 
This Tensegrity based robot was not suitable for high precision movements. Due to the 
low pre-stress conditions which enable sufficient kinematic maneuverability the structure 
was subject to significant vibrations, which require high bandwidth control to subdue. 
Thus, only tasks which can tolerate a certain measure of imprecision in trajectory 
tracking, or which obviate the need for trajectories are suitable for it. Locomotion 
represents a suitable task domain as joint trajectories are not always particularly 
important, as long as the movement produces a non-zero motion of the center of mass in 
the appropriate direction (Fig 1.19). 
 

 
Figure 1.19 - The trajectory of the Center of Mass.  
 
Further studies by Paul et al. (2005b, 2006) showed that multiple control strategies 
existed for forward locomotion, and that qualitatively similar behavior could be obtained 
with significantly different control strategies.  
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1.7 The present work 
The objectives of the present work was to create a prototype device based on the 
tensegrity principle and to use it to experiment with a new method of actuation that 
allows operation comparable with conventional rigid robots in terms of flexibility and 
speed while maintaining the advantageous properties of tensegrity. 
This research took advantage of the special properties associated with the device's 
topology to develop a new control strategy. Traditional control strategies require the 
synchronization of all of the device's member's lengths to maintain its stiffness. This new 
strategy uses control of only one member to assure the device's stiffness while the other 
members can be controlled independently and arbitrarily. This decoupling of the control 
of the members makes the control of the device very robust, as well as requiring little 
time and computing power. 
Because a huge family of topologies, the Assur Graphs, shares the special properties of 
device's topology, the new control strategy is applicable to an infinite number of other 
devices. 

1.8 Organization of the Thesis 
 
In section 2 a discussion of the new shape change algorithm, the theoretical principle 
behind it and how it is used for controlling the device is presented. In section 3 one can 
find a presentation of the prototype device and its mechanical, electronic and software 
components. Section 4 is dedicated to the experiments preformed for this work and their 
results. 
The conclusions reached in the course of this work and suggestions for further study are 
discussed in section 5. 
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2. Shape change algorithm theoretical background 
The device studied in this research has a topology which belongs to a group of topologies 
that is called Assur Graphs. In this section Assur Graphs are introduced and some of their 
special properties are described. These special properties were used to develop and 
implement the shape change algorithm for the device. 

2.1. Assur Graphs  
 
In this section the concept of Assur Graphs is introduced. Assur Graphs' main properties 
are discussed as well as what distinguishes them from regular determinate trusses. 
 
Figure 2.1 shows the topology of the device explored in this work. This topology is a 
three dimensional determinate truss but belongs to a special class of determinate trusses, 
termed Assur Graphs. All the structures that are Assur Graphs possess unique 
engineering properties, part of them have been used to develop the control system 
reported in the thesis.  
 
 

 
Figure 2.1 – The topology of the device – 3D Triad. 
 
The concept of Assur Graphs was developed by Professor Leonid Assur at the Saint-
Petersburg Polytechnic Institute. When first published in 1914, Assur’s concepts (Assur 
1952) did not receive much attention, but in 1930 I.I. Artobolevskii, a leading member of 
the Russian academy of sciences, adopted Assur’s approach and employed it in his 
widely used book (Artobolevskii 1951). From that time on Assur Groups were widely 
employed in Russia and other eastern European countries.  
 
The definition of Assur Graph:  
Let G be a statically determinate graph. G is an Assur Graph IFF there is no sub-graph G' 
that is a statically determinate graph.  
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Figure 2.2 shows two 2D determinate graphs (a, b). Graph (b) has a sub graph of 
members, consisting of O1, A and O2, which is a determinate graph itself as shown in 
(c). This proves that graph (b) is not an Assur Graph. Graph (a) called Triad, doesn't have 
a sub graph of members which is a determinate graph and therefore it is an Assur graph. 

 
  (a)   (b)   (c) 
 
Figure 2.2 – Assur Graph - Triad (a), determinate graphs (b) and its sub graph (c). 
 
Note: although for clarity this example (as well as others in this section) is given in the 
two dimensional space, the Assur Graph theory is valid for three dimensions as well. 
Figure 2.3 shows the 3D version of the Triad (a) as well as another 3D graph, the Tetrad 
(b).  Neither of them has a determinate graph sub graph and therefore both are Assur 
graphs. 
 
 

 
 
  (a)     (b) 
 
 
Figure 2.3 – 3D Assur Graphs - Triad (a) and Tetrad (b). 
 
Every determinate graph which is not an Assur Graph can be decomposed into sub-
structures; each is an Assur Graph (Servatius et al., 2009). For example, the determinate 
trusses shown in figure 2.2b can be decomposed into three Dyad type Assur Graph 
(Figure 2.4). 
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  (a)      (b)   
  
Figure 2.4 – Determinate graph (a) and its decomposition to Assur Graphs (b). 
 
 
 
Assur Graphs have several special properties which make them ideally suited to form the 
topology of adjustable deployable tensegrity devices, the type reported in the thesis. The 
following properties exist in every Assur Graph, and during the research they were found 
to be useful in developing the shape control algorithm. The following theorems relate to 
the unique properties of the singularity in Assur Graphs. 
 
 
Theorem 1(Servatius et al., 2009):  
 
A pinned graph G has a realization p such that 
 

1. G(p) has a unique (up to scalar) self-stress Λ which is non-zero on all edges; and 
 

2. G(p) has a unique (up to scalar) first-order motion, and this is non-zero on all 
inner vertices; 

 
IFF G is an Assur graph. 
 
 
Figure 2.5 shows a Triad in a generic configuration (a) and a singular configuration (b) 
and its associated self stress (c) and joint mobility (d).  
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    (a)   (b)   (c)   (d) 
 
Figure 2.5 - Triad in a generic configuration (a), singular configuration (b), self stress 
forces (c) and joint mobility (d). 
 
Figure 2.6 on the other hand, shows a determinate truss in three configurations. 
Configuration (a) is a generic configuration and has no self stress and no mobile joints. 
Configuration (b) has a unique self-stress in all the rods but only joint B is mobile 
(marked with vertical arrows). For configuration (c), joints A and B are mobile, but there 
is no unique self stress (for example it is possible to have a force F in edge 1, resisted by 
a Force –F in edge 2 and zero forces in edges 3 and 4). 
 

A B

1 2

3

4

         
 (a)   (b)    (c) 
 
Figure 2.6 –Configurations of a determinate truss; a generic configuration (a), a uniquely 
self-stressed configuration (b), and a configuration with full joint mobility (c). 
 
 
The meaning of this theorem is that each Assur Graph has a realization, such that the 
Assur Truss is at the singular configuration in which all the rods are stressed. If the rods 
in tension are replaced with cables then the structure becomes a rigid tensegrity. The 
significance of this theorem is that in a tensegrity device based on an Assur Graph, if one 
member is stressed then ALL of the members are stressed and the device is rigid. 
In other words, to determine whether an Assur Truss in a singular configuration or not, it 
is sufficient to check only if one member is stressed. 
 
Theorem 2 (Shai et al., 2010): Let T be an Assur Truss in a generic position. For every 
ground bar Bi there exists a length Li such that Assur Truss T', generated by replacing bar 
Bi with a bar Bi' with a length of Li, is in a singular configuration. 
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According to this theorem, it is possible to make any Assur Truss' configuration into a 
singular one simply by changing the length of any one of its ground bars. Figure 2.7 
demonstrates this by using a Dyad type truss whose singular configuration is 
characterized by bars 1 and 2 being collinear. Dyad (a) which is in a generic 
configuration can be moved into a singular configuration in two ways; either by changing 
the length of bar 1 (b) or by changing the length of bar 2 (c).  
 
 

 
    (a)     (b)    (c) 
 
Figure 2.7 - Dyad in generic configuration (a) and singular configurations (b,c). 
 
 
Another example is presented in Figure 2.8 which shows a common Assur Truss, a Triad. 
The Triads's singular configuration is characterized by lines a, b, c that are the 
continuation of lines 1,2,3, respectively, intersecting at the same point. By changing the 
length only of edge 1, the Triad is moved from a generic configuration (Figure 2.8a) to a 
singular configuration (Figure 2.8b) in which a, b and c intersect at a single point. 
 

1

a c

b

2
3

1

a

c

b

2
3

 
  a    b 
 
Figure 2.8 - Triad in generic configuration (a) and the singular configuration (b) resulting 
from changing the length of edge 1. 
 
A third example is presented in Figure 2.9 which shows a more complex Assur Truss, a 
Tetrad. The Tetrad's singular configuration is characterized by points a (the intersection 
of lines 2 and 3), b (the intersection of lines 1 and 4) and c (the intersection of lines 5 and 
7) being collinear. By changing the length only of edge 1, the Tetrad is moved from a 
generic configuration (Figure 2.9a) in which points a, b and c are no collinear to a 
singular configuration (Figure 2.9b) in which a, b and c are collinear. 
 
 

 33



 

 

 

3 3

a 

7 

6 
5 

4 

8 
b 

c 

1 

4 

7

6 a 
b 8 c 5

22 1 

  (a)      (b)     
Figure 2.9 - Tetrad in a generic configuration (a) and the singular configuration (b) 
resulting from changing the length of edge 1. 
 
When an Assur Truss A is in its singular position, a force F may be assigned to one of its 
members, the forces on all other members will be proportional to F. Members with 
positive force (tension) may be replaced with cables and members with negative force 
(compression) with struts to create a tensegrity device T. If a force of –F is assigned to 
the same member, then in the resulting tensegrity device T', each member that is a cable 
in T will be a strut and each member that is a strut in T will be a cable. An example of A, 
T and T' for the Dyad Assur Graph are presented in figure 2.10. 
 
 
 

 
        a       b      c 
 
Figure 2.10 - Dyad Assur Graph A (a) and its two possible tensegrity devices T (b) and T' 
(c). 
 
Because both T and T' are in the singular configuration both are in equilibrium which 
provides them with stiffness.  However, one of them is in a stable equilibrium, which 
means that if the equilibrium is disturbed the device will return to its equilibrium state, 
while the other is in an unstable equilibrium which will drift away from the equilibrium 
state if disturbed. Figure 2.11 shows two Dyad tensegrity devices' reaction to disturbance. 
The light arrows represent the member forces acting on the joint and the dark arrows 
represent the movements of the joint first because of the disturbance and then because of 
the acceleration caused by the forces exerted by the members. The device on the left is 
composed of two struts and its equilibrium is unstable, while the device on the right is 
composed of two cables and its equilibrium is stable. 
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Figure 2.11 – Unstable (left) and stable (right) Dyad tensegrity devices' reaction to 
disturbance. 
 
For the purpose of this research the following method was used to determine which of the 
two possible tensegrity devices will yield a stable equilibrium: 
 

• Arbitrarily select a generic configuration for the device. 
• Arbitrarily select one of the device's ground links. 
• Change the length of the selected ground link until the device reaches its singular 

configuration. 
• If the link's final length is shorter than its starting length then assign to it a 

positive force F (tension) and if the link's final length is longer than its starting 
length then assign to it a negative force F (compression). 

• Calculate the forces in all the other members. 
• For a tensegrity device in a stable equilibrium, every member with a positive 

force should be a cable and every member with a negative force a strut. 
 
Figure 2.12 demonstrates the process of creating a tensegrity device in stable equilibrium 
from the Triad shown in figure 2.9. Figure 2.12 (a) shows a generic configuration of the 
triad with ground link 1 selected.  The Triad is moved to a singular configuration by 
shortening ground link 1 (b). Since ground link 1 was shortened, it is assigned a positive 
(tension) (c). Figure 2.12 (d) shows, the forces in the other links, either positive forces 
(tension) represented by light arrows or negative forces (compression) represented by 
dark arrows. Finally (e) shows the resulting stable device when the links in tension are 
replaced by cables and the links in compression are replaced by struts. 
 
 

 35



 

1

2
3

1

a b

2
3

c

d e  
 
 
Figure 2.12 – Determining a Triad's stable form by using a generic configuration (a), 
achieving a singular configuration by shortening a ground link (b), assigning a positive 
force to the link (c), deriving the forces on the other links (d) and finally replacing the 
links with struts an cables to get a device in stable equilibrium (e). 
 
 
 
 
 
Another important property of Assur Graphs which is very important to this research is 
that there is an infinite number of them and therefore the results are applicable to an 
infinite number of devices. Assur Graphs can be ordered in a table with infinite numbers 
of rows and columns; this order is termed the canonical form (Shai, 2009) of Assur 
Graphs. The canonical form of two Assur Graphs is proved to be an ordered hierarchy of 
several levels, enabling systematic generation of all its members.  
Using the canonical forms table or the methods developed to produce it, finding 
topologies for tensegrity devices as can be accomplished quickly and efficiently. 
The simplest (in terms of number of members) Assur Graphs are presented in table 2.1 
(2D) and 2.2 (3D) which can be considered as the beginning of the complete canonical 
forms tables. 
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Table 2.2 – Assur graphs in 3D 
 

Class 5 Class 4 Class 3 Class 2 Class 1 
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Assur Graph's above mentioned properties form the basis of prototype device control 
algorithm. First of all, the device topology was selected from the three dimensional 
canonical form to make sure it is an Assur Truss thus has the special properties. 
Following theorem 2, one member's length is adjusted to bring the devices geometry into 
a singular configuration and at all time one member's stress is monitored to make sure the 
device stays in a self stressed singular configuration. 
 
 

2.2 Shape change algorithm 
 
The objective of the shape change algorithm is to allow the device to move from one 
singular position to another while maintaining its stiffness at all times. The shape change 
is accomplished by changing the length of the device's actuated members (cables and/or 
struts). For the device to maintain its stiffness throughout its shape change, all of its 
members must be stressed. According to theorem 1, forces in all of its members exist IFF 
the device is in a self stress position. The latter state is achieved by making sure that the 
device is in a singular position all the time. 
 
It will be proved  that when all but one of the device's members are at any arbitrary 
lengths, the device can be placed in a singular position by setting the length of the 
remaining member to a specific length. That member will be referred to as the force 
controlled member, and all the other actuated members as the position controlled 
members. 
 
Based on that fact, an algorithm was developed in which the position controlled members 
change their length from the starting length to their length in the new shape in some 
arbitrary fashion, while the force controlled member is actuated in a way that will 
maintain the device's stiffness. 
 
 
Theorem 3 
If a triad tensegrity device is in a singular position then the length of one member is 
dictated by the lengths of the other members. 
 
Proof: 
 
Without loss of generality the proof will show that the length of member 1 is a function 
of the lengths of the other members. It is easy to verify that the same proof can be used if 
any other member of the triad was selected. For clarity this theorem will first be proved 
in 2D and then will be proved in 3D. 
 
Symbols used in the proof: 
Constants (the ground points coordinates and members' lengths): 
 
Oik Ground point Oi's k coordinate (x or y in 2D) 
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|JK| The length of the element between joints J and K other than |O1A| 
 
 
Variables: 
 
Jk Point J's k coordinate. The points are A,B,C and S.  
 
 
2D case 
 
The topology of a 2D triad, which is the 2D equivalent of the 3D T-3 tensegrity prism, is 
shown in fig. 2.13, where the vertices A,B,C and the edges 1-6 correspond to the joints 
and the elements, respectively.  

 
Fig. 2.13 2D triad topology. 
 
 
 
This topology can be used to construct a 2D Tensegrity device by replacing edges 1, 3 
and 4 with cables and edges 2, 5 and 6 with struts, as shown in Figure 2.14. 
 

 
 
 
Fig. 2.14 Triad Tensegrity device. 
 
 
The tensegrity device's stiffness is maintained because it is in a singular configuration 
which allows self stress. 
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The triad singular position is characterized as follows: 
Triad is in a singular position IFF the continuations of the ground elements, those 
elements connected to the ground, intersect at the same point. 
 
For the triad tensegrity device appearing in Figure 2.14 it means that the continuation of 
elements 1, 2 and 3 should all intersect at the point s as shown in Figure 2.15. 
 

 
Fig. 2.15 Singular configuration of a triad Tensegrity device. 
 
 
 
Line (O1 A S) contains points O1, A and S which means that their projective geometry 
coordinates are linearly dependant and that the determinant of the matrix containing them 
equals zero. 
The same is true for lines (O2 B S) and (O3 C S) and is described by (2.1). 
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The following 5 geometric equations describe the lengths of elements 2 to 6: 

(2.2) 
2 2

2 2 2| 2 | | | ( ) ( )x x y yO B O B O B= = − + −  
2 2

3 3 3| 3 | | | ( ) ( )x x y yO C O C O C= = − + −  
2 2| 4 | | | ( ) ( )x x y yAB A B A B= = − + −  
2 2| 5 | | | ( ) ( )x x y yAC A C A C= = − + −  

2 2| 6 | | | ( ) ( )x x y yCB C B C B= = − + −  
 
By solving these 8 equations it is possible to calculate all eight variables (Ax, Ay, Bx, By, 
Cx, Cy, Sx and Sy). Once we have the value of the variables we can calculate the length of 
the force controlled element, in this case cable 1 (2.3). This can be done since the 
coordinates of O1 were constants and those of A were found by solving the above 
equations.   

(2.3) 
( ) ( )21

2
111 yyxx AOAOAO −+−==

 
 
Therefore it is shown that member 1's length is a function of the lengths of the other 
members, as long as the device is in a singular position.  
 
 
 
3D case 
 
The same method is used to prove the theorem for the 3D Triad. The topology of a 3D 
Triad, which is the T-3 tensegrity prism, is shown in figure 2.16: 
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Figure 2.16 - A tensegrity structure based on the 3D triad. 
 
 
The tensegrity structure's rigidity is maintained because it is in a singular configuration 
which allows the existence of a self stress. 
The singular configuration for a 3D triad is characterized as a geometry in which 3 planes 
∏1= (O1AO3), ∏2= (O1BO2) and ∏3= (O2CO3), each defined by a strut and a cable 
(figure 2.17), intersect the plane defined by the top plate (ABC) at a single point S (figure 
2.18). 
 

 
Figure 2.17 – The three planes ∏1, ∏2 and ∏3. 
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Fig. 2.18 A singular configuration of a T-3 tensegrity prism based device. 
 
 
The proof will show that the length of member O1A is a function of the lengths of the 
other members, but it is easy to see that the same proof can be used for any other 
member. 
 
The following 4 projective geometry equations describe the planes (ABCS) , (O1AO3S), 
(O1BO2S) and (O2CO3S): 

4) (2.
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1 1 1 1
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The following 8 geometric equations describe the lengths of lines 2 to 6: 

(2.5) 
 

2 2| | ( ) ( ) ( )x x y y z z
2AB A B A B A B= − + − + −  

2 2| | ( ) ( ) ( )x x y y z zBC B C B C B C= − + − + − 2  
2 2| | ( ) ( ) ( )x x y y z zAC A C A C A C= − + − + − 2  

2 2
2 2 2 2| | ( ) ( ) ( )x x y y z zO A O A O A O A= − + − + − 2  

2 2
1 1 1 1| | ( ) ( ) ( )x x y y z zO B O B O B O B= − + − + − 2  

2 2
2 2 2 2| | ( ) ( ) ( )x x y y z zO B O B O B O B= − + − + − 2  

2 2
2 2 2 2| | ( ) ( ) ( )x x y y z zO C O C O C O C= − + − + − 2  

2 2
3 3 3 3| | ( ) ( ) ( )x x y y z zO C O C O C O C= − + − + − 2  

 
By solving these 12 equations it is possible to calculate the 12 variables. 
Using the coordinates of O1x, O1y, O1z, Ax, Ay and Az it is possible to calculate the 
length of member O1A. 
 
Therefore it is shown that member 1's length is a function of the lengths of the other 
members, as long as the device is in a singular position, as stated in theorem 3.  
 

2.3 Implementation 
 
When all of the device's members  (referred to as the position controlled members) except 
one ground link (referred to as the force controlled member) are at any arbitrary lengths, 
the device can be placed in a singular position by setting the length of the one ground link 
to a specific length. It has been proved above for the device's Triad topology, but it is true 
for any tensegrity device whose topology is an Assur Graph. 
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Based on that, the following algorithm has been developed in which the position 
controlled members change their length from the starting length to their length in the new 
shape in some arbitrary fashion, while the force controlled ground link is actuated in a 
way that will make sure that its length is the required length for the device to be in a 
singular position. 
 
The algorithm's inputs are the lengths of the position controlled members and the force in 
the force controlled member; its outputs are the command signals to the actuators. 
 
The algorithm models the force controlled member as an elastic body and monitors the 
force in it to make sure it is in a length that is required for the singular configuration. 
 
Suppose that the device is in a singular position such that the force controlled member's 
length is L0 and it has a force of F0 in it. 
If the member's spring constant is K and its rest length is R0, equation 2.6 must be 
satisfied. 

 (2.6)  
L0=R0+F0/K 
 
Then there is a small change in the structure's shape such that the force controlled 
member must be at length L1 for the device to be in a singular position. If the rest length 
stays at R0 then the force controlled member will have a slightly different force F1. 

(2.7)  
L1=R0+F1/K 
 
If the shape continues to change and the rest length remains at R0 the force may either 
drop to zero (and self stress will be lost and the device will lose its stiffness) or the force 
may rise too much and the member or its actuator will fail. However, if the rest length 
will be changed to R1 so that (2.6) is satisfied, the force will return to F0 and self stress 
will be maintained. 

(2.8)  
L1=R1+F0/K 
 
Therefore as long as force is maintained at F0 (or close to it), the force controlled member 
will be at the required length to keep the device in a singular position. 
 
That means that we can make sure that the force controlled member is at the required 
length by monitoring its force rather than its length. In fact it is not even necessary to 
know what the required length is to assure the device's stiffness. 
 
Since we can change the force controlled member's rest length throughout the structure's 
movement so that the force in it is maintained, the device will have a singular shape at 
any given time and will maintain its stiffness throughout its movement. 
 
Based on this principle the following algorithm was developed: 
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1. Starting condition for the algorithm is that the device is in a singular 

configuration. 
 

2. Select a target shape for the device and extract from it the target member lengths. 
The target shape must be a singular configuration. 

 
3. Select the desired force in the force controlled member. Because when the device 

is in a singular configuration a single self stress exists in it, the forces in all of the 
other members will be proportional to the force in the force controlled member. 

 
4. Measure the current member lengths and calculate the length change required by 

each member to reach its target length by subtracting the current length from the 
desired length. 

 
5. Based on the required length changes and the device's actuators speed, set a target 

time for reaching the target shape. 
 

6. Generate a trajectory for each actuated member that starts with the current length 
and ends with required length at the target time. For the prototype device the 
generated trajectory was a sigmoid shaped curve that allowed the actuators to 
slowly accelerate from a rest to the desired speed and then gently decelerate until 
reaching a complete stop when the target time is reached. 

 
7. Select one of the actuated members to be the force controlled member. In the 

prototype cable number 1 was arbitrarily selected as the force controlled member. 
 

8. Activate the device's controllers in the following manner: 
 

The force controlled member's controller causes the force controlled member to 
maintain the desired force in it, thus assuring the device's stiffness. 
 
The position controlled members' controllers cause the members lengths to follow 
their defined trajectories, thus changing the device's shape into the desired one. 

 
9. Once the target time has been reached, the position controlled members should be 

at their target lengths and according to the theorem, so should the force controlled 
member. The device can now be either deactivated or moved into a new singular 
configuration. 

 
The advantage of this algorithm over most others is that it requires very little computation 
time. Only one singular configuration needs to be found (the target configuration), while 
most other algorithms require that many singular configurations be found, changing 
progressively from the starting configuration to the target configuration. 
 
 

 47



 

3. Experimental system 
 
A tensegrity device has been developed to study the feasibility of a tensegrity based robot 
(fig. 3.1). The purpose of the device is to change its shape with five degrees of freedom 
while maintaining stiffness at all times. The device has been used to test various 
hardware components, shape change algorithm and control strategies. 
 

 
 
Figure 3.1: Prototype device photo. 
 
 

3.1. Layout 
The device's topology is one of the most basic Assur Graphs, the 3D Triad (Fig 3.2). In 
this variation of the 3D triad each joint to the ground is overlapped by another joint, this 
topology is known as a T-3 tensegrity prism. It is constructed of a top triangle whose 
edges are under tension connected by three struts and three cables to the ground. 
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   (a)     (b) 
 
Figure 3.2: 3D Triad (a) generic form (b) T-3 tensegrity prism. 
 
In the prototype device the top triangle and the ground are equilateral triangles measuring 
460 mm per side. Each is made of an aluminum plate (instead of 3 cables) to allow 
mounting of sensors and actuators and carrying loads. The plates actually measure 
560mm per side but the strut connection points are spaced 460mm apart from each other. 
Also, because of technical limitations, the points where the cables are attached to the top 
and bottom plates are close to the points where the struts are attached, but they do not 
coincide. Therefore, the prototype device's topology is not identical to the T-3 prism's, 
rather a close approximation of it. 
 
The struts are electrically actuated cylinders with a compressed length of 472.5 mm and 
maximal extended length of 722.5 mm (Fig 3.3). The ends of each cylinder can twist in 
relation to one another. The cylinders are attached to the plates with double hinged joints 
similar to universal joints. The combination of a universal joint and the twist is equivalent 
to a spherical joint and gives the degree of freedom that the T-3 prism has (except for the 
trivial motion of each strut, the rotation around its own axis). The double hinged joints 
are in fact a quadruple hinged joint design that can be used to connect 2 struts to the plate 
at the same point, one to its upper side and another to its bottom side each with its own 
two independent degrees of freedom (fig 3.4). The purpose of this design is to allow 
several devices to be connected together to form a multi staged tensegrity mast (fig 3.5).  
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Figure 3.3: Cylinders - compressed (top) and extended (bottom). 
 
 

 
  a      b       c 
 
Figure 3.4: Quadruple hinged joint joint (a) mounted with one strut attached (b) showing 
degrees of freedom (c) disassembled. 
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Figure 3.5: Three-staged Class 2 mast prototype. 
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The cables are 1.5 mm in diameter steel braided cables, at one end fixed to a plate and at 
the other to a winch-like electric actuator which is connected to the other plate. The 
actuator can release and reel in the cable to vary it effective length. 
 
 
 
 
 
 

3.2. Control hardware 
Various electro mechanical components are used to change the shape of the mast (fig.3.6) 
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Figure 3.6: Device components block diagram. 
 
There are 2 types of actuators in the device, the struts which are commercially available 
electrical linear actuator and the bespoke winches that control the cables' lengths and 
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tensions (figure3.7). In the winch, the cable (A) around a drum (B) which is powered by a 
DC motor (C). It is routed through a system of three guidance pulleys (D) inside an 
aluminium case (E). The guidance pulleys are used to make sure that the cable always 
exits the winch from the same point, regardless of how much of it is coiled around the 
drum. 
 

B 

B

C 

A A 

D 

D D 

EE
C

 
   a       b  
  
 
Figure 3.7: Winch – photograph (a) and diagram (b). 
 
There are 3 types of sensors in the mast. Linear potentiometers are mounted on the struts 
and measure their strokes to calculate their lengths (fig 3.8a). 
Rotational potentiometers in the winches are used to measure the rotation of the drum 
allowing the cables' lengths calculation (fig 3.8b). 
Vishay 614 tension compression Load cells are mounted on the cables (fig 3.8a), are used 
in conjunction with signal amplifiers (fig 3.9) to measure the tension in the cables. 
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  a       b 
 
Figure 3.8: Sensors, (a left) load cell (a right) linear potentiometer (b) rotational 
potentiometer. 
 

 
Figure 3.9: Load cell signal amplifiers. 
 
 
All of the sensors' signals are passed through passive low pass filters to reduce high 
frequency noise (fig 3.10). The filters use a fixed capacitor (C=10μf) and an adjustable 
resistor (R=0-10 Kohm) to be able to select a cutoff frequency of 10 Hz. 
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 a     b 
 
Figure 3.10: Low pass filter (a) circuit diagram (b) two board each with three filters. 
 
Two National Instruments DAQ PCI cards are used to connect the device's sensors and 
actuators to a PC. The cards used here are NI PCI-6229 and  NI PCI-6722 National 
Instruments DAQ cards. The 2 cards contain 32 single-ended (or 16 differential) analog 
input channels with 16 bit resolution in the range of 10V± with a sample rate of 250 kS/s, 
12 analog output channels with a range of 10V± . Nine A/D channels are used to measure 
strut lengths, cable lengths and the cable tensions. Six D/A channels supply the control 
signals to six Advanced Motion Controls Brush Type PWM Servo Amplifiers (fig 3.11 
front) driving the struts and winch motors. The amplifiers are needed since the DAQ 
board cannot supply the voltage and the current required by the actuators. Two 24v 
power supplies are used, the high current power supply (fig 3.11 rear top) is for the 
actuators and the low current one (fig 3.11 rear bottom) is for the sensors. 
The numbers of channels on the cards and current capacity of the power supply will 
allow further extension of the device into a 2 staged class 2 mast. 
 
 

 
 
Figure 3.11: Power supplies (back) and power amplifiers (front). 
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A LabVIEW software package is used to operate the device and to log all of the sensor 
readings and control outputs to a file for offline analysis of experiment results. 
Before the program shuts down, it saves into a log file a table composed of the following 
columns: 
 
Column number Data 
0 Time stamp (s) 
1,2,3 Cable forces (Kgf) 
4,5,6 Cable lengths (cm) 
7,8,9 Strut lengths (cm) 
10,11,12 Top plate accelerations (g) 
13,14,5 Cables Setpoints (cm) 
16,17,18, Struts Setpoints (cm) 
19,20,21 Cable Control signals (v) 
22,23,24 Strut Control signals (v) 

 
The following page shows a flowchart describing the program's algorithm. 
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4. Experiments 

4.1. Outline 
 
Experiments were performed using the prototype device to achieve the following 
objectives: first to validate the proposed shape change algorithm; second to determine the 
controllers for the actuators that perform adequately regardless of the shape of the device; 
finally to check the sensitivity of the device to different operating conditions. 
In all of the experiments the device was moved through sequence of shapes (Fig 4.1). The 
sequence has been selected to contain both symmetric and asymmetric shapes, shapes 
changes which characterize both deployment and retraction and ones that require 
horizontal translation and angle change of the top platform. These diverse shapes 
represent the diverse workspace that the device is capable of. The selected shapes were 
chosen to be in self stress and that there was no contact between the struts.   
 
 
Table 4.1 Shape change sequence 
 

Top plate 
coordinates (cm) and 
angles (deg) 

Struts and cables lengths (cm) # Top plate 
position 

x y z α β S1 S2 S3 C1 C2 C3 
1 Symmetrical 

extended 
0 0 47 0 0 72 72 72 55.5 55.5 55.5

2 Symmetrical 
retracted 

0 0 22 0 0 57.5 57.5 57.5 33.5 33.5 33.5 

1 Symmetrical 
extended 

0 0 47 0 0 72 72 72 55.5 55.5 55.5

3 Translated 10 5 32 0 0 72 67 51 41 49 38 
4 Angled 5 0 34 0 30 56 61 68 54 32 38 
1 Symmetrical 

extended 
0 0 47 0 0 72 72 72 55.5 55.5 55.5
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 (a)        (b) 
 
 

  
   (c)        (d) 

 
Figure 4.1: Top plate position; Symmetrical extended (a), Symmetrical retracted (b), 
translated (c), angled (d) 
 
 
 

4.2. Algorithm validation experiment. 
In order to validate the proposed shape change algorithm the device is moved through the 
shape change sequence. The algorithm should allow the device to change its shape 
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without loosing its stiffness at any time; therefore the tension in each cable must be 
positive at all times. The controllers used in this experiment were all the most basic 
Proportional-Integral-Derivative (PID) controllers (fig 4.2) with only a proportional (P) 
components and minimal trial and error tuning done to select gains. The selected gains 
were Kf=1 for the cable force controller, Kcp=1 for the cable position controller and 
Ksp=10 for the strut position controller. 
 
 
 
 
 

 
 
Figure 4.2: PID controller block diagram. 
 
 
 
As the result graphs shows (Fig4.3), the force in each cable was always greater than zero 
during the shape change sequence which means that the device did not loose its stiffness 
at any time.  
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Figure 4.3- Algorithm validation experiment results – forces in force controlled cable (a) 
and position controlled cables (b,c) 
 

4.3. Controller evaluation experiments. 
The first experiment showed that it is possible to change the shape of the device without 
loosing stiffness by utilizing the proposed algorithm; however, using proportional 
controllers with minimal gain tuning resulted with a rough and jerky movement with a lot 
of vibrations as indicated by in the log file. Another issue was the actuators lack in 
accuracy in tracking their defined trajectories. The object of this series of experiments is 
to locate controllers and gains for the device that allow for smooth and accurate shape 
changes. 
 
The device uses three different controllers; a cable force controller for the force 
controlled cable, a cable position controller for the two position controlled cables and a 
strut position controller for the three position controlled struts. Each controller was 
investigated by a separate series of experiments. 
 
4.3.1 Cable force controller evaluation experiments. 
The first goal of the cable force controller is to maintain tension in the force controlled 
cable at all time in order to preserve the rigidity of the device. The second goal is to keep 
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fluctuation in the tension to a minimum. Experiments have shown that there is a 
correlation between fluctuation in tension cable and visible vibrations in the device. The 
reason being that large force fluctuation causes the top plate to loose its static equilibrium 
and the resulting accelerations manifest as vibrations.  
The desired tension in the force controlled cable was set to 10 kgf and the effectiveness 
of each controller was quantified by averaging the absolute values of the tracking errors. 
 
The experiment was composed of a series of runs, in each run the device was moved 
through the shape change sequence and the average tracking error size recorded. The 
controller was then changed and a new run conducted. This process was repeated until 
the average tracking error size could not be significantly reduced. 
 
The first controller that was tested was a constant current controller. Constant current fed 
to a motor gives constant torque. The experiment showed that constant motor torque did 
not translate to a constant tension in the cable because some of the torque is used to 
accelerate the mass of the cable and the top plate. At the acceleration rate required to 
move the device in the timeframe of the experiments, this controller gave poor results 
regardless of the current used. The second control tried was a PID controller, at first only 
with a proportional part and various gains and later with proportional and integral parts 
and different gains and integration times. 
The controller that gave the smallest average tracking error size (0.72 kgf) used a 
proportional gain of 0.7 and an integration time of 0.02s. 
The results of all of the runs are summarized in table 4.2. The cable 1 response graphs of 
the worst and best run are displayed in figure 4.4. 
 
 
Table 4.2 Cable force controller experiment results. 
Run Cable force control Parameters Average 

tracking error  
1 Constant current I=0.92 A 66.7% 
2 Constant current I=0.66 A 43.8% 
3 Constant current I=0.53 A 37% 
4 Constant current I=0.37 A 34.5% 
5 Proportional K=0.4 36.4% 
6 Proportional K=0.6 28.9% 
7 Proportional K=0.8 23.9% 
8 Proportional K=1 21.9% 
9 Proportional K=0.7 25.7% 
10 Proportional integral K=0.8 Ti=1 14.3% 
11 Proportional integral K=0.8 Ti=2 12.9% 
12 Proportional integral K=0.8 Ti=0.5 10.7% 
13 Proportional integral K=0.4 Ti=0.3 17.2% 
14 Proportional integral K=0.4 Ti=3 28.8% 
15 Proportional integral K=0.4 Ti=0.05 11.4% 
16 Proportional integral K=0.6 Ti=0.05 8.8% 
17 Proportional integral K=0.8 Ti=0.05 7.7% 
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18 Proportional integral K=0.6 Ti=0.04 8% 
19 Proportional integral K=0.6 Ti=0.03 7.8% 
20 Proportional integral K=0.7 Ti=0.03 7.4% 
21 Proportional integral K=0.7 Ti=0.02 7.2% 
 

Cable 1

0

5

10

15

20

25

30

35

0 20 40 60 80 100

Time (sec)

Fo
rc

e 
(k

gf
)

 
(a) 

 
Cable 1

0

5

10

15

20

25

30

35

0 20 40 60 80 100

Time (sec)

Fo
rc

e 
(k

gf
)

 
(b) 

 
Figure 4.4: Force in force controlled cable for run 1 (a) and run 21 (b). 
 
 
4.3.2 Cable position controller evaluation experiments. 
The objective of the cable position controller is to follow the length change trajectory 
assigned to it to allow the device to accurately accomplish the shape change. For each 
cable a trajectory was calculated to accomplish that all the cables will reach their final 
length at the same time, while not exceeding the maximum cable velocity starting with a 
gradual acceleration and ending with gradual deceleration. The effectiveness of the 
controller was quantified by averaging the absolute values of the tracking errors. An 
experimental method for adjusting the controllers was used because the lack of a closed 
system model.  
 
The experiment was composed of a series of runs, in each run the device was moved 
through the shape change sequence and the average tracking error size recorded. The 
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force controlled cable's tracking error size (using the same 10 kgf target) was also 
recorded to make sure improvements in the position control did not come at the expanse 
of deterioration in the force control. The controller was then changed and a new run 
conducted. This process was repeated until the average tracking error size could not be 
significantly reduced. 
 
Various PID controllers were tried, at first only in a proportional configuration and 
various gains and later with proportional-derivative and proportional-integral 
configurations and different gains and integration times. 
The best controller gave an average tracking error size of 0.1 cm (when the length range 
was between 32cm and 55.5cm. It used a proportional gain of 1 and an integration time of 
0.01s. 
The results of all of the runs are summarized in table 4.3. The cable 2 graphs for the 
trajectory and errors of the worst and best run are displayed in figure 4.5. 
 
 
Table 4.3: Cable position controller experiment results. 
 
Run Cable position 

control 
Parameters Tracking error 

average size (cm) 
Force tracking 
error 

1 Proportional K=2 0.3 7.7% 
2 Proportional K=3 0.2 8.5% 
3 Proportional K=4 0.16 9.3% 
4 Proportional K=6 0.25 25.8% 
5 Proportional K=5 0.17 17.6% 
6 Proportional K=3.5 0.17 9.5% 
7 Proportional K=4.5 0.15 11.8% 
8 PD Kp=4.5 Kd=0.001 0.17 9% 
9 PD Kp=4.5 Kd=0.0005 0.15 10% 
10 PD Kp=4.5 Kd=0.0001 0.15 10.9% 
11 PI K=4.5 Ti=1 0.14 11.2% 
12 PI K=4.5 Ti=0.1 0.12 11.7% 
13 PI K=3.5 Ti=0.05 0.12 11.8% 
14 PD Kp=3.5 Kd=0.001 0.19 8.3% 
15 PI K=2 Ti=0.05 0.12 7.8% 
16 PI K=1 Ti=0.05 0.19 6.8% 
17 PI K=1.5 Ti=0.05 0.15 7.3% 
18 PI K=1 Ti=0.01 0.10 7.3% 
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Figure 4.5: Cable 2 graphs - trajectory (a), run 1 tracking errors (b) and run 18 tracking 
errors (c). 
 
 
 
 
4.3.3 Strut position controller evaluation experiments. 
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The objective of the strut position controller is to follow the length change trajectory 
assigned to it to allow the device to accurately accomplish the shape change (the same 
principal as for the cable trajectory). The effectiveness of the controller was quantified by 
averaging the absolute values of the trajectory tracking errors. 
 
The experiment was composed of a series of runs, in each run the device was moved 
through the shape change sequence and the average tracking error size recorded. The 
force controlled cable's tracking error size (using the same 10 kgf target) was also 
recorded to make sure improvements in the position control don't come at the expanse of 
deterioration in the force control. The controller was then changed and a new run 
conducted. This process was repeated until the average tracking error size could not be 
significantly reduced. 
 
Various PID controllers were tried, at first only in a proportional configuration and 
various gains and later in a proportional-integral configuration and different gains and 
integration times. 
The best controller gave an average tracking error size of 0.12 cm (when the length range 
was between 56cm and 72cm) without effecting force tracking performance. It used a 
proportional gain of 18 and an integration time of 5s. 
The results of all of the runs are summarized in table 4.4. 
 
Table 4.4: Strut position controller experiment results. 
 
Run Strut position 

control 
Parameters Tracking error 

average size (cm) 
Force tracking 
error 

1 Proportional K=4 0.57 7.3% 
2 Proportional K=6 0.37 7.3% 
3 Proportional K=9 0.25 7.3% 
4 Proportional K=14 0.16 7.3% 
5 Proportional K=21 0.11 8.3% 
6 Proportional K=18 0.12 7.3% 
7 Proportional K=16 0.14 7.9% 
8 PI K=10 Ti=0.1 0.16 7.9% 
9 PI K=10 Ti=1 0.21 7.4% 
10 PI K=18 Ti=5 0.12 7.4% 
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Figure 4.6: Strut 1 graphs - trajectory (a), run 1 tracking errors (b) and run 10 tracking 
errors (c). 
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4.4. Sensitivity evaluation experiments. 
 
After selecting controllers that allow the device to shape change in an accurate manner 
and with minimal vibrations further experiments were performed to determine the effect 
of changing conditions on the performance of the device. 
 
All experiment was composed of a series of runs; in each run the device was moved 
through the shape change sequence the all average tracking error sizes recorded to 
measure the effect on the performance of the device. The parameter was then changed 
and a new run conducted several times. 
 
Three parameters were varied in the course of the experiments load, pre-stress and speed. 
The controllers were calibrated in the previous experiments with no load, 10 kgf pre-
stress and maximal speed. 
 
Loads 
Concrete blocks of different weights of up to 7 kg have been attached to the top platform 
to create a load. The device showed a small deterioration in performance with the 
increased load as seen in table 4.5. 
 
Table 4.6: Load experiment results. 
 
Run Load (kg) Strut tracking error 

average size (cm) 
Cable tracking error 
average size (cm) 

Force tracking 
error 

1 0 0.12 0.1 7.2% 
2 1.5 0.12 0.1 8% 
3 5.5 0.12 0.1 7.5% 
4 7 0.12 0.1 7.5% 
 
 
 
Pre-stress 
The force controlled cable's was set to a different pre-stress target between 7.5 kgf and 15 
kgf for each run. As the set pre-stress level was increased, the device showed an 
improvement in force tracking with a small worsening in strut position tracking, as seen 
in table 4.7. 
 
Table 4.7: Pre-stress experiment results. 
 
Run Pre-stress (kgf) Strut tracking error 

average size (cm) 
Cable tracking error 
average size (cm) 

Force tracking 
error 

1 7.5 0.12 0.1 8.4% 
2 10  0.12 0.1 7.2% 
3 12.5  0.13 0.1 7.2% 
4 15 0.13 0.1 6.6% 
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Speed 
The maximal shape changing speed of the device is limited by the struts' maximal length 
change rate of 10 mm/sec. The trajectories for each run have been set using different strut 
length change rate to achieve different shape change speed. The device showed 
improvement in performance with speed reduction as seen in Table 4.8. 
Table 4.8: Speed experiment results. 
 
Run Speed Strut tracking error 

average size (cm) 
Cable tracking error 
average size (cm) 

Force tracking 
error 

1 100% 0.12 0.1 7.2% 
2 75% 0.1 0.09 7.1% 
3 50% 0.07 0.08 6.7% 
 
 
Examination of the sensitivity experiments' results shows that the force tracking has some 
sensitivity to changing condition with a swing of 0.32 kgf between the best and worst 
cases tested, while the position tracking was almost insensitive with a swing of only 0.06  
cm between the best and worst cases tested. 
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5. Conclusions 
This work introduces a new approach for the shape change process of tensegrity 
structures. This approach allows each actuator to be controlled individually as opposed to 
the common approach that requires coordinated control of all actuators. It is based on the 
topological properties of the structure and requires minimal time and processing power. 
 
The approach has been proven both theoretically and experimentally to allow the shape 
change of a tensegrity device based on the topology of a T-3 tensegrity prism. It is also 
applicable to any topology which is an Assur Graph. 
 
The shape change process of the tensegrity device proved to be flexible and robust, i.e., it 
maintained a good level of performance regardless of the operation requirements such as 
target position, load, pre-stress and speed. 
 
An area to explore is the behavior of devices with more degrees of freedom. The 
additional degrees of freedom can come either from using the same topology with more 
actuated members, two or more instances of the current topology connected in series or 
from a different and more complex topology.  
At this time research is underway to develop a caterpillar-like tensegrity device 
composed of multiple Triad stages (Figure 5.1) 
 

 
Figure 5.1 – Multiple Triad device proposal. 
 
Another direction being considered is tensegrity devices with the ability to change not 
only their geometry but also their topology, changing it from one Assur Graph to another.
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  תקציר
  

מתקני טנזגריטי הם מבנים מיוחדים דמויי מסבך המורכבים ממוטות הנתונים במאמצי לחיצה וכבלים הנתונים 

מתקן טנזגריטי מסוגל לשנות . יהיה קשיח כאשר על כל מרכיביו יופעל מאמץמתקן טנזגריטי . במאמצי מתיחה

מתקני , בגלל יכולת זו. את הגאומטריה שלו בעזרת שימוש במפעילים המשנים את אורכי המוטות והכבלים

  .מבנים חכמים ורובוטים, טנזגריטי מתאימים לשמש כבסיס למבנים נפרשים

זיהוי ( מציאת הצורה  הואשלב ראשון. חשוביםשני שלבים כולל  שינוי הגאומטריה של מתקני טנזגריטי

המעבר בין שתי (השלב השני הוא שינוי הצורה ). הגיאומטריות בהן על כל מרכיבי המתקן פועל מאמץ

השיטות הידועות כיום מבוססות על תהליכים הדושים כח ). גאומטריות אפשריות ללא אובדן קשיחות המתקן

  . סימולציות ואופטימיזציות בקנה מידה גדולמחשוב וזמן רבים כמו

מבני אסור . עבודה זו מציגה אסטרטגית שינוי צורה חדשה המבוססת על התכונות המיוחדות של מבני אסור

)Assur Graphs (  הידועים מזה זמן רב בתחום הקינמטיקה נחקרו בתקופה האחרונה על ידי מתמטיקאים

 הינה אסטרטגיה החדשהה. פיתחו משפתים ואלגוריתמים חדשים בתחוםהעוסקים בתאוריית הקשיחות ש

ניתן להפעיל את האסטרטגיה על כל מתקן שהטופולוגיה שלו היא אחת . מהירה ואינה דורשת כח מחשוב רב

  .מאינסוף גרפי אסור

  

צורה שינוי ה. אלגוריתם שינוי הצורה שפותח מאפשר למתקן לעבור מצורה לצורה מבלי לאבד את קשיחותו

בעזרת האלגוריתם חלק מן האלמנטים משנים את אורכם . מבוצע על ידי שינוי אורכי האלמנטים של המבנה

בזמן שאלמט אחד בלבד נשלט בצורה שתבטיח את קשיחות , בצורה שרירותית כדי להגיע לצורה הסופית

  .המתקן

  

ניסויים . מטרת ביצוע ניסוייםהשיטה פותחה ונבדקה בעזרת אב טיפוס של מתקן טנזגריטי שתוכנן ונבנה ל

  .באב הטיפוס הראו שהשיטה החדשה מאפשרת למתקן לשנות את צורתו
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