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Abstract
Caterpillars are soft-bodied animals. They have a relatively simple nervous system, and yet are
capable of exhibiting complex movement. This paper presents a 2D caterpillar simulation
which mimics caterpillar locomotion using Assur tensegrity structures. Tensegrity structures
are structures composed of a set of elements always under compression and a set of elements
always under tension. Assur tensegrities are a novel sub-group of tensegrity structures. In the
model, each caterpillar segment is represented by a 2D Assur tensegrity structure called a
triad. The mechanical structure and the control scheme of the model are inspired by the
biological caterpillar. The unique engineering properties of Assur tensegrity structures,
together with the suggested control scheme, provide the model with a controllable degree of
softness—each segment can be either soft or rigid. The model exhibits several characteristics
which are analogous to those of the biological caterpillar. One such characteristic is that the
internal pressure of the caterpillar is not a function of its size. During growth, body mass is
increased 10 000-fold, while internal pressure remains constant. In the same way, the model is
able to maintain near constant internal forces regardless of size. The research also suggests
that caterpillars do not invest considerably more energy while crawling than while resting.

(Some figures may appear in colour only in the online journal)

1. Introduction

Insect locomotion is a constant source of inspiration to
engineers interested in the improvement of robot mobility,
allowing complex yet smooth movements [1, 2]. Most bio-
mechanical research on insects (as well as in general) tends
to focus on legged locomotion [3]. A particularly challenging
model of insect locomotion is that of large moth and butterfly
caterpillars. Although relatively slow, soft-bodied caterpillars
exhibit an astonishingly efficient gait and excellent rough-
terrain mobility.

Beyond the obvious challenges facing locomotion in all
animals, including traveling across varied terrains, overcoming
different environmental perturbations and more, soft-bodied
animals must overcome further hurdles related to the
generation and control of locomotion. The first relates to the
absence of rigid articulation. Caterpillars, like many living

animals, do not have hard skeletons. Instead, they use a
hydrostatic skeleton [4]: fluid and tissue pressure stiffens the
body, allowing muscles to do useful work. As a result, the
contraction of any one muscle affects all the rest, either by
altering their length or their tension, which presents major
challenges to the control system. A related need is maintaining
and controlling the appropriate body rigidity throughout
ontogeny, as the body size and mass increase [5]. But body
rigidity must be carefully controlled, also at shorter timescales,
through a changing environment and through changes in body
proportions while locomoting.

The basic mode of caterpillar locomotion is crawling.
A detailed description of the motor patterns and kinematics
of caterpillar crawling was recently presented by Trimmer
and colleagues [6]. In brief, crawling is based on a wave
of muscular contractions that starts at the posterior end and
progresses forward to the anterior. Anatomically, crawling is
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achieved by muscles attached to invaginations on the inside
surface of a soft and flexible body wall. Crawling is aided by
three pairs of short, jointed, thoracic legs (with a single claw
at the tip) and three to five pairs of abdominal prolegs (fleshy
protuberances ending in a series of hooks called crochets). The
basic timing and patterning of the rhythmic motor pattern is
assumed to be generated and controlled by a central pattern
generating (CPG) network [7].

Several attempts have been made to build or simulate
robots that mimic the caterpillar crawl. Wang et al [8] built
a prototype robot which is assembled using two types of
modules: joint actuation modules and adhesion modules.
Another model was introduced by Stulce [9], who developed
a computer simulation of a multibody robot with passive
legs attached to it. The robot was assembled using a series
of actuated Stewart-platforms (parallel manipulators with six
linear actuators) connecting the bodies. In both cases, the
caterpillar segments are built of rigid elements, in contrast
to the soft-bodied real animal.

Trimmer et al [10] developed a caterpillar model using
soft and deformable materials. However, the immense gain
in flexibility and deformability brings with it considerable
control complexity. Soft- bodied robots can possess near-
infinite degrees of freedom (DOFs), and the dynamics of these
systems call for the complex development of conventional
control schemes. Nevertheless, the biological caterpillar can
maneuver its soft body with a relatively simple nervous
system [11].

Here, we present a caterpillar model that can control
its degree of softness using a novel combination of a
tensegrity structure in a special topology called an Assur graph
and a variant of impedance control. Relying on these two
foundations and using the biological caterpillar as a source of
inspiration, we simulate the requisite softness while retaining
simplicity.

1.1. Tensegrity robots

The word ‘tensegrity’ is a contraction of ‘tensional integrity’
and was coined by Richard Buckminster Fuller [12].
Tensegrity systems gain mechanical stability by maintaining
a pre-equilibrated state using two types of elements: elements
that are always tensioned (cables) and elements that are always
compressed (struts). This pre-equilibrated state, in which
the internal forces (compression and tension) stabilize the
structure, is termed pre-stress.

The principles of tensegrity can be found at essentially
every scale in nature. At the macroscopic level, the skeleton
of vertebrates is compressed and stabilized by the pull
of tensile muscles, tendons and ligaments. At the cellular
level, the cytoskeleton provides a good example: contractile
microfilaments provide tensile forces while microtubules
provide the opposing compression. At the lower end of the
scale, proteins and other key molecules in the body also
stabilize themselves through the principles of tensegrity [13].

Although tensegrity structures are, by definition, static
structures, they can be employed in robotic motion. Movement
is achieved by changing the lengths of some of the tensegrity

elements, which in turn causes the shape of the robot to
be altered. One of the major challenges in the design of
such robots is the maintenance of pre-stress forces during
motion, which is necessary to preserve structural stability.
Many models of tensegrity robots can be found in the literature.
Two representative examples are given below.

Rieffel et al [14] built a 15-strut tensegrity simulation
with a high degree of dynamic coupling and complexity. In
this model only the cables are actuated; the struts remain at the
same length. The advantage of this strategy is that the stability
of the robot is guaranteed since the actuators always increase
the pre-stress forces. On the other hand, because strut length
remains constant, the robot demonstrates only limited shape
change.

A different strategy was introduced by Sultan and
Skeleton [15]. They developed a shape change algorithm
based on an equilibrium manifold: a pre-defined set
of points corresponding to stable, pre-stressed, tensegrity
configurations. The idea is to execute motion such that
the motion path is close to the manifold. The advantage
in doing so is that the successive configurations through
which the structure passes are not much different from
the equilibrium ones; hence, stability is maintained. Their
paper demonstrates this method for a 6-bar tensegrity robot
that moves only in a particular set of configurations called
symmetrical configurations. In this type of motion, only three
independent parameters are needed to describe the robot’s
position. When asymmetrical shapes are considered, there are
many independent parameters and the equilibrium manifold
becomes too large.

This paper presents a different approach for controlling
the shape change of tensegrity robots, which is described in
the following section.

2. Underlying mechanical principles

Engineering systems can be generally categorized into
three groups: over-constrained, well-constrained and under-
constrained. In computer-aided design (CAD) systems, for
example, when too many dimensions are provided, the model
is over-constrained because of redundancy. If insufficient
measures are provided, the model cannot be produced and
is under-constrained. Only when we provide the minimum
dimensions required to produce the model do we have well-
constrained data [16].

The same categorization can be similarly applied to
mechanical systems, including structures, mechanisms, robots,
etc. Suppose we have a two-dimensional structure4 with a
number of joints j. If the number of rods is 2 j it is possible
to calculate all the forces on all the rods using only force
equilibrium around each joint. This is a well-constrained
system called a statically determinate structure. When the
number of rods exceeds 2 j, there is redundancy, and the
analysis is much more complicated. Furthermore, analysis

4 We have used the word ‘structure’ throughout this section to avoid
unnecessary technical terminology. The particular type of structure we refer to
is known in mechanical engineering as a truss. A truss is a structure composed
of rods which are connected only at their ends.
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(c)(b)(a)

Figure 1. Classification of structures: (a) a statically indeterminate
structure, (b) a statically determinate structure and (c) a mechanism.

requires consideration of additional parameters such as the
material of the rods. This type of structure is called a statically
indeterminate structure. Finally, structures having fewer than
2 j rods are under-constrained. These structures cannot sustain
external force and are thus mobile [17]. Examples of these
three types of structures appear in figure 1.

The main novelty proposed by our tensegrity model
in relation to others is that our model consists of well-
constrained, statically determinate, tensegrity structures rather
than indeterminate structures (as in [14]). Our work is based
on one of the essential properties of determinate structures:
changing the length of a single rod changes the shape of
the structure (although this does not imply that all the
rods in the structure are necessarily affected). Indeterminate
tensegrity structures present much greater complexity when
trying to produce desired shape change. On the other hand,
only indeterminate structures can bear pre-stress forces in
almost any configuration (which are essential in tensegrity
structures). The use of determinate structures eases control and
computational analysis, but, in general, determinate structures
cannot bear pre-stress forces and therefore cannot be tensegrity
structures.

To overcome the latter problem, a special type of
determinate structure called an Assur structure was chosen.
Assur structures originate from the work of Assur [18], who
developed a method for decomposing any mechanism into
primitive building blocks (called Assur groups), which are
determinate structures. It should be noted that there are an

infinite number of Assur structures, but all of them exhibit
certain similar properties [19, 20]. One of the main properties
of an Assur structure is that removal of any rod results in
a mechanism composed of all other rods. In other words,
changing the length of any rod will result in the motion of
all remaining rods. For example, the structure in figure 2(a) is
not an Assur Structure. Removing rods 1 or 2 still leaves rods
3 and 4 immobile. On the other hand, figure 2(b) depicts an
Assur structure (called a triad in this paper). Removing any
rod results in a mechanism of all five remaining rods.

We now move to the final physical property that underlies
our model. As mentioned above, our decision to use tensegrity
structures requires inner pre-stress. To attain pre-stress, a
property unique to Assur structures is employed. In 2010,
it was proved that every Assur structure can assume a special
configuration (called singularity) in which pre-stress is present
in all the elements [21]. For the triad used in the proposed
model, singularity is obtained when the continuations of the
three ground legs intersect at a single point as illustrated in
figure 3(b).

Based on the above, the physical model is as follows. An
Assur structure in a singular configuration is employed—in
this case a triad. The structure can sustain pre-stress forces
and therefore can turn into tensegrity structure: tensioned rods
are replaced with cables and compressed rods are replaced
with struts. This kind of structure is called an Assur tensegrity
structure, depicted in figure 3(c).

3. Caterpillar robot modeling

The biological caterpillar has complex musculature. Each
abdominal body segment includes around 70 discrete muscles,
most of which are contained entirely within the body segment.
The major abdominal muscles in each segment are the ventral
longitudinal muscle (VL1) and the dorsal longitudinal muscle
(DL1) as illustrated in figure 4. The VL1 muscle is not a
single muscle that extends the entire length of the caterpillar

(a)

(b)

Figure 2. Example of two different types of determinate structures: (a) a truss that is not of Assur type and (b) an Assur truss called a triad.

3



Bioinspir. Biomim. 7 (2012) 046006 O Orki et al
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Cable

Rod

)a( )b( )c(

Figure 3. Different configurations of a triad: (a) a triad in general configuration, (b) a triad in singular configuration and (c) an Assur
tensegrity triad.

Figure 4. The caterpillar body and its main longitudinal muscles.

(a)

(b)

Figure 5. Proposed mechanical caterpillar model: (a) comparison between the standard triad, the model segment and the biological
caterpillar segment, and (b) the complete caterpillar mechanical model.

body. Rather, each segment has its own distinct VL1 muscle,
which is controlled separately. The same is true for the DL1
muscle (and virtually all other caterpillar muscles). Each
VL1 and DL1 muscle is attached to the sternal and tergal
antecosta, respectively (the antecostae are stiff ridges formed
at the primary segmental line and provide a surface for
the attachment of muscles) [22].

Caterpillars have a relatively simple nervous system. Yet,
despite their limited control resources, caterpillars are still
able to coordinate hundreds of muscles in order to perform
a variety of complex movements. It has been argued that the
mechanical properties of the muscles allow them to assume
some of the control tasks that would otherwise be performed
by the nervous system [11].

The caterpillar model presented here is a 2D model and
therefore allows only planar locomotion. Each segment of
the biological caterpillar is represented in the model by a
planar tensegrity triad consisting of two cables and a strut

which connects two bars. Note that compared to the standard
tensegrity triad shown in figure 3(c), the model triad has a
few modifications that were made to simplify the model and
to enable direct connection between segments: the model,
i.e. the triad is rotated 90◦; the top triangle (two struts and
a cable) is replaced with an un-actuated rigid bar and the
ground supports are replaced by another bar (figure 5(a)).
The whole caterpillar model consists of several such segments
connected in succession, with legs connected to the bottom
of each bar (figure 5(b)). The structure of the model segment
is inspired by the biological caterpillar. The cables assume
the role of the two major longitudinal muscles: the upper
cable represents DL1 while the lower cable represents VL1.
The strut, which is always subjected to compression forces,
represents the hydrostatic skeleton (figure 5(a)). Also, legs
are not used as propulsive limbs; rather, they are used
for support and grip, similar to the biological caterpillar
prolegs [23].
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Figure 6. Control scheme: high-level and low-level controls and
corresponding caterpillar functions.

4. Control algorithm

The control scheme of the caterpillar model is also inspired
by the biological caterpillar and is divided into two levels:
high-level control and low-level control.

Low-level control is inspired by the mechanical
characteristics of the caterpillar. It is composed of localized
controllers for each of the strut, cable and leg elements.
Each controller is independent of all the others: the controller
output of an element is calculated using only the inputs of that
specific element. The strut controllers simulate the internal
pressure of the hydrostatic skeleton, the cable controllers
simulate the elastic behavior of the muscles and the leg
controllers simulate leg behavior.

High-level control simulates the function of the nervous
system. The role of the high-level control unit is to
deliver commands to the cable and leg controllers in order
to coordinate motion. Just as the internal pressure of the
caterpillar is not directly controlled by the nervous system,
struts are not driven by high-level control.

High-level control is also divided into two levels: levels 1
and 2. Level 1 is the central control unit and is inspired by the
caterpillar’s central pattern generator (CPG) for locomotion.
Its role is to control the timing of movements and to activate
the relevant cables and legs. Level 2 control mediates between
level 1 control and the cable controllers of each segment,
adjusting level 1 control for each segment according to
terrain. Segment control is thus local as inspired by caterpillar
segmental ganglia. An essential property of high-level control
is that the coordination of locomotion is triggered by the
contact of the legs with the ground. Figure 6 summarizes the
control hierarchy.

Because the details of high-level control are not essential
to understand the concept of structural softness, this paper will
focus on low-level control. More details on high-level control
appear in [24].

4.1. Low-level control

In general, robot degrees of freedom (DOFs) can be controlled
by one of two control types: motion control or force control. In
motion control the controlled variables are kinematic (position,
velocity and acceleration); in force control the controlled

variable is the force the robot exerts on the environment.
Motion control is useful for many industrial applications
because of its high accuracy: each joint position is calculated
and monitored at each point in time [25]. Nevertheless, this
type of control is not well fitted to the nature of soft robotics.
Soft robots deform by external and internal forces, which
makes it very difficult to control the exact motion parameters
of the robot’s DOFs at each point in time. The more suitable
type of control for soft robots is force control.

In our model, cables and struts employ a force control
scheme based on impedance control [26]. The general control
law for the low-level controllers is

Fout = F0 + k(l − l0) − bv. (1)

The output force Fout is a sum of three terms: F0 is a constant
and initial force which has the role of maintaining the pre-
stress forces inside the tensegrity segments. F0 is negative for
cables (tension forces) and positive for struts (compression
forces). The term k(l−l0) is the static (or elastic) relationship
between the output force and length, also known as stiffness.
This term causes spring-like behavior: when the element length
increases, the output force is also increased and vice versa.
The degree of stiffness is controlled by changing the stiffness
coefficient (k). Finally, bv is the relationship between the output
force and velocity. It functions as a damper in order to avoid
fluctuations and to moderate element reaction time. (It may
also be thought of in terms of viscosity.)

This principal control law is implemented differently in
struts and cables as explained below.

4.1.1. Control of cables. As mentioned above, cables
simulate the function of caterpillar muscles. Biological
caterpillar muscles have a large, nonlinear, deformation range
and display viscoelastic behavior [11].

If all controller parameters (F0, k, l0 and b) remain
constant, the model will remain in steady state and will not
move. Cable behavior is controlled by input signals from high-
level control to cable controllers (which we call a high-level
command).

As high-level control simulates the nervous system and
cables simulate muscles, the high-level command simulates
nerve stimulation. The ‘command’ input receives values
between 0 and 1. A command value of 0 indicates that the
cable should be ‘relaxed’ (i.e. a low value of k and a high
value of l0). A command value of 1 indicates that the cable
should be ‘tightened’ (i.e. a high value of k and a low value of
l0). Intermediate values indicate intermediate behavior.

A low-pass (LP) filter is placed between the command and
the cable controller. This LP filter slows down cable reaction,
which simulates the slow reaction of the caterpillar muscle.
Figure 7 summarizes the characteristics of the cable controller.

4.1.2. Control of struts. Struts have simpler behavior than
cables. As mentioned above, struts simulate the internal
pressure of the hydrostatic skeleton. In the biological
caterpillar, the internal pressure is not isobarometric and the
fluid pressure changes do not correlate well with movement
[11]. For simplicity, our model assumes nearly constant

5



Bioinspir. Biomim. 7 (2012) 046006 O Orki et al

So
ft

 a
nd

 r
el

ax
ed

 c
ab

le

S
tiff and tightened cable

Command
values

(b)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Cable
controller

Low pass 
filter

High level 
input command

(a)

Sensor input Force output

Figure 7. The cable controller: (a) high-level command is passed
through a low-pass (LP) filter, and (b) command values between 0
and 1 control cable behavior.

pressure. The stiffness coefficient (k) is set to zero, and the
control law for struts is reduced to Fout = F0 − bv with
positive values of F0 (compression force). Strut parameters
stay constant during locomotion and are not driven by high-
level control.

4.1.3. Control of legs. Legs are not part of the tensegrity triad
and are not impedance controlled. In our model, legs have only
two positions: lifted and lowered. The transition between these
positions is controlled by a simple motion controller. When a
leg touches the ground it is ‘planted’ and cannot be lifted
until the next stride. This behavior is, again, modeled after the
biological caterpillar [23].

5. Results

The biological descriptions of this section pertain to the
Manduca sexta species of caterpillar in its fifth instar (the
last developmental stage before it becomes a pupa). In this
stage, the caterpillar weights about 2 g and its dimensions
are about 60 mm in length and 5 mm in height [5]. When
divided into 11 segments (3 thoracic + 8 abdominal, neglecting
the small head), each segment weights about 0.18 g with an
average length of around 5.5 mm. While our model maintains
consistency with the height and weight of the biological
caterpillar, there is considerable discrepancy in the segment
length which will be discussed below.

The model was constructed using MATLAB R© Simulink
and SimMechanics, and simulations include full dynamics.

Table 1. Time of force development under a tetanic stimulus at a
resting length.

Caterpillar muscle (s) Model cable (s)

50% of peak force 0.27 0.26
80% of peak force 0.41 0.56

Results are divided into kinematic results (which deal with
lengths and velocities) and dynamic results (which deal with
internal forces inside the model). In addition, sharp-incline
crawling is illustrated, and the effect of internal force is
discussed.

5.1. Kinematic results

In order for effective locomotion to occur, the model’s stride
is divided into three phases as shown in figure 8. In the first
phase, the three posterior segments of the caterpillar are lifted
and shrunken. This phase ends when the most posterior leg
is lowered and touches the ground. In the second phase, the
crawling wave passes through the body. In the third and final
phase, the three anterior segments are lifted and expanded one
after the other.

The simulation is programmed such that the next stride
begins before the previous one is completed (once the stride
reaches the position shown in image 3b of figure 8). For clarity,
the figure does not show the beginning of the next stride.

When crawling, the segment length changes by an average
of 31%. This result is consistent with the observation of
caterpillar muscles, which exhibit comparable shortening to
30% of the resting length [27]. The duration of one model
stride is also very close to that of the biological caterpillar—
2.71 and 2.78 s, respectively (a difference of 2.5%).

In contrast, the average resting length of a model segment
is about 4.5 mm, which is significantly different from the
approximate 5.5 mm length in the biological caterpillar. Also
the average stride length of the model is 4.19 mm, which is
less than half that of the biological caterpillar (8.52 mm) [28].

5.2. Dynamic results

Woods et al [27] examined the force development of a
caterpillar muscle under tetanic stimulus at resting length. To
compare these results, a similar test was conducted on the
model cable. Results are shown in figure 9 and table 1 which

Figure 8. A stride is divided into three phases.

6
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(a) (b)

Figure 9. Force development under a tetanic stimulus of 2 s at resting length: (a) model cable and (b) caterpillar muscle.
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Figure 10. The change of cable force in the third segment while
crawling in comparison to pre-stress cable force at rest (F0).

demonstrate that the behavior of the model cable is close to
the behavior of the caterpillar muscle and has a similar time
constant.

The change of cable forces in the third segment while
crawling relative to the initial pre-stress force (F0) is shown
in figure 10. Note that the initial pre-stress force is the cables
force while the caterpillar is at rest. The value of this force used
in the simulation is 49 mN. It was calculated by the product
of the biological caterpillar body pressure (1.3 kPa) and its
cross-sectional area (37.4 mm2) [5]. The maximum change
in cable forces is only 13.8% relative to the pre-stress force.
Other segments demonstrate similar behavior.

5.3. Different terrains

The locomotion of the model was tested on various
terrains. Figure 11 shows snapshots from a simulation
of the model climbing a sharp incline. The complete
video of this simulation and others can be found at
http://www.eng.tau.ac.il/∼shai/studentlist.htm. Because the
legs are programmed to grip the ground, the model is
able to crawl vertically and can even function when upside
down. It is important to realize that the model is able to
navigate such different terrains without changing the control
characteristics.

5.4. Internal pressure

The model was tested with varying internal pressures.
Simulations showed that, above a threshold value, performance
is not affected by changes in pressure. As a result, changes in
the scale do not require corresponding changes in internal
pressure. The importance of this fact will be discussed in the
following section.

6. Discussion

We will first discuss the use of impedance control for Assur
tensegrity structures in general. Secondly, we will focus on the
caterpillar model and what can be learnt from it.

6.1. Controlling Assur tensegrity structures using impedance
control

Impedance control is a well-known control scheme [26].
Nevertheless, no work has been done on its application to
tensegrity structures. We found that impedance control keeps
the Assur tensegrity structure in a singular configuration,
thus maintaining the stability of the structure. In addition,
impedance control enables us to produce a soft model with a
controllable degree of softness.

While impedance control is complex in typical industrial
robotics, it is much simpler to implement in tensegrity
structures. For reasons outlined below, impedance control is a
‘natural’ choice for our model.

1. In tensegrity structures, each element is controlled
separately and independently. This is in contrast to
a standard industrial robot in which all DOFs are
conjugated.

2. There is no need to transform end-point forces to actuator
forces, and there is no need to consider robot dynamics in
the impedance control law; the equation is used as is.

3. All tensegrity structures have infinitesimal motion in their
singular configuration. The actual motion around this
point is determined, among other things, by the elasticity
of the materials (cables and struts). Impedance control
can be thought of as a way to increasing this elasticity
(where the stiffness coefficient k is equivalent to Young’s
modulus).

7
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Figure 11. Model climb with sharp incline.

In addition, Assur tensegrity structures, unlike most
other tensegrity structures, are statically determinate structures
which allow simple shape change.

These two characteristics (simple control and softness)
make this combination (Assur tensegrity and impedance
control) very useful for soft robotics. In contrast to using soft
materials, this method requires relatively simple control; in
contrast to using rigid bodies, it manifests robotic softness.

6.2. The caterpillar model

The model exhibits several characteristics which are analogous
to those of the biological caterpillar as described in the
following sections.

Empirical testing of the model has demonstrated that
effective crawling requires that each stride be executed in three
different phases. Trimmer et al [6] examined the kinematics
of the biological caterpillar and found kinematic differences
between three anatomic parts of the caterpillar: the thoracic
segments, the midbody segments and the posterior segments.
This distinction is similar to the three stride phases of the
caterpillar model. The caterpillar model can navigate different
terrains and in different directions using the same crawling
pattern without adjusting the control scheme. This is made
possible by slow stride speed and firm ground planting. The
same is true for the biological caterpillar [28].

The internal pressure of the biological caterpillar is not a
function of its size. During growth, its body mass is increased
10 000-fold, while internal pressure remains constant [5]. In
the same way, our model is able to use the same pre-stress
forces regardless of the model size (although the pre-stress
forces must excide a certain force threshold).

It was proposed above that the mechanical properties of
caterpillar muscles may assume responsibility for some of the
control tasks otherwise carried out by the nervous system. Our
model demonstrates that using impedance control for each
cable (which mimics the mechanical properties of caterpillar
muscles) does indeed simplify high-level control. Also,
caterpillar muscle develops force slowly. For comparison,

caterpillar muscle force development is about four to seven
times slower than that of an insect flight muscle [11]. The
model shows that adding the low-pass filter to the cable
controller, which makes the cable react slower, eases high-
level control and results in smoother motion. Note that the
time constant of the filter was determined empirically in order
to optimize results. Only afterward was the comparison made
to the biological muscle (figure 9), both of which exhibited
similar time constants. In addition, other crawling parameters
related to time (e.g., the duration of one stride) are comparable
in both the model and the biological caterpillar.

On the other hand, there is a discrepancy between
the stride length of the model and that of the biological
caterpillar. There are two reasons for this discrepancy. Firstly,
the biological caterpillar has longer segments. Secondly, the
biological caterpillar can contract up to four segments at a time.
In our model, only three segments are contracted at a time.
The reason for this limitation is that, when four segments are
contracted and lifted together, the impact of gravity becomes
much larger (especially in phases 1 and 3). This makes it
difficult to program locomotion in a way that will be robust
in all crawling directions (vertical and upside-down). This
discrepancy should be improved in future versions of the
model.

In summary, our model is consistent with many of
the actual biomechanical attributes of the Manduca sexta
caterpillar. Our research further suggests a few characteristics
that the biological caterpillar may possess.

In the model, stride timing is strongly dependent on
the signals that the legs send when touching the ground.
Without those signals, locomotion is not robust—it tends to
be inefficient and many times unstable. Observations show
that feedback from the legs is not essential for maintaining
locomotion gait in fast insects like the cockroach, while it
is critical in slow insects like the phasmid (the stick insect)
[29]. Although we were not able to find similar information
on caterpillars, their slower gait makes it reasonable to assume
that they also need leg feedback. The model introduced in this
paper strongly supports this hypothesis.
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Another important observation is that cable forces do not
change significantly during motion (figure 10). They have
more-or-less the same magnitude while crawling and while
at rest. This suggests that caterpillars invest little additional
energy when crawling as opposed to resting. This conclusion
may inspire follow-up biological research.

7. Further research

Future research can follow three directions. Firstly, the model
can be improved in a number of ways. It should be optimized
by increasing stride length. To do so, gravitational sensors
would need to be added, which would allow for better control
and better performance. In addition, the ability to control
stride frequency would allow for variable velocity, and a more
complex control algorithm could be designed to enable the
model to navigate through obstacles and over gaps. Secondly,
the model can be expanded into three dimensions. The
transition from two to three dimensions is possible but would
present several complications, particularly because Assur
graph theory for three-dimensional structures is not yet fully
complete. Finally, the construction of a physical mechanical
model will greatly help to increase our understanding of these
types of soft/rigid robots.
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