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Abstract 

Caterpillars are soft-bodied animals and use fluid and tissue pressure to stiffen their 

body, a mechanism known as hydrostatic skeleton. They have a relatively simple 

nervous system, but are still able to perform a variety of complex movements. 

This thesis presents a 2D caterpillar simulation which mimics caterpillar locomotion 

using Assur tensegrity structures. Tensegrity structures are structures composed of a 

discontinuous set of compressed components inside a continuum of tensioned 

components. Their stability is maintained by the self-equilibrated state of all elements. 

Assur tensegrities are a novel sub-group of tensegrity structures. 

In the model, each caterpillar segment is represented by a 2D tensegrity triad 

consisting of two bars connected by two cables and a strut. The two cables represent 

the two major longitudinal muscles of the caterpillar, while the strut represents 

hydrostatic skeleton. In addition to the mechanical structure, the control scheme in 

this model is also inspired by the biological caterpillar.  

The unique engineering properties of Assur tensegrity structures, together with the 

suggested control scheme, provide a model with simple and intuitive control. In 

addition, the model segments have a controllable degree of softness - each segment 

can be either soft or rigid.  

The model also exhibits several characteristics which are analogous to those of the 

biological caterpillar. One such characteristic is that the internal pressure of the 

biological caterpillar is not a function of its size. During growth, body mass is 

increased 10,000-fold while internal pressure remains constant. In the same way, our 

model is able to use the same internal forces regardless of model size. Our research 

also suggests that caterpillars don’t invest considerably more energy while crawling 

than while resting. 
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1 Introduction 

The movement of animals with stiff articulated skeletons, such as vertebrates, tends to 

be fast and precise, using joints with a few degrees of freedom and relatively 

predictable limb kinematics. Often, only one or two muscles are needed in any 

particular movement. However, most living animals are soft-bodied and do not have 

hard skeletons. Instead they use fluid and tissue pressure to stiffen their body, 

allowing muscles to do useful work. This kind of mechanism is called a hydrostatic 

skeleton. As a result, the contraction of any one muscle affects all the rest, altering 

either their length or their tension [1]. 

Of these soft-bodied animals, caterpillars are particularly intriguing because they are 

very successful climbers that grasp and navigate in a complex three-dimensional 

environment. Their crawl is distinct from other soft-bodied animals like worms and 

molluscs. Caterpillars use passive grip to secure themselves to complex terrain and 

are able to bend, twist and crumple in ways that are not possible with a rigid skeleton. 

They use hydrostatics to vary body tension and can cantilever over gaps that are 90% 

the length of their body [2]. 

Most flexible biologically inspired robots are built from concatenated rigid modules 

with multi-axis joints between them. However, soft-bodied animals have no rigid 

skeleton at all. On the other hand, there have been few attempts to build completely 

soft robots (built from soft materials). However, these robots possess near-infinite 

degrees of freedom and have very complex dynamics which brings with it 

considerable complexity in control design [3]. 

This thesis presents a novel approach for simulation of the soft-bodied caterpillar 

crawl. The model is constructed from type of structures called Assur tensegrity 

structures (described in detail in chapter ‎4). The special properties of these structures 

together with the suggested control algorithm give the structure the ability to deform 

in response to external forces, a quality termed as structural softness. 
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1.1 Previous work 

Several attempts have been made to build or simulate robots that mimic or are at least 

inspired by the caterpillar crawl. 

Wang et al. [4] built two prototypes of a caterpillar robot. One employs inching gait 

(Figure ‎1.1), and the other employs crawling gait (explained in section ‎2.2). The 

robots are assembled using two types of modules: joint actuation modules and 

adhesion modules. The actuation module is driven by an embedded servo motor, 

while the adhesion module is equipped with a sucker and a releasing mechanism 

driven by a solenoid. 

 

Figure ‎1.1: The inchworm robot of Wang et al. 

Another model was introduced by Stulce [5]. He developed a computer simulation of 

a multibody robot with passive legs attached to it (a pair of legs for each body) based 

on observation of caterpillar specimen geometry, gaits and leg trajectories. The robot 

was assembled using a series of actuated Stewart-platforms (parallel manipulators 

with 6 linear actuators) connecting the bodies as shown in Figure ‎1.2. At the basic 

level of control, Stulce used position control for all actuators. Therefore, even for the 

simplest motion, where only one pair of legs is lifted, the robot needs to coordinate 

accurate trajectories for each of the 12 actuators (6 on each side of the legs). He also 

uses "vision" techniques to generate terrain mapping for planning and generating 

global and local robot paths. 

 

Figure ‎1.2: Stulce's model for a multibody legged robot. 
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In both cases, the caterpillar segments are modeled with rigid elements, in contrast 

with a biological caterpillar. 

Trimmer et al. [3] developed a caterpillar model using soft and deformable materials. 

The main body of the robot is cast from a soft silicone elastomer and actuated using 

shape-memory alloy (SMA) wires. Their aim was to mimic the placement of muscles 

within the caterpillar model (Figure ‎1.3a). 

However, the immense gain in flexibility and deformability brings with it 

considerable control complexity. Soft-bodied robots can possess near-infinite degrees 

of freedom. As a result, conventional methods of robotic control (used with 

considerable success in rigid, jointed mechanical systems) no longer apply. 

To compensate, they developed suitably realistic simulations of the soft-bodied robot 

and tried to use genetic algorithm methods to discover control schemes [6] (Figure 

‎1.3b). The authors did not report results in their paper and indicated that they still 

have much work to do. 

 

Figure ‎1.3: Trimmer’s soft robot: (a) the physical soft robot, and (b) the 

corresponding simulation model. 

Rieffel et al. [7] built a 15-bar, highly indeterminate tensegrity model, inspired by the 

caterpillar structure as shown in Figure ‎1.4. The high degree of dynamic coupling and 

complexity renders it largely unsuitable for control through conventional means. 

Instead, they used a variant of the artificial neural networks (ANNs) method called 

spiking neural networks (SNNs). The result is locomotion which is neither inspired by 

nor resembles the caterpillar crawl. Also, only the cables are actuated in this model. 

Struts are rigid bodies and remain at the same length. As a result, the model has a 

limited ability to change shape. 

(b) 

(a) 
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Figure ‎1.4: A 15-bar tensegrity model built by Rieffel et al. 

1.2 Objective 

The aim of this thesis is to simulate soft-bodied caterpillar crawl using Assur 

tensegrity structures. The Assur structure that was chosen to represent the caterpillar 

segment is a triad. The shape change algorithm that was used as the basis for my work 

is described in section ‎4.4.  

Note the design of the model was primarily inspired by biological behavior and less 

by mechanical design feasibility; the model does not offer detailed mechanical 

specifications but rather represents a conceptual breakthrough. 

1.3 Overview of thesis 

Chapters 2-4 present the theoretical background of our work: Chapter 2 gives a 

biological background on caterpillars. Chapter 3 gives a review of tensegrity 

structures and the main properties and concepts of these structures. Chapter 4 

introduces a family of determinate topologies called Assur trusses and presents some 

of its unique geometric properties. It then provides details concerning a sub-group of 

tensegrity structures called Assur tensegrity structures, and described a shape change 

algorithm for these structures. 

Chapters 5-7 describe the caterpillar model: Chapter 5 introduces the three main 

characteristics of the model: stability, shape change and softness. Chapter 6 further 

develops those concepts and describes the final model. The full control algorithm is 

described in chapter 7. 

Chapter 8 is the results chapter. Discussion and further research suggestions are 

presented in chapter 9. 
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2 Biological background 

2.1 Caterpillar anatomy 

Most of the biological research regarding caterpillars was done on the Manduca Sexta 

caterpillar (also known as the tobacco hornworm). As with all insects, its body is 

divided into the head, thorax and abdomen. The thorax consists of three segments, 

each bearing a pair of true, articulated legs. The abdomen, which constitutes over 

three quarters of the total caterpillar length, has eight segments – abdominal segments 

A1-A7 and the terminal segment TS. Abdominal segments three to six (A3-A6) and 

the terminal segment (TS) have fleshy protuberances called prolegs (Figure ‎2.1). The 

prolegs grip the surface passively and can be actively released and retracted. 

 

Figure ‎2.1: Manduca sexta anatomy. 

Muscles are attached to the inside surface of the body wall. The musculature is 

complex. Each abdominal body segment contains around 70 discrete muscles (each 

having unique attachment points)! Caterpillars do not have circular muscles as do 

worms. 

The major abdominal muscles in each segment are the ventral longitudinal muscle 

(VL1) and the dorsal longitudinal muscle (DL1) shown in Figure ‎2.2. Note that the 

VL1 is not a single muscle that extends the entire length of the caterpillar body. Each 

segment has its own distinct VL1 muscle which is controlled separately from the 

TSA7A6A5A4A3A2A1

Abdomen
Thorax 

& Head

ProlegsTrue legs
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others. The same is true for the DL1 muscle (and virtually all other caterpillar 

muscles). Each VL1 and DL1 muscle is attached to the sternal and tergal antecosta 

respectively (the antecostae are stiff ridges formed at the primary segmental line and 

provide a surface for the attachment of muscles) [8]. 

 

Figure ‎2.2: Several caterpillar muscles including the ventral longitudinal muscle 

(VL1) and the dorsal longitudinal muscle (DL1). 

Caterpillars have a relatively simple nervous system, each segment having a ganglion 

(a nerve complex) which monitors movements. Despite their limited control 

resources, caterpillars are still able to coordinate hundreds of muscles in order to 

perform a variety of complex movements. It has been argued [9] that the mechanical 

properties of the muscles are responsible for some of the control tasks that would 

otherwise be carried out by neural control. It is also assumed that some muscles 

function primarily to maintain turgor, whereas others are primarily locomotory. 

2.2 Caterpillar locomotion 

There are two types of caterpillar locomotion. The first type is the inching gait of the 

inchworm (despite its name, the inchworm is a caterpillar and not a worm) shown in 

Figure ‎2.3. 

 

Figure ‎2.3: The inchworm inching gate. 

The second type of locomotion is the crawling gait used by the Manduca Sexta and 

many other species. Crawling gait is the locomotion strategy used in this thesis. In 

Tergal antecosta Sternal antecosta

DL1

VL1

Dorsal surface

Ventral surface 
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crawling gait, caterpillars crawl via a wave of muscular contractions that starts at the 

posterior and progresses forward to the anterior (note that throughout this thesis, the 

words “posterior” and “anterior” will be used to describe the anatomical directions as 

shown in Figure ‎2.4) [2]. This motion may reflect the output of a Central Pattern 

Generator (CPG), which is a neural mechanism that produces rhythmic patterned 

outputs [10].  

During motion, at least three segments are in varying states of contraction at any 

given time. This is done to increase the length of a stride. The two legs on either side 

of each body segment move together as a unit.1 Stride frequency is the dominant 

mechanism for controlling speed. As speed increases stride frequency can increase by 

a factor of four. 

 

Figure ‎2.4: The crawling gate of Manduca Sexta. 

Caterpillars do not use the prolegs as actuated propulsive limbs; instead, they use 

them as support and to generate controllable grip of the terrain. Prolegs have powerful 

passive attachment to the terrain. Once a particular proleg pair has moved and 

“planted”, there is no further movement by that proleg or body segment until the next 

stride.  

Use of a hydraulic mechanism for terrestrial locomotion (as in the case of caterpillar 

locomotion) is considerably more energy expensive than use of muscles attached to a 

rigid skeleton. The explanation for this higher cost of transport appears to rest in 

biomechanics rather than in muscle performance [11]. 

                                                 
1
 This in-phase motion of the two legs is very unusual in insects. With most other insects the two legs 

of each segment move exactly a half-cycle out of phase from each other.  

Posterior side

(Backwards) 

Anterior side

(Forwards) 
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3 Tensegrity 

3.1 Definition 

The word Tensegrity is a contraction of ‘tensional integrity’ which was coined by 

Richard Buckminster Fuller [12]. 

It is difficult to precisely define tensegrity. Fuller described the tensegrity principle as 

“islands of compression inside an ocean of tension.” This broad definition of 

tensegrity would include a balloon: the air inside the balloon is under compression 

and the balloon envelope is under tension. Together, they form a stable system. 

The “classic” tensegrity structure is a truss-like structure that is composed of struts2 

under compression and cables under tension. A more strict definition for these 

tensegrity systems was given by Motro: “A tensegrity system is a system in a stable 

self-equilibrated state comprising a discontinuous set of compressed components 

inside a continuum of tensioned components” [13]. Several examples of this kind of 

tensegrity system can be found in Figure ‎3.1. 

 

Figure ‎3.1: A few examples of tensegrity structures: (a) the simplest spatial tensegrity 

structure, also known as a “simplex”, (b) the original Fuller tensegrity in the Stanford 
archive, and (c) Snelson's needle tower. 

                                                 
2
 In tensegrity terminology the bars in compression are called struts . 

(a)

(b)

(c)
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3.2 Tensegrity in nature 

Principles of tensegrity can be found at essentially every scale in nature. At the 

macroscopic level, the 206 bones that constitute the human skeleton are upheld 

against the force of gravity and stabilized in a vertical form by the pull of tensile 

muscles, tendons and ligaments. At the cellular level the cytoskeleton (the cell's 

internal skeleton) consists of three major components: microfilaments, microtubules 

and intermediate filaments. A gossamer network of contractile microfilaments extends 

throughout the cell, exerting tension. Opposing this inward pull are the microtubules, 

exerting compression. The intermediate filaments connect microtubules and 

contractile microfilaments to one another. At the other end of the scale, proteins and 

other key molecules in the body also stabilize themselves through the principles of 

tensegrity [17]. 

3.3 Form finding 

Merely examining the topology of a tensegrity structure is not sufficient to determine 

whether it is rigid or not (as is the case for trusses). Even if the structure topology is 

suitable for a tensegrity structure, it will be rigid only in specific configurations. 

There is a fundamental question we have to answer when investigating tensegrity 

structures: under what conditions does a tensegrity structure yield rigidity with all 

cables in tension and all struts in compression? This problem is commonly referred to 

as the form finding problem. 

A large number of truss topologies can move into special configurations in which they 

become tensegrity structures. These configurations correspond to specific link lengths 

of the system members which place the structure in a configuration called a singular 

configuration. Only in these singular configurations will the structure not collapse 

when specified rigid links are replaced by flexible tension members. These tensegrity 

configurations allow the system to be self-stressed, which a tensegrity system requires 

to obtain stiffness. For example, to build a regular3 simplex, as shown in Figure ‎3.1a, 

the ratio between the length of the struts and that of the cables needs to be 1.468. A 

different choice for these values creates either a system without rigidity (if the ratio is 

too small) or a system which will be very difficult and perhaps even impossible to 

assemble (if the ratio is too large). 

                                                 
3
 Regular tensegrity structures are structures in which all cables are of equal length and all struts are of 

equal length. 
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There are several methods for form finding. An example of a form finding method 

that uses a geometric approach was developed by Whittier [14]. This method is based 

on finding the boundary of non-assembly. The method employs the fact that in any 

structure or mechanism a set of link lengths can be found that does not allow the 

system to be assembled. Bar systems can also be constructed of link lengths such that 

they exist on the boundary of non-assembly. An example of this is shown in Figure 

‎3.2. The theorem of Whittier says that tensegrity configurations lie on the boundary of 

non-assembly for trusses and mechanisms. 

 

Figure ‎3.2: Four-bar mechanism with different bar lengths. In Mechanism (a) the 

chosen set of link lengths allows assembly. The links of Mechanism (b), on the other 

hand, have been chosen such that the mechanism cannot be assembled. Mechanism 
(c) has been built so that it is on the boundary of non-assembly. 

3.4 Infinitesimal mechanism 

Along with the ability of having self-stress (sometimes also referred as pre-stress), all 

tensegrity structures have infinitesimal flex from an infinitesimal mechanism. The 

infinitesimal mechanism is the ability of the structure to move in a certain direction an 

infinitesimal amount without extending (or contracting) the length of any of the links. 

A simple example of this infinitesimal mechanism can be seen in the two dimensional 

structures (called dyads) shown in Figure ‎3.3. If a vertical displacement is applied to 

the center node of the dyad, there is nothing to resist the initial displacement. That 

initial displacement is the infinitesimal mechanism. As the mechanism attempts to 

displace a finite amount, the displacement will be resisted by the required lengthening 

of the members that removes this degree of freedom. 

 

Figure ‎3.3: The infinitesimal mechanism of a dyad. 

(b) (a) (c) 

 

(b) (a) 
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3.5 Stability 

Let us consider the 2-bar dyad shown in the previous figure. The dyad can turn into a 

tensegrity structure by introducing self-stress. The self-stress can be added in the form 

of tension forces or compression forces. When tension forces are applied, bars are 

replaced with cables. When compression forces are added, the bars become struts.4 In 

both cases the system is in equilibrium state, but only one case is a stable equilibrium. 

In the first case, if the junction node is taken away from its equilibrium location, the 

effect of the self-stress of tension returns it to the equilibrium location once the 

disruption is removed; the infinitesimal mechanism is stabilized by the tension self-

stress (Figure ‎3.4a). In the opposite case, the system will not return to its equilibrium 

location; the system was in an unstable equilibrium (Figure ‎3.4b). Only the first case 

is a tensegrity system. 

  

Figure ‎3.4: Stabilization of tensegrity structure: (a) a stable dyad composed of two 

cables in tension, and (b) an unstable dyad composed of two struts in compression. 

3.6 Shape change algorithms 

Although tensegrity structures are, by definition, static structures, they can be made 

into robots that can change shape. Shape change is a process in which, by adjusting 

the length of some of tensegrity structure members, the geometry of the structure is 

altered.  

Note that the motion must be made while maintaining structural stiffness. In other 

words, during motion the self-stress forces must be maintained. 

Sultan and Skelton [15] presented a shape change strategy based on the identification 

of an equilibrium manifold, to which the initial and final configurations belong. The 

                                                 
4
 Basically, struts are bars. The word “strut” is used to indicate that it is a compressed element . 

(b) (a) 
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equilibrium manifold is a set of points corresponding to stable tensegrity 

configurations (also known as equilibrium configurations). The idea is to‎ conduct 

motion such that the motion path passes through the manifold points. The advantage 

in doing so is that the successive configurations that the structure passes through are 

not much different from the equilibrium ones.  

Their paper presents a 2-stage 6-bar tensegrity robot (Figure ‎3.5a) that moves only in 

a particular set of symmetrical configurations. In this kind of motion, only three 

parameters are needed to describe the robot’s position. 

Due to the small number of parameters, the allowable configurations of the tensegrity 

structure can be conveniently visualized as an equilibrium surface plotted on a three 

dimensional graph, as shown in Figure ‎3.5b. Each dot on the graph represents an 

allowable equilibrium configuration that has been identified, and the black line 

represents the desired shape change path. 

  

Figure ‎3.5: (a) A two-stage six-bar tensegrity structure; (b) an equilibrium manifold of 

the symmetrical configurations (the black line represents the shape change path). 

This strategy is useful for such a symmetrical shape change where there are a small 

number of parameters. The problem is that there is a rapid increase in the number of 

independent parameters when asymmetrical shapes are considered. In those cases, the 

equilibrium manifold becomes too large, and a search to characterize this space would 

most likely be fruitless. 

Van de Wijdeven and de Jager [16] developed a shape change algorithm by using an 

optimization method. In this algorithm the desired shape change and time span are 

divided into N sub-shape changes and time steps. The nodal positions of the tensegrity 

Equilibrium manifold

Final configuration

Initial configuration

Equilibrium path

(b)(a)
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structure are found at every sub-shape by solving a constrained optimization problem. 

Due to the number of nodes in a non-trivial structure, the optimization is of larger 

scale and it is also non-convex and nonlinear. 

In both methods described above, motion is divided into many steps. For each step a 

form finding procedure is required (by predefined values or by an optimization 

method) and a path passing through all points must be calculated. 

 The algorithm presented in our work was developed using another, much simpler 

algorithm. This algorithm will be described in section ‎4.4. 
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4 Physical foundation underlying the model 

The following chapter presents a different method for finding and analyzing 

tensegrity structures using Assur trusses. This chapter introduces the concept of Assur 

trusses and their unique engineering properties. It then explains how these structures 

can be made into tensegrity structures. Finally a new shape change algorithm is 

presented. 

4.1 Classification of trusses 

Engineering systems can be generally categorized into three groups: over-constrained, 

well-constrained and under-constrained. In CAD systems, for example, when too 

many dimensions are provided, the model is over-constrained because of redundancy. 

If insufficient dimensions are provided, the model cannot be produced and is under-

constrained. Only when the minimum dimensions required to produce the model are 

provided is a system well-constrained. 

The same categorization can be similarly applied to mechanical systems, including 

structures, mechanisms, robots, etc. Suppose we have a 2D truss with number of 

internal joints    (excluding ground joints). If the number of bars is less than   ,  the 

structure would be under-constrained. These systems cannot sustain external force 

and are thus mobile. Figure ‎4.1 shows a system with 3 bars and 2 joints, which 

according to the above rule is mobile (a four-bar mechanism). 

 

Figure ‎4.1: A four bar mechanism. 

If the number of bars is exactly   ,  the structure becomes rigid. This kind of structure 

usually cannot sustain self-stress forces when there is no external force applied to it. 

When there is an external force, it is possible to calculate all the forces on all the bars 

A 

1 

B 2 

3 
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using only force equilibrium around each joint. This is a well-constrained system, and 

it is known as a statically determinate truss (Figure ‎4.2a). When the number of bars 

exceeds   , there is redundancy and the analysis is much more complicated, requiring 

consideration of additional parameters such as the material of the bars. This type of 

system is known as a statically indeterminate truss (Figure ‎4.2b). 

 

Figure ‎4.2: Classification of static trusses: (a) a statically determinate truss, and (b) a 

statically indeterminate truss. 

There are two kinds of exceptions to this rule. The first kind is topological. For 

example, consider the structure in Figure ‎4.3. The number of bars is exactly twice the 

number of internal joints, yet bars 1-3 form a four-bar mechanism. The reason for this 

behavior is that this structure is built from two sub-structures: one is over-constrained 

(bars 4-8) while the other is under-constrained (bars 1-3). Together, the number of 

bars is equal to a well-constrained structure but it is not well-constrained. 

 

Figure ‎4.3: An example of a topological exception. The truss has    bars, yet it 
moves. 

The second kind of exception, which is relevant to our work, is a geometrical 

exception. For example, consider the structure in Figure ‎4.4. The topology of this 

structure is the same as in Figure ‎4.2a. The geometrical characteristics of the structure 

are that bars 1, 4 and 6 are parallel and have the same length. Although the structure 

should be static according to the above rule, these characteristics make it a 

(b)(a)

1

2 3
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5

6
78



16 

 

mechanism. Actually, the structure is in a singular configuration (as explained in 

section ‎3.2). The singularity issue will be further discussed in the following sections. 

 

Figure ‎4.4: An example of a geometrical exception. Topologically, the structure is a 

statically determinate truss, yet it is mobile. 

4.2 Assur trusses 

The concept of the Assur truss was developed by Professor Leonid Assur at the Saint-

Petersburg Polytechnic Institute. When first published in 1914, Assur’s concepts did 

not receive much attention [18]. But in 1930 I.I. Artobolevskii, a leading member of 

the Russian academy of sciences, adopted Assur’s approach and employed it in his 

widely used book [19]. From that time on Assur trusses were widely employed in 

Russia and other eastern European countries. 

Assur trusses are a sub-group of statically determinate trusses and are defined as 

follows: 

Let G be a statically determinate truss. G is an Assur truss IFF there is no sub-truss 

G' that is a statically determinate truss. 

Figure ‎4.5a shows an example of an Assur truss. It does not contain any statically 

determinate sub-truss. This structure is called a triad. On the contrary, the truss in 

Figure ‎4.5b, although it is a statically determinate truss, is not an Assur truss since 

bars 1+5 form a statically determinate truss called a dyad. 

 

Figure ‎4.5: (a) An example of an Assur truss called a triad, and (b) a determinate truss 

with a sub-group which is a statically determinate truss (therefore it is not an Assur 
truss). 

1

2

3

4
6

5
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Every determinate truss which is not an Assur truss can be decomposed into Assur 

trusses [20]. For example, the determinate truss shown in the above figure can be 

decomposed into three dyads (which are Assur trusses) as shown in Figure ‎4.6. 

 

Figure ‎4.6: An example of the decomposition of a determinate truss into Assur 

trusses. 

4.3 Assur tensegrity structures 

One important property of Assur trusses [20], which is relevant to our work is given 

below: 

For every Assur truss, there exists a configuration such that the truss has: 

1. A single self-stress, which is non-zero on all elements; and 

2. A unique (up to scalar) first-order motion, which is non-zero on all inner joints. 

This special configuration is the singular configuration. 

For the 2D triad shown Figure ‎4.5, the singular configuration is obtained when the 

continuations of the three ground legs intersect at a single point.5 Figure ‎4.7 shows a 

triad in a singular configuration. The intersection point   is also the momentary 

rotation center. Therefore the direction of the infinitesimal motion of each joint is 

perpendicular to the line connecting it to the intersection point   as shown in Figure 

‎4.7a. 

An Assur truss in a singular configuration can bear self-stress forces, as shown in 

Figure ‎4.7b. Thus, it can turn into a tensegrity structure: elements under tension can 

be replaced with cables, while elements under compression can be replaced with 

struts, as shown in Figure ‎4.7c. This sub-group of tensegrity structures is called Assur 

tensegrity structures. The same principles are true for three dimensional structures. 

                                                 
5
 The structure in Figure ‎4.4 is in a singular configuration since its three legs intersect at infinity. 

Although singularity usually leads to infinitesimal motion, in this special case the motion is finite since 

the legs stay parallel during motion and singularity remains. 
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Figure ‎4.7: The singular configuration of a triad is characterized by the intersection of 

the continuations of the three ground legs: (a) the direction of the infinitesimal motion 
of the joints, (b) the self-stress forces, and (c) the Assur tensegrity structure. 

Note that non-Assur determinate trusses can have configurations that fulfill one of the 

demands described in the above definition, but not both. Figure ‎4.8 shows two 

examples of non-Assur trusses in special configurations. The truss in Figure ‎4.8a is 

assembled from a triad in a singular configuration and a dyad on top of it. In this case 

all joints have infinitesimal motion, but the dyad on top is not self-stressed. The truss 

in Figure ‎4.8b, assembled from two dyads, has a self-stress in all of its elements, but 

only one joint is mobile. 

 

Figure ‎4.8: Special configurations of non-Assur determinate trusses: (a) a truss which 

has motion in all inner joints but doesn’t have a self-stress in all elements, and (b) a 
truss which has a self-stress in all elements but doesn’t have motion in all inner joints.  

4.4 Shape change of Assur tensegrity structures 

The significance of the property described above is that, in an Assur tensegrity device, 

if one member is stressed then all of the members are stressed and the device is rigid. 

In other words, to determine that an Assur truss is in a singular configuration, it is 

(a)

O

(b)

O

(c)

O

(a) (b)
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sufficient to demonstrate that only one member is stressed. Shai [21] proved the 

following theorem: 

Let T be an Assur truss in a generic position. For every ground element Bi there exists 

a length Li’ such that Assur Truss T’, generated by replacing element Bi with an 

element Bi' having length Li, is in a singular configuration. 

According to this theorem, it is possible to make any Assur truss configuration into a 

singular one simply by changing the length of any one of its ground elements. Figure 

‎4.9 demonstrates this theorem. Another conclusion is that when an Assur truss is in a 

singular configuration, the length of one element is determined by the length of all 

other elements. 

 

Figure ‎4.9: Singular configuration results from the change in length of only one 

ground element (colored in green): (a) in a dyad, and (b) in a triad.  

Based on the above background, Bronfeld [22] developed the following shape change 

algorithm of an Assur tensegrity structure: 

1. Choose one ground element to be the force-controlled element. All other 

elements are position-controlled elements.  

2. Select the desired force in the force-controlled element. The forces in all other 

members will be proportional to the force in the force-controlled member 

(since the device has a single self-stress in all of its members). 

(b)

(a)
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3. Select a target shape for the device and calculate the target lengths of all 

position-controlled elements (the force-controlled length is dependent in their 

lengths). 

4. Generate a trajectory for each position-controlled element according to their 

initial and final lengths (and according to the allowable speed and 

acceleration). 

5. Activate the device controllers in the following manner: 

 The controller of the force-controlled member causes it to maintain the 

desired force, thus assuring the device’s stiffness. 

 The controllers of the position-controlled members cause member lengths 

to follow their defined trajectories, thus changing the device’s shape into 

the desired one. 

The advantage of this algorithm over most others (two of them were described in 

section ‎3.6) is that it requires very little computation time. Only one singular 

configuration needs to be found (the target configuration), while other algorithms 

require that many singular configurations be found, changing progressively from the 

starting configuration to the target configuration. Also, the trajectory of each position-

controlled element is independent of the rest of the elements, as opposed to the 

common approach that requires coordinated control of all actuators. 

To test the algorithm, Bronfeld built a three dimensional triad robot, as shown in 

Figure ‎4.10. The robot has 6 controlled elements: 3 cables and 3 pistons. One cable 

was chosen as the force-controlled element while all other 5 are position-controlled. 

The experimental robot has confirmed the simplicity and robustness of the algorithm. 

 

Figure ‎4.10: The experimental robot built for testing Bronfeld’s shape change 

algorithm. 
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5 Model basics 

This chapter starts with a description of the model segment and the construction of the 

complete mechanical model. It then analyzes the stability of several segment 

configurations. Conceptually, the stability analysis should precede model description, 

since the model employs the results of this analysis; nevertheless, for the sake of 

readability, the stability analysis will follow the model description.  

Finally, it introduces two more important issues regarding the model segment: shape 

change and softness. 

5.1 The mechanical model 

5.1.1 The model segment 

In our model, each segment of the biological caterpillar is represented by a planar 

tensegrity triad.  

Compared to the standard tensegrity triad, the model triad has a few modifications 

that were made to simplify the model and to enable direct connection between 

segments: the model triad is rotated 90˚; the top triangle is replaced with an un-

actuated rigid bar and the ground supports are replaced by another bar (Figure ‎5.1). 

Note that the model triad is no longer a truss, but rather a structure. 

 

Figure ‎5.1: The standard triad in (a) as compared to the model triad in (b).  

The three elements between the two bars of the model triad have controllable length 

and are referred to as the actuated elements (two cables and a strut). 

Note that throughout the thesis the triad is sometimes illustrated as two vertical bars 

connected by two cables and a strut (as in the model) and sometimes as a horizontal 

(b)(a)
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top bar connected by cables and a strut to three ground supports (resembling the 

standard triad). Either way there are always three actuated elements. 

5.1.2 Legs 

In contrast to other soft-bodied animals (worms for example), caterpillars interact 

with the environment via discrete contacts – their legs (prolegs in the abdomen and 

true legs in the thorax). Legs afford elevation, which avoids the necessity of dragging 

the body elements across the ground (with its concomitant friction and wear) and 

provide excellent traction. There is no need for the body to be raised in order to 

disengage the ground – the legs only need to be lifted. As mentioned in section ‎2.2, 

caterpillar legs are used as anchors rather than levers. When a leg touches the ground 

it cannot be lifted until it is actively unhooked and retracted.  

In our model, legs are connected to the bottom of each bar and are inspired by the 

characteristics of the biological caterpillar proleg. They can be lifted or lowered; they 

are used as supports and not as levers. In addition, they also have the ability to grip 

the ground. 

In contrast to the biological caterpillar which has three segments without legs, all of 

the model segments have legs. The reason for this change is to ease the caterpillar 

control and to make the movement more robust (see also section ‎9.2). 

5.1.3 The complete model 

The caterpillar model is consists of eight segments connected in succession. This 

number of segments – eight – was chosen according to the number of Manduca Sexta 

abdominal segments (since the three thoracic segments are not necessary for 

locomotion [2]). Also, simulations have shown that eight segments are sufficient to 

perform robust and efficient crawl. Figure ‎5.2a shows the model as it seen in the 

simulation. 

The model represents well the biological caterpillar: The upper cable represents the 

ventral longitudinal muscle (VL1), the lower cable represents the dorsal longitudinal 

muscle (DL1) and the strut, which is always subjected to compression forces, 

represents the hydrostatic skeleton. The vertical bars represent the antecostae (Figure 

‎5.2b and Table ‎5.1). 
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Figure ‎5.2: The caterpillar model: (a) The model is constructed of eight segments 

connected in succession, and (b) comparison between the model and the biological 

caterpillar. 

Table ‎5.1: Comparison between a segment of the caterpillar model and that of the 

biological caterpillar. 

Caterpillar Model  Biological caterpillar 

Upper cable  VL1 

Linear actuator  Hydrostatic skeleton 

lower cable  DL1 

Bars  antecostae 

   

5.2 Stability 

The following section describes a stability analysis of a triad. 

5.2.1 The principle of potential energy 

The stability of a tensegrity structure can be determined by applying the principle of 

potential energy, which states the following: 

1. If a system is in equilibrium, the derivative of its potential energy must be 

zero. If the system has more than one degree of freedom, all the partial 

derivatives must be zero. 

2. If the system is in stable equilibrium, the potential energy function is at its 

minimum point.  

Cables Strut

Leg

Bar

VL1

DL1

(a)

(b)
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When an actuated element – cable or strut – changes its length, the change in potential 

energy of the system is as follows:6 

     ∫  ( )  
  

  

 (‎5.1) 

where   is the potential energy,   is the internal force in the element and   is the 

length of the element.   is positive for compression forces and negative for tension 

forces. 

We can illustrate this principle by considering a cable. When a cable is shortened, the 

tension force and the displacement have the same sign, and thus the potential energy 

of the system decreases. On the contrary, when the cable is lengthened, the force and 

the displacement have opposite signs and the potential energy of the system increases. 

A similar analysis for a compressed strut demonstrates that when it becomes shorter 

the potential energy decreases and vice versa. 

Therefore, to get a stable system, any shift from equilibrium must result in cable 

lengthening and\or strut shortening. 

5.2.2 Analyzing triad stability 

A tensegrity triad is in equilibrium when the continuations of the three actuated 

elements intersect at a single point (See section ‎4.3). Two basic configurations that 

satisfy this condition are shown in Figure ‎5.3: 

 

Figure ‎5.3: Two options for tensegrity triad configuration: (a) two cables and one 

strut, or (b) two struts and one cable. 

This condition, however, does not guarantee equilibrium stability. To analyze the 

stability of a triad, the following method is suggested: 

                                                 
6
 Note that there is no need to use the vector version of the formula s ince the force and the 

displacement are always on the same line. 

(a) (b)
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At all times, two of the three actuated elements are assumed to be at constant length 

and therefore not influencing potential energy. The third element, referred to as the 

tested element, is allowed to change its length.  

The two elements of constant length together with the top bar, form a 4-bar 

mechanism. Now, suppose that any shift of this 4-bar mechanism from equilibrium 

tends to lengthen the tested element. If this is the case, the tested element must be a 

cable if the system is to be stable. If, instead, the tested element tends to become 

shorter, the tested element must be a strut. 

Case 1: The tested element is to the side (in this example, element    ). Consider 

that element     has a rotational velocity    as shown in Figure ‎5.4.7 

   

Figure ‎5.4: Stability analysis – case 1. 

The velocity diagram of the triad is: 

 

Figure ‎5.5: Velocity diagram of the triad. 

The instantaneous velocity of point   is exactly perpendicular to the tested element 

(this can also be explained by the fact that the top bar’s instantaneous center of 

rotation is placed on the continuation of all three elements). Thus, point   moves, 

instantaneously, in a circular motion around point   , as shown in Figure ‎5.6. 

                                                 
7
 In this example, the driving element     has a velocity in the clockwise direction; the results are the 

same for counterclockwise velocity. 

4 bar mechanism
(In rigid lines)

   

Tested element
(In dashed line)
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Therefore, velocity itself cannot tell us whether the element tends to become shorter 

or longer (because length is not changed in circular motion). 

The next step is to check the acceleration of point  . In order to keep point   in pure 

circular motion around   , the radial acceleration (the acceleration towards   , as 

shown in Figure ‎5.6) must be equal to 
  
 

|   |
 . If acceleration is higher than this critical 

value, point C tends to become closer to point   , and the tested element tends to 

become shorter. If acceleration is lower than this critical value, point C tends to 

become farther from point    and the tested element tends to become longer. 

 

Figure ‎5.6: Velocity and radial acceleration of point C. 

The acceleration diagram of the triad is: 

 

Figure ‎5.7: Acceleration diagram – case 1. The real radial acceleration of point   is 
lower than the critical radial acceleration. 

The diagram shows that the real radial acceleration (real    ̂) is lower than the critical 

radial acceleration. Thus, the tested element becomes longer when shifting from 

equilibrium. Therefore, for stable configuration, the tested element must be a cable. 
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Case 2: The tested element is in the middle (element    ) and element     has a 

rotational velocity   , as shown in Figure ‎5.8. 

 

Figure ‎5.8: Stability analysis – case 2. 

The velocity diagram is, again, insufficient to determine whether the tested element 

tends to become shorter or longer. The acceleration diagram for this case is shown in 

Figure ‎5.9: 

 

Figure ‎5.9: Acceleration diagram – case 2. The real radial acceleration of point   is 

lower than the critical radial acceleration. 

The real radial acceleration (real    ̂) is higher than the critical radial acceleration. 

Thus, the tested element becomes shorter when shifting from equilibrium. For stable 

configuration the tested element must be a strut. 

Analysis of both cases demonstrates that the triad in Figure ‎5.3a is stable and that the 

one in Figure ‎5.3b is unstable. 
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5.2.3 Additional triad configurations 

Two other options for a tensegrity triad are shown in Figure ‎5.10. In these 

configurations the elements are crossed and the intersection point is within the triad. 

 

Figure ‎5.10: Two additional triad configurations. 

Similar analysis for these configurations indicates that the triad in Figure ‎5.10b is the 

stable triad8 while the other is unstable.  

The configuration we chose for our model is the one in Figure ‎5.3a since it is stable 

and resembles the caterpillar anatomy (as shown in Table ‎5.1). 

5.3 Shape change 

A method for determining the shape of the model triad is presented in this section. We 

will detail an algorithm which calculates the required element lengths for a desired 

triad shape - a process known as inverse kinematics. 

The singularity of a triad is characterized by the intersection of the continuations of 

the cables and the strut at a single point. Note that this constraint reduces the degrees 

of freedom (DOFs) of the triad from three to two.  

For calculation, one bar (called the base bar) is assumed to be fixed and the other bar 

(called the follower bar) is free to move. Nomenclature for the algorithm is shown in 

Figure ‎5.11. 

                                                 
8
 A physical model of this configuration was built and tested in our lab. 

(b)(a)
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Figure ‎5.11: Nomenclature for the inverse kinematics calculation. 

The details of the inverse kinematics algorithm are as follows: 

1. Attach the base frame { } and target frame { } to the base and follower bars 

respectively. 

2. Determine the desired position of the target frame relative to the base frame. 

Remember that the triad has only two DOFs, and therefore the angle of the 

target frame is dependent on its position. 

3. The coordinates of the base connection points            can be easily 

calculated since these points are rigidly connected to the base frame.  

4. The coordinates of the follower connection points            can be 

expressed by using the target frame position and the unknown target frame 

angle  . 

5. The line equation of an element   (       ) is: 

 (       )  (       )                  (‎5.2) 

6. The algebraic formulation of three lines that intersect at one point is 

represented by setting the determinant of their coefficients to zero: 

    (

                             
                             
                             

)    (‎5.3) 

7. The above equation is a quartic equation with one unknown –  . Solving this 

equation gives the angle  . 

8. Now having  , the coordinates of the follower connection points             

can be precisely calculated. 
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9. The length of each element is: 

    |    |  √(       )
 
 (       )

 
             (‎5.4) 

5.4 Softness 

As mentioned in section ‎3.4, tensegrity structures have infinitesimal mechanism, and 

therefore exhibit infinitesimal deformation when subjected to external forces 

(regardless of the elastic deformation of each individual element). The control 

algorithm described in section ‎4.4 (in brief, one element is force-controlled while all 

others are position-controlled) increases this deformability – it turns the infinitesimal 

mechanism into a finite mechanism. Thus the mechanism demonstrates “softness” in 

that it deforms by external forces. This happens because the force-controlled element 

can change its length in response to external forces. This behavior is referred to as 

structural softness (as opposed to “regular” softness achieved by soft materials). This 

control algorithm will be referred to as the basic control algorithm from now on. 

For example, suppose the force-controlled element is a cable and its tension is set to 1 

Newton. If an external force causes the tension in the cable to increase, the cable will 

lengthen until tension is returned to 1N. When the external force disappears, the 

tension will be decreased, and the cable will shorten until it returns to its original 

length; the triad will return to its singular configuration. 

Another important characteristic is that the degree of softness (meaning the degree of 

deformation) is proportional to the internal force in the force-controlled element. 

Therefore, a higher force in the force-controlled element decreases softness, and, vice 

versa, a lower force increases softness. 

Figure ‎5.12 shows several simulations that demonstrate this behavior. In these 

simulations, the right bar is fixed while the left bar is subjected to three different 

forces. The upper cable and the strut are subjected to position-control and their 

lengths are constant. The lower cable is the force-controlled element. 
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Figure ‎5.12: The effect of external forces on the triad shape. The force-controlled 

element is dashed. In (a) and (b) the effect of the external force decreases as the 
tension in the force-controlled cable increases. The force in (c) does not affect the 

triad since it does not apply any moment. 

The forces in Figure ‎5.12a,b change the position of the bar. Nevertheless, as the 

tension in the force-controlled cable (the lower cable) increases, the effect of the 

external force decreases. The force in Figure ‎5.12c does not apply any moment to the 

instantaneous center of rotation of the bar (which is the intersection point of the three 

elements), and therefore does not affect the triad. 

When an external force is acting on the triad, the inverse kinematics method described 

in section ‎5.3 is no longer valid. A geometric method was developed for 

characterizing the triad position when it is subjected to an external force acting on the 

center of mass of the bar (Figure ‎5.13): 

1. Calculate the resultant force of the internal force of the force-controlled 

element and the external force (                ) 

2. The action line of the resultant force passes through the intersection point of 

the action line of the two forces. 

3. This action line and the continuations of the other two elements intersect at 

one point. 
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Figure ‎5.13: The change of the triad shape due to external force acting on the center 

of mass of the bar. The geometric characterization is that the continuations of the 

action line of the resultant force and the other two elements intersect at one point.  

5.5 Chapter Summary 

In this chapter we described the structure of the triad used to model a single segment 

of the caterpillar. The chapter also introduced the three main problems which are of 

concern in our mode: (1) stability, (2) shape change and (3) softness. The next chapter 

will introduce enhancements to the model triad and will further develop the three 

main issues listed above. 
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6 Model enhancements 

This chapter introduces two improvements to the triad model: impedance control and 

area conservation. The motivation and the implementation of each of the two 

enhancements will be described. Also, their effect on the three problems of stability, 

shape change and softness, will be analyzed. 

6.1  Impedance control 

In general, robot degree of freedom (DOF) can be controlled by one of two control 

types: position control or force control (no mechanical system can determine both 

position and force). In position control, the control variables are kinematic: position, 

velocity and acceleration; in force control the control variable is the force which the 

robot exerts on the environment [23].   

Motion control is useful for many industrial applications because of its high accuracy: 

each joint position is calculated and monitored at each point in time. Nevertheless, it 

is not well suited when the robot interacts with the surrounding environment, as do 

the segments of our model (with the ground and with the neighboring triads). 

For example, consider the case of three triads (not necessarily tensegrity triads) 

between two walls, as shown in Figure ‎6.1. Any change in the length of any one 

element must be accurately coordinated with all other elements. (This is the case in 

Stulce’s work mentioned in section ‎1.1). Uncoordinated movement can produce high 

forces with consequent damage to the robot. Therefore, the use of motion control in 

this case does not produce fault tolerance. 

 

Figure ‎6.1: Triads between two walls. 
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Moreover, soft robots deform by external and internal forces, which makes it very 

difficult to coordinate their exact position. Our triad also demonstrates structural 

softness and possesses a similar problem. 

In conclusion, pure motion control is not feasible for our model, and the suitable type 

of control for soft robots is force control. 

6.1.1 Motivation for impedance control 

Our basic control algorithm attempts to solve this problem by combining position 

control and force control – one element is force controlled while the two other 

elements are position controlled. As was demonstrated, this strategy enables 

deformation to external forces and therefore achieves some degree of fault tolerance. 

But this “softness” is not sufficient. Consider the case that the two legs of the triad 

touch the ground (the connection of a leg to the ground is modeled by a revolute 

joint). In this case, the triad has zero DOFs even without the force-controlled element 

(Figure ‎6.2). Therefore, the force controlled element does not have any effect, and 

softness is lost. 

 

Figure ‎6.2: Illustration of the shortcoming of the basic control algorithm: The top 

cable and the strut are position controlled (represented as a rigid line) and the bottom 
cable is the force controlled element (represented as a dashed line). In that case when 

both legs touch the ground, the triad has zero DOFs and softness is lost. 

One option is to add another force-controlled element: the two cables will be force 

controlled with a constant force on each cable. The strut will remain position 

controlled as shown in Figure ‎6.3. 
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Figure ‎6.3: Two force-controlled elements. 

Stability analysis for this control strategy was performed using the principle of 

potential energy (nomenclature is taken from Figure ‎6.3): 

The strut is of constant length and does not affect the potential energy of the system. 

For simplicity, analysis was performed for the case that:   

1. The cables are set to the same constant tension force –  , where   designates  

the absolute value of the force . 

2. The geometric values are:                            
 ⁄  

The potential energy of the system is given by: 

   ∫     

  

 

 ∫      
  

 

  (     ) (‎6.1) 

Cable length can be described by: 

 
    √                     (     ) 

    √                     (     ) 
(‎6.2) 

Now, Plotting   (     ) gives: 

 

Figure ‎6.4: Potential energy graph of a triad with two cables under constant force 

control. 
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There is no minimum point on the graph. Therefore, the equilibrium point [(     )  

(
 

 
   )] is an unstable equilibrium point. The same result was also encountered in 

simulations of triads using other geometric and force conditions. 

A new control strategy is needed and will be presented in the next section. 

6.1.2 Introduction to impedance control 

Physical systems can be divided into two types: 

1. Impedances, which accept flow inputs (e.g., motion) and yield effort output 

(e.g., forces). 

2. Admittances, which accept effort inputs and yield flow output. 

The concepts of impedance and admittance are familiar to designers of electrical 

systems and are usually regarded as equivalent and interchangeable representations of 

the same system, which is true for all linear systems operating at finite frequencies. 

But manipulation is fundamentally a non-linear problem, and for non-linear systems 

this equivalence is not valid. For example, consider a manipulator that interacts with a 

constrained inertial object like a wall. The wall can be pushed but it can’t be moved. 

Therefore, the manipulator can determine the output force but not the position. This 

and other examples show that to ensure physical compatibility, the manipulator 

should assume the behavior of an impedance. 

The general strategy of impedance control is to control position (as in conventional 

robot control) and, in addition, to give “disturbance response” for deviations from that 

motion in the form of impedance. The standard impedance control law in industrial 

robots is: 

    (    )   (    ) (‎6.3) 

Where F   is the end point output force vector,    and    are the desired equilibrium 

end point position and velocity vectors in the absence of environmental forces 

(referred to as the virtual position and the virtual velocity respectively) and   and   

are the real position and velocity vectors.  

The lowest order term in any impedance is the static relationship between the output 

force and the input displacement, also known as stiffness, where     is the stiffness 

matrix. This term causes a spring-like behavior. The degree of stiffness can be 

controlled by changing the stiffness matrix.  
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The second term is the relationship between force and velocity, where   is the 

damping matrix. It functions as a damper to moderate the manipulator’s reaction time 

and to avoid fluctuations. 

In standard industrial robotics, the above equation needs to be transformed from end 

point coordinates to joint coordinates by using the Jacobian matrix. Also, the inertial, 

frictional, and gravitational dynamics of the manipulator are sometimes taken into 

consideration [24]. 

6.1.3 Implementation of impedance control 

The impedance control law used to actuate cables and struts in our model is a 

modification of the standard equation: 

       (    )     (‎6.4) 

Where: 

   –    Output force 

    – Initial force 

   – Stiffness coefficient 

    – Virtual length 

   – Real length 

   – Damping coefficient 

   – Real velocity 

The differences between the standard impedance equation and the one implemented in 

our model are as follows: 

1. The main difference is the addition of initial force (  ), which does not exist in 

the standard equation. This term is responsible for keeping the triad in self-

stress. Of course,    must be negative for cables (tension force) and positive 

for struts (compression force). 

2. In the tensegrity triad each actuated element is controlled separately and 

independently. Therefore all variables in the equation are scalars rather than 

vectors or matrices. 

3. There is no need to transform the equation from end point coordinates to 

actuator coordinates, and there is no need to consider robot dynamics. The 

equation above is sufficient as is. 
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4. Virtual velocity is omitted. This is warranted because caterpillar movement is 

relatively slow and virtual velocity can be considered as nonexistent; the final 

term is functioning as pure damping. 

5. Finally, there is a nomenclature change:   is used instead of  . 

6.1.4 Stability 

As demonstrated in section ‎6.1.1, controlling both cables of the triad with constant 

force results in an unstable system.  Repeating the analysis, this time with both cables 

under impedance control, gives a potential energy function of: 

 
  ∫ (    (     ))   

  

 

 ∫ (    (     ))    
  

 

 

(      )  (     ) 
 

 
  (  

    
 ) 

(‎6.5) 

Plotting the graph yields: 

  

Figure ‎6.5: Potential energy graph of a triad with two cables under impedance control. 

This time the graph has a minimum point and, therefore, the system is stable. Note 

that the stability is a function of   . Simulations indicate that there is a critical value of 

  below which the system is still unstable. This is because the output force gets closer 

to the situation of constant force as   becomes lower (    means constant output 

force if the transient damping is neglected). 

Also, simulation shows that stability remains when all three elements – the cables and 

the strut – are under impedance control (no graph is shown due to the difficult of 

visualizing a function with three variables). 
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6.1.5 Shape change 

The final shape of the triad is achieved when it reaches its equilibrium point. 

Changing the impedance control parameters      and    changes the equilibrium 

point and therefore causes the triad to change its shape. (The parameter   doesn’t 

influence the final equilibrium; it only influences the transition between two shapes.) 

Remember that each actuated element is controlled separately, and different elements 

can have different parameter values. 

Note that although the impedance equation is controlled by four parameters, two 

parameters –    and    – are redundant and three parameters are sufficient to 

explicitly determine element behavior. For example, the following two impedance 

equations are identical: 

 

                               (   )    

      
                               (   )    

    (‎6.6) 

 

Nevertheless, it is very convenient to use the impedance equation as it appears in 

equation (‎6.4) for the following reasons: 

1. The impedance equation emphasizes the self-stress forces. When the actuated 

element is at its virtual position, the output self-stress force is   .  

2. More importantly, the impedance equation enables more intuitive control of 

triad shape:    is responsible for the base forces of the triad and    is 

responsible for controlling the element length. 

6.1.6 Softness 

When all three actuated elements of the triad are under impedance control, the triad 

exhibits much higher deformability than it would using the basic control algorithm 

since each element can change its length when the triad is subjected to external forces. 

For example, look again at Figure ‎5.12c. The horizontal force in the middle of the bar 

had no effect on the triad shape when using the basic control algorithm. When using 

impedance control in all elements, this force causes the triad to shrink. 

The stiffness (or softness) of the triad can be controlled by changing the stiffness 

coefficient. Increasing the stiffness coefficient ( ) in all elements increases the overall 
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stiffness of the triad. Decreasing   will result in a loose triad. Analytical analysis of 

triad shape change and softness will be discussed in section ‎6.3.  

6.2 Area conservation 

6.2.1 Nomenclature 

The common way to specify a rigid body position in a plane is by its two Cartesian 

values (   ) plus a rotation angle. This section presents a different and bijective way 

of doing so, which will be used later in this chapter.  

Look at the two frames shown in Figure ‎6.6 .   is the distance between the two frame 

origins,    is the angle from the positive  -axis of frame { } in a CCW manner  to 

the positive direction of the connection line, as shown in the figure.    is similarly 

defined. 

 

Figure ‎6.6: Describing a frame in plane. 

Now, the position of frame {B} relative to frame {A} can be explicitly described by 

the following three parameters: 

   –    The distance between the frame origins 

    – Bending angle, defined as   
     

 
  

     – Shear angle, defined as   
     

 
      

To understand the meaning of the angles, consider the segments described in Figure 

‎6.7. The frames are attached to the bars such that their  -axis is placed along the bar. 

For clarity, only bars and struts are illustrated. 

x

y

  

  

 

{A}

{B}
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Figure ‎6.7: Segments subjected to pure bending (a) and pure shear (b). 

The segment in Figure ‎6.7a is subjected to pure bending (shear angle is   ). A 

segment under pure bending forms an isosceles trapezoid. On the contrary, the 

segment in Figure ‎6.7b is subjected to pure shear (bending angle is   ). A segment 

under pure shear forms a parallelogram. 

6.2.2 Motivation for area conservation 

Figure ‎6.8 shows two examples of a caterpillar simulation. The actuated elements are 

all impedance controlled. The model in Figure ‎6.8a is subjected to a gravitational 

force horizontal to the caterpillar (e.g., when climbing up a wall), which makes the 

caterpillar lean. Two consecutive legs are lifted in Figure ‎6.8b, and their segments fall 

to the ground. In both examples simulations show that the model is sensitive to shear 

movement, meaning that relatively small forces can result in large shear movements. 

Other examples can be found which demonstrate this problem. 

 

Figure ‎6.8: Two examples demonstrating that the model is too sensitive to shear 

movement. 

One way to solve this problem is to increase the stiffness of the segments by 

increasing    and   parameters. But doing so undermines the principal property of the 

model – its softness. The following section describes an alternative method. 
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6.2.3 Implementation of area conservation 

One might ask why this phenomenon is not a problem for the biological caterpillar. 

The answer is that caterpillars have nearly constant volume (the internal air cavity that 

can be emptied constitutes 3-10% of body volume [25]), and this volume conservation 

in the real caterpillar does not allow shear deformation. 

Because our caterpillar model is a two dimensional model, we employ area rather than 

volume conservation. 

The shear angle    has an impact on the caterpillar area. The area of a segment in 

pure shear is shown in Figure ‎6.9 and given by: 

           (‎6.7) 

The change in area relative to the maximum area for a small shear angle is: 

      (       )  
 

 
     

  (‎6.8) 

 

 

Figure ‎6.9 : Segment area in pure shear 

To avoid this shear movement and its consequent area loss, internal torque is added to 

the joints connecting the strut and the bars as shown in Figure ‎6.10. 

 

Figure ‎6.10: Internal torque is applied to the joints connecting the strut and the bars. 
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The internal torque resists the area loss    and its value is proportional and opposite 

to the shear angle: 

          (‎6.9) 

This internal torque is calculated and applied to each segment separately. Simulations 

under the same conditions as those in Figure ‎6.8 and with the additional internal 

torque are shown in Figure ‎6.11. It can be seen that the model is now more rigid. 

 

Figure ‎6.11: The effect of internal torque. 

Note that although segment area is also determined by the bending angle (  ) and the 

strut length (   ), their effect is minimal: 

 During crawl most segments undergo little bending. Therefore, the bending 

angle    has little effect on the total caterpillar area. 

 Although   clearly affects segment area, when the entire model is considered, 

some segments are shrunken and some are stretched such that the overall 

length of the model is nearly constant. Therefore,   does not greatly affect 

caterpillar area (see section ‎8.5.1). 

Also, observation of biological caterpillar movement shows that its segments do bend 

and shrink but do not cause significant shear deformation. 

6.2.4 Stability 

The potential energy of a tensegrity triad with two impedance-controlled cables is 

given in ‎6.1.4. The internal torque addition to this equation is: 

     ∫      

  

 

  ∫         
  

 

 

 
   

  (‎6.10) 
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The total potential energy is given by: 

   (      )  (     ) 
 

 
  (  

    
 )  

 

 
   

  (‎6.11) 

Plotting this equation gives: 

 

Figure ‎6.12: Potential energy graph of a triad with two cables under impedance 

control and internal torque. 

If we compare this graph to that in Figure ‎6.5, we see that the minimum point remains 

and the graph becomes more convex. This means that the internal torque makes the 

stability more robust. 

6.3 Final segment model 

The final segment model has the following characteristics: 

1. Cables are connected to the ends of the bars. This cable configuration 

resembles the configuration of the VL1 and DL1 muscles (see Figure ‎5.2b) 

and is much easier to analyze. This configuration is the one that will be used 

from now on. Note that this configuration is not possible without the internal 

torque because this would result in a finite mechanism (see Figure ‎4.4).  

2. The internal torque coefficient   is high enough that the shear angle can be 

neglected. Therefore, the segment experiences pure bending, and assumes the 

shape of an isosceles trapezoid. Also, cables always stay parallel to the strut, 

as shown in Figure ‎6.13. 
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Figure ‎6.13: Final segment model: cables are connected to the ends of the bars, 

segment assumes the shape of an isosceles trapezoid and cables are always parallel to 

the strut. 

3. The elements are under impedance control as follows (see also section ‎7.2):  

 The strut control law: 

          (the stiffness coefficient equals zero) 

 The cable control law:  

    
  

 
   (       )      and       

  

 
   (       )      

Note that    and   are equal among all three elements, and the initial force of 

the cables is exactly half the magnitude of the initial force of the strut. 

The internal torque changes the behavior of the triad, and the equilibrium conditions 

that was described in sections ‎5.3-‎5.4 are no longer valid. The following two sections 

present an analytical way to determine the shape of a triad with the impedance control 

and internal torque addition: section ‎6.3.1 analyzes shape change without external 

forces, and section ‎6.3.2 analyzes the effect of external forces (meaning softness). 

These sections show only the final results. The full development of the equations can 

be found in Appendix A. Figure ‎6.14 illustrates all the lengths, forces, torques and 

reactions that a segment possesses and which will be used in our analysis. For clarity, 

all elements are shown as rigid lines and joints are omitted. 

  

  

isosceles trapezoid
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Figure ‎6.14: Segment lengths, forces, torques and reactions. 

Where: 

   – Bars lengths 

       – Cables lengths 

    – Strut length 

       – External torque and force acting on the center of mass of the follower bar 

    – Internal torque (torque is the same at both points) 

   – Strut force 

          –    Reactions between the base bar and the wall 

        – Reactions between the strut and the bars (perpendicular to the strut)9 

       – Cables tension 

    – Bending angle 

6.3.1 Shape change 

Without external forces, the cables assume exactly the virtual lengths:  

                       (‎6.12) 

It is convenient to describe the shape of the triad by the two parameters -    and    – 

which equal: 

         (
         

  
)           

         
 

 (‎6.13) 

Note that the shape of the triad is determined only by the two virtual lengths of the 

cables (     and     ); the stiffness coefficients of the cables (   and   ) do not have 

any effect. 

                                                 
9
 Normally, elements that are connected only at their ends do not exert perpendicular reactions. These 

reactions exist because of the internal torque. 
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The internal forces of the triad are as follows: 

       
  
 
             

      
(‎6.14) 

Equilibrium is established when cable lengths are equal to virtual length and have the 

same tension (which is exactly half the strut force). Also, the internal torque has no 

effect and equals zero. 

6.3.2 Softness 

This section analyzes the effect of external forces on the triad shape. 

In the general case an arbitrary force and torque are applied to the center of mass of 

the follower bar, and cables can have different virtual length and stiffness coefficients. 

The analysis is performed only for the case that both cables have the same virtual 

length (         ) and the same stiffness coefficient (     ), which will be 

denoted as    and   respectively. Also, analysis is performed for three distinct cases 

as shown in Figure ‎6.15. 

 

Figure ‎6.15: Three cases of external load: (a) axial force, (b) bending torque, and (c) 

bending force. 

As mentioned, it is convenient to describe the shape of the segment by    and   . 

Equations (‎6.15)-(‎6.16) give these two parameters for each of the three cases. Also, 

the maximum external load that can be applied is given. Beyond that maximum, at 

least one cable becomes loose, and the segment loses its stability. 

    

  

  

  

  

  

  

(a) (b) (c)
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(a) Axial force: 

 
      

  
  

 

     
           10 

(‎6.15) 

(b) Bending torque: 

 

      

   
  

   
 

   
    

 
 

(‎6.16) 

(c) Bending force: 

 

      

   
    
    

 

   
   

  
 

(‎6.17) 

In all cases, cables length can be calculated as follows: 

 
             
             

(‎6.18) 

Looking at the above equations, it can be seen that segment stiffness is determined (in 

part) by the stiffness coefficient  , not by the initial force   . In contrast, the external 

load limit is dependent on the initial force but not on the stiffness coefficient. In other 

words, as long as the external load is within its limits, the initial force within the 

segment doesn’t influence segment stiffness. 

Interestingly, Lin, et al. [26] found that during caterpillar growth, in which caterpillars 

increase their body mass 10,000 fold, body pressure stays almost constant. Body 

pressure does not have a significant impact on caterpillar stiffness. 

Moreover, they found that, as expected, muscle activation has a major effect on 

caterpillar stiffness. In our model, muscle activation is simulated, in part, by changing 

the stiffness coefficient ( ) of the cables (described in detail in section ‎7.2.2). The 

equations above indicate that   has a major effect on segment stiffness. 

                                                 
10

 This external force limit is relevant only for compression forces. 
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6.3.3 Determining the magnitude of the internal torque coefficient 

In the previous section it was assumed that the internal torque coefficient   was 

sufficiently high that the shear angle could be neglected and the segments would 

assume the shape of an isosceles trapezoid. This assumption simplified the analytical 

considerations above. 

Unfortunately, this also results in unwanted behavior. 

To understand the problem, consider the case where a segment is connected to the 

ground. In this case, the isosceles trapezoid shape constraint leaves the segment with 

only one DOF – the bending angle –‎  as shown in Figure ‎6.16. 

 

Figure ‎6.16: A grounded segment has only one DOF. 

Now, several connected segments still have only one DOF. Changing an angle of one 

segment necessarily changes the angle of all other segments. For example, in Figure 

‎6.17 the caterpillar stands on flat terrain with its right leg lifted (for clarity, the struts 

and bottom cables are not drawn). In Figure ‎6.17a the shapes of the caterpillar 

segments fit the terrain. But changing the angle of the right segment changes the 

shape of all other segments, shrinking and expanding them alternately, as shown in 

Figure ‎6.17b. Clearly, this shape is unwanted.  

Note that this explanation is purely kinematic. Dynamically, trying to change the 

shape of the caterpillar model by controlling the right segment alone will simply not 

work: the rest of the segments will resist the change. 

  

Figure ‎6.17: The problem of high   when several segments are grounded. 

        

(b)(a)
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This can be resolved by lowering the internal torque coefficient ( ) in a way that will 

enable a small (but not negligible) shear angle. In this way the effect of changing the 

angle of one segment will be damped in neighboring segments, as shown in Figure 

‎6.18. The exact magnitude of   in our model was determined empirically. 

Note that, when decreasing  , we can no longer assume isosceles trapezoid shape and 

the equations of the previous section are no longer valid. Nevertheless, simulations 

demonstrate that these equations still give good results. 

  

Figure ‎6.18: Using a   that enables a small shear angle solves the problem. 

(b)(a)
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7 Caterpillar Control 

As mentioned in section ‎2.1, caterpillars have a relatively simple nervous system; yet, 

they are able to execute complex maneuvers. Our control algorithm attempts to 

approximate caterpillar physiology and takes inspiration from its general structural 

concept.  

The internal sensors the model uses are force and position sensors for each controlled 

element. Also, angle sensors for the determining the angles between each bar and its 

adjacent struts are used. The model does not employ vision techniques; the only 

external sensors used are ground contact sensors. 

7.1 Control Scheme 

Caterpillar control is divided into two major units: 

1. High-level control delivers commands to the low-level controllers in order to 

effect coordinated motion. In this way, the high-level unit simulates the 

function of the nervous system. 

2. Low-level control is composed of localized controllers for each of the cables, 

struts and legs, simulating the mechanical properties of the caterpillar. Each 

low-level controller is independent of all other low-level controllers: the 

controller output of an element – cable, strut or leg – is calculated using only 

the inputs of that specific element and, if needed, input from the high-level 

control unit. 

The role of each type of the low-level controller is as follows: 

 Cable controllers: Cables are analogous to muscles. The cable controllers 

mimic the mechanical behavior of the muscles. These controllers are directly 

controlled by the high-level control unit just as muscle activity is controlled by 

the nervous system. 

 Strut controllers: Struts are analogous to the hydrostatic skeleton, and the strut 

controllers mimic hydrostatic pressure. These controllers are completely 

independent and are not controlled by the high-level control unit. 
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 Leg controllers: Leg controllers take on three roles: 1. to lift and lower the leg, 

2. to control grip, and 3. to notify the high-level control unit that a leg is 

touching the ground. Leg controllers are controlled by the high-level control 

unit. 

From the above, the high-level control unit controls the cables and legs but not the 

struts. High-level control is divided into two levels: 

 Level 1 control: This is the central control unit and is inspired by the 

caterpillar’s central pattern generator (CPG). Its role is to control movement 

timing and to activate the relevant cables and legs. 

 Level 2 control: This mediates between level 1 control and the cable 

controllers of each segment, adjusting level 1 control for each segment 

according to terrain. Segment control is thus local, as inspired by caterpillar 

segmental ganglia. 

Note that legs are directly controlled by the CPG and do not need this 

mediation since they have only two states. 

An essential property of high-level control is that the coordination of locomotion is 

triggered by the contact of the legs with the ground. Figure ‎7.1 illustrates the 

hierarchy of the control scheme. 

 

Figure ‎7.1: Hierarchy of the control scheme 
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7.2 Low-level control 

Cables and struts are controlled by impedance, but the implementation of impedance 

control is different for each element. 

7.2.1 Struts  

Struts simulate the internal pressure of the caterpillar’s hydrostatic skeleton. In the 

biological caterpillar the internal pressure is not constant, and the changes in pressure 

cannot be correlated with movement [25]. For simplicity, our model assumes constant 

pressure. Therefore, the stiffness coefficient   is set to zero and the control law for 

struts is reduced to: 

         (‎7.1) 

where   is the output strut force and     has a positive value (compression force).11 

The parameters of the strut controllers (   and  ) are constant during all stages of 

simulation. 

7.2.2 Cables 

Cables simulate the function of caterpillar muscles. Caterpillar muscles have a large, 

nonlinear, deformation range and display viscoelastic behavior. Figure ‎7.2 illustrates 

muscle behavior in passive (also called tonic) state and fully stimulated (also called 

tetanus) state [27].  

 

Figure ‎7.2: Experimental data for loading–unloading response of caterpillar muscle in 

passive and stimulated conditions. 

The cable control law is: 

                                                 
11

 The output force is not truly constant because of the damping term. Nevertheless, it is nearly 

constant. 
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  (    )    (‎7.2) 

Notice that the virtual force of a cable has a magnitude of exactly half the strut force 

and an opposite direction (tension force). The reason for this choice of the virtual 

force is that it enables a simple way to control segment shape: when there are no 

external forces, the cable lengths are exactly the virtual length (see section ‎6.3.1). 

If all of the controller parameters (        and  ) remain constant, the model will stay 

in a steady state and will not move. To control cable behavior, the cable controller 

receives an input signal from the high-level control (referred to as a high-level 

command). The ‘command’ input receives values between 0 and 1, which causes a 

change in the controller parameters and therefore changes cable behavior. In 

particular, the parameters that are changed due to the command input are   and   , 

while    and   are constant during all stages of simulation. 

As high-level control simulates the nervous system and cables simulate the muscles, 

the high-level command simulates nerve stimulation. A command value of 0 indicates 

that the cable should be "relaxed," meaning a low value of   and a high value of   . A 

value of 1 indicates that the cable should be "shrunken" with a high value of   and a 

low value of   . Intermediate values indicate intermediate behavior. 

Another feature of the cable controller is that it has a low pass (LP) filter between the 

command input and the impedance controller. This LP filter causes a slower cable 

reaction, which simulates the slow reaction of the caterpillar muscle. Figure ‎7.3 

summarizes the characteristics of the cable controller.  

 

Figure ‎7.3: The cable controller. (a) The cable controller gets a high-level command 

which passes through a low pass (LP) filter. (b) The command receives values 

between 0 and 1, which controls cable behavior. 
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7.2.3 Legs 

Legs have only two final positions: lifted or lowered. The state of the leg is 

determined by the high-level control, and the leg controller is responsible for the 

transition between these positions. This transition is controlled by a simple motion 

controller: the controller creates a cubic path between initial and final positions (there 

are only two paths: from lowered to lifted and from lifted to lowered). 

The leg controller is also responsible for ground gripping. The algorithm for 

“locking” the leg to the ground is described in Figure ‎7.4. Note that when a leg is 

locked to the ground it cannot move, but it can still rotate (as in a pinned connection). 

 

Figure ‎7.4: Leg locking algorithm. 

Finally, the leg controller is responsible for sending a signal to the high-level control 

unit when the leg touches the ground. 

7.3 High-Level Control 

High-level control coordinates the movements of the caterpillar by controlling the 

cables and the legs of each segment. Cables are controlled using the ‘command’ 

inputs which receive values between 0 and 1. Legs are controlled using a binary input 

which triggers lifting or lowering of the leg. Therefore, for an eight segments 

caterpillar model, the high-level control needs to control 16 continuous parameters 

(for 16 cables, two cables in each segment) and 9 binary parameters (for 9 legs).  

 The nomenclature for the legs, segments and cables that will be used in the remainder 

of this chapter is shown in Figure ‎7.5. Note that all elements are numbered starting at 

the posterior side. 

Leg is commanded to be lowered 

Locking is enabled 

Leg is lowered 

Leg touches the ground 

Leg is locked to the ground 

Leg is commanded to be lifted 

Locking is disabled and leg is free 
to be lifted 

Leg is lifted 
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Figure ‎7.5: Numbering of the legs, cables and segments. L is used to denote a leg, C is 

used to denote a cable and H is used to denote a segment. 

One crawling stride of the caterpillar is defined as a complete movement of a 

contraction wave from the posterior (back side) of the caterpillar to its anterior (front 

side). Each stride is divided into several steps as follows: 

step 1: The first step in a stride starts with the lifting of L0 and ends when L0 

touches the ground. 

step 2: The second step starts when L0 touches the ground and ends when the 

L1 touches the ground. 

    

step 9: The last step starts when L7 touches the ground and ends when L8 

touches the ground. 

Figure ‎7.6 illustrates the different steps of a crawling stride. The snapshots in this 

figure show the starting position of each step. 

 

Figure ‎7.6: A complete stride of the caterpillar model is composed of 9 steps. 

The high-level control algorithm has the following characteristics: 

1. The transition from step to step is triggered by the contact of the legs with the 

ground. 
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2. In each step, up to three segments are in various stages of contraction and up 

to 3 legs are off the ground. This enables increased stride length. 

3. A new stride starts before the previous stride ends. This enables increased 

stride frequency. 

The two last characteristics can be seen in Figure ‎7.6.  

High-level control is divided to 2 levels: level 1 and level 2. The following sections 

describe the infrastructure of these two levels. 

7.3.1 Level 1 control  

This level of control is equivalent to the Central Pattern Generator (CPG) of the 

caterpillar (See section ‎2.2) and is responsible for the coordination of the movements 

of the cables and legs. This level of control does not take into consideration the terrain 

shape and provides commands suitable only for flat terrain. 

The level 1 control activates several segments at a time, depending on the present 

stride step. The other segments are in ‘resting’ state. In the first step the rear segments 

are activated, and as the stride proceeds, the activation of the segments moves 

forwards.  

The activated time of each segment is called the swing phase and the resting time of a 

segment is called the stance phase. The swing phase of a segment starts when its 

posterior leg is lifted, and ends when its anterior leg is lowered. 

In each step, level 1 control sends commands to the activated segments (cables and 

legs). The commands of each step are time dependent and change as the step 

proceeds. 

For example, consider step 1: 

In step 1, segments H1-H3 are activated and start their swing phase. Figure ‎7.7 shows 

how the commands of each cable and leg change as a function of time. Remember 

that the step does not end after a particular time; rather, it ends when L0 touches the 

ground. For example, if L0 touches the ground after 0.2 s, the subsequent commands 

of step 1will not be executed, and step 1 will cease to affect motion. 

 When step 1 ends, the three segments continue their swing phase (segment H1 enters 

the stance phase only at the end of step 2) and remain activated under the control of 

step 2. 
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Figure ‎7.7: The commands sent to the cables and legs in step 1. Commands are 

delivered to the activated segments (H1-H3) and change during time. 

Each step activates different sets of segments and issues a distinct set of commands. 

Each stride, however, issues the same set of step commands. The only thing that can 

change is the duration of the step, which can differ from stride to stride as it is 

dependent on ground contact. 

7.3.2 Level 2 control 

This level of control is local: each segment has its own control unit, equivalent to the 

ganglia spread over the biological caterpillar segments. Level 2 control is responsible 

for fitting motion to the terrain shape. 

This control has two modes:  

One mode for controlling segments in stance phase (when the segment is at rest and 

thus not controlled by level 1 control) and adjusting them to the terrain. A second 

mode for segments in swing phase (when the segment is activated and thus controlled 

by level 1 control). In the second mode, the level 2 control mediates between level 1 

commands and the cable controllers, adjusting the commands to the terrain. 

Mode I: Adjusting a segment in stance phase to the terrain shape 

The algorithm is based on the assumption that when both legs of each side of a 

segment touch the ground, the segment has only 1 DOF – the bending angle (although 

the assumption is not completely accurate, see section ‎6.3.3). The bending angle is a 

function of cable length, which in turn is a function of the cable’s command. A simple 

algorithm for calculating the cable’s command for a desired bending angle is 
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described in Appendix B. This algorithm is referred to as the single segment 

algorithm. 

The complete algorithm assumes that, for the model to perfectly fit the terrain, each 

segment bar (and the leg connected to it) must be exactly perpendicular to the terrain. 

Although the complete algorithm does not perfectly fulfill this criterion, it is relatively 

simple and adequate for our application. 

Before describing the complete algorithm, consider the case of two segments with 

arbitrary bending angles of   and  . The algorithm for adjusting them to the terrain is 

as follows:  

1. Find the average of the segment angles: 
(   )

 
. 

2. Use the single segment algorithm for adjusting each segment to this angle. 

Figure ‎7.8 shows an illustration of this algorithm. For clarity, only the bars 

(represented as rigid lines) and top cables (represented as dashed lines) are drawn. It 

can be seen that using this algorithm makes the segment bars (the rigid lines) nearly 

perpendicular to the terrain. This algorithm performs terrain adjustments well while 

maintaining simplicity and is referred to as the two-segments algorithm. 

 

Figure ‎7.8: Illustration of the two-segments algorithm. By setting the bending angle of 

both segments to the average angle, the segment has a better fit to the terrain.  

The complete algorithm uses the algorithms described above and works locally: each 

time a certain leg touches the ground, one of the algorithms - the single-segment or 

the two-segments - is performed on the segments posterior to that leg (and are in 

stance phase). In detail, the algorithm works as follows: 

 When L0 touches the ground nothing happens. The algorithm is not activated 

since segment H1 is still not fully grounded and continues the swing phase. 
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 When L1 touches the ground, segment H1 enters the stance phase and the 

single-segment algorithm is performed on that segment. The segment's angle 

is set to a default value of 90°. 

 When L2 touches the ground segment H2 enters the stance phase and the two-

segments algorithm is performed on H2 & H1. 

 The same is true for the remainder of the stride: each leg activates the two-

segments algorithm for its two posterior segments. 

Mode II: Adjusting a segment in swing phase to the terrain shape  

A segment in swing phase is adjusted to the terrain by a combination of two sets of 

commands:  

1. the commands arriving at the segment from level 1 control. 

2. the stance phase commands of the segment, before it became activated (these 

commands are assumed to fit the terrain, as described above) 

To describe how this combination is calculated, first the following two expressions 

are defined: 

 
     ̃  

     

 
 

     ̃  
     

 
 

(‎7.3) 

where  ̃   ̃  are the commands arriving from the level 1 control of the top and 

bottom cables respectively and       are the stance phase commands of the top and 

bottom cables respectively. 

The output commands of level 2 control to the cables – ‎      – are as follows: 

 

   {  
    if      
      if        
    if      

 

   {  
    if      

       if        
    if      

 

(‎7.4) 

To understand the meaning of these equations, consider the example shown in Figure 

‎7.9. The commands to the segment arriving from the level 1 control are  ̃   ̃  

   , and tend to shrink the segments to a rectangular shape (since they are both equal). 

On the other hand, the resting segment bends to fit a convex terrain and have the 
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following commands:             . The output commands are:          

       . They shrink the segment but also keep the segment bent; therefore the 

segment maintains terrain shape. Note that the algorithm has upper and lower bounds 

of   and   respectively. 

 

Figure ‎7.9: An example for calculating the output commands of level 2 control. The 

output commands are determined by a combination of level 1 commands and the 

resting commands. 
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8 Results 

8.1 Model Characteristics 

The biological descriptions of this chapter pertain to the Manduca Sexta species of 

caterpillar in its fifth instar (the last developmental stage before it becomes a pupa). In 

this stage the caterpillar weights about 2 g, and its dimensions are about 60 mm in 

length and 5mm in height [26].  

When divided into 11 segments (3 thoracic + 8 abdominal, neglecting the small head), 

each segment weights about 0.18 g with an average length of around 5.5 mm.  

While our model maintains consistency with the height and weight of the biological 

caterpillar, there is considerable discrepancy in segment length which will be 

discussed in ‎8.2.2. 

8.2 Kinematic results 

8.2.1 Crawling stages 

In section ‎7.3 the different steps of the caterpillar crawl where shown in order to 

illustrate the algorithm which is used by the high-level control. Here, the strategy of 

the crawl is more deeply analyzed. 

The complete stride is divided into three different stages. Illustration of these stages is 

shown in Figure ‎8.1, and the role of each stage is detailed below: 

1. The role of the first stage is to initiate the crawl. In this stage, the rear part the 

caterpillar is lifted and shrunken. The stage ends when the posterior leg - L0 - 

is lowered and touches the ground (image 1d in Figure ‎8.1). The gap between 

the original position of L0 and its new position is the stride length. During this 

stage the lifted segments are supported only on one side. 

2. The role of the second stage is to pass the wave through the body. In each step 

one segment is extended and relaxed and one segment is shrunken. For 

example, in the first step of the stage the posterior segment - H0 - is extended 

and H4 is shrunken (image 2a in Figure ‎8.1). Also, at each point in time there 

are 2-3 legs lifted. During this stage the lifted segments are supported on both 

sides. 
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3. The role of the third stage is to complete the stride. In this stage, the anterior 

leg - L8 - is lifted and the three anterior segments are kept shrunken in the air 

(image 3a in Figure ‎8.1). Then, the three segments are expanded one after the 

other. Similarly to stage 1, the lifted segments are supported on one side; yet, 

here the segments are extended, rather than compressed. 

 

Figure ‎8.1: Crawl Stages. 

In our model, the simulation is programmed such that the next stride begins when leg 

L6 touches the ground (when the crawl gets to the position shown in image 3b in 

Figure ‎8.1). For clarity, Figure ‎8.1 does not show the beginning of the next stride. 

8.2.2 Segment length 

The results given in the following sections for both the biological caterpillar and the 

caterpillar model were obtained from straight and horizontal crawling. Also, the 

caterpillar simulation reaches a steady state after 5 seconds of simulation. Therefore, 

the results shown here are the results that were obtained after this stabilization time. 

The length of the struts (which is equivalent to the segment length) during crawling is 

shown in Figure ‎8.2 and Table ‎8.1. 

Segment length changes by an average of 31%. This result is consistent with the 

observation of caterpillar muscles, which exhibit comparable shortening to 30% of 

resting length [9]. In contrast, the average stance (or resting) length of a segment is 

4.45mm, which is significantly different from the approximate 5.54mm in the 

biological caterpillar. The average duty factor in our model is 46%. The biological 

caterpillar has a duty factor of 41%. 
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1a

1b

1c

1d

3a

3b

3c

3d

2a

2b

2c

2d

2e  

    

  



64 

 

 

Figure ‎8.2: Strut length during crawling. The dashed line indicates transitions between 

swing and stance. The green line indicates average length in stance, and the red line 

indicates minimum length in swing. 

Table ‎8.1: Strut length and step times during crawling. 

Segment 

Stance 

Length 
(mm) 

Min 

length 
(mm) 

Length 

change 
(%) 

Stance 
time (s) 

Swing 
time (s) 

Step time 
(s) 

Duty 

factor12 
(%) 

H1 4.55 3.07 32 1.40 0.76 2.16 35 

H2 4.64 3.08 34 1.26 0.90 2.16 41 

H3 4.38 3.06 30 1.17 0.99 2.16 46 

H4 4.42 3.06 31 1.15 1.01 2.16 47 

H5 4.65 3.05 34 1.20 0.96 2.16 44 

H6 4.24 3.05 28 1.10 1.06 2.16 49 

H7 4.36 3.06 30 1.14 1.02 2.16 47 

H8 4.35 3.07 29 0.97 1.19 2.16 55 

Average 4.45 3.06 31 1.17 0.99 2.16 46 

 

8.2.3 Crawling parameters 

In the biological caterpillar the average stride length is 8.52mm, and the average 

duration of one crawl is 2.78s [28]. Also, a new stride begins every 2.81s.  The 

velocity of the biological caterpillar is        ⁄  . 

                                                 
12

 Duty factor is the swing time as a fraction of the total time. 
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In the caterpillar model the stride length is 4.19mm, the duration of one stride is 2.71s 

and a new stride begins every      . The velocity of the caterpillar model is: 

                    ⁄  . 

The duration of one crawl is very similar (a difference of 2.5%) and shows that the 

dynamic behavior of the model is close to the behavior of the biological caterpillar 

(see also section ‎8.3). On the contrary, the stride length of the model is less than half 

that of the biological caterpillar. This is also reason for the big difference in the 

velocity.  

Figure ‎8.3 shows the movement of the model’s center of mass (C.M.) during 

crawling. It can be seen that during most of its motion the C.M. remains at a relatively 

constant height, except during stage 3. In this stage the three anterior segments are 

lifted and cause the C.M. to be raised. 

 

Figure ‎8.3: Movement of the center of mass (C.M.) during crawl. Time between two 

consecutive asterisks is 0.1s. Movement is from right to left. 

8.3 Cable dynamics 

Woods et al. [9] examined the behavior of a caterpillar muscle. In their paper they 

tested the course of force development by a caterpillar muscle under tetanic stimulus 

at resting length.13 To compare these results, a similar test was conducted on the 

                                                 
13
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model cable. Results are shown in Figure ‎8.4 and Table ‎8.1, which demonstrate that 

the behavior of the model cable is close to that of the caterpillar muscle, and both 

exhibit a similar time constant. 

 

Figure ‎8.4: Force development under a tetanic stimulus of 2 seconds at resting length: 
(a) the model cable, and (b) the caterpillar muscle. 

Table ‎8.2: Time of force development under a tetanic stimulus at resting length. 

  Caterpillar muscle Model cable 

50% of peak force  0.27 s 0.26 s 

80% of peak force  0.41 s 0.56 s 

    

The change of cable forces in H3 while crawling is shown in Figure ‎8.5. Other 

segments demonstrate similar behavior. The maximum change in cable forces is only 

13.8% relative to resting force. 

 

Figure ‎8.5: The change of cable force in H3 while crawling in comparison to resting 

force. 
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8.4 Different terrains 

The locomotion of the model was tested on various terrains. The following figures 

show snapshots of model locomotion on these terrains. The complete videos of can be 

found at http://www.eng.tau.ac.il/~shai/studentlist.htm . 

 

Figure ‎8.6: Model climb of sharp incline. 

 

Figure ‎8.7: Model climb through curved terrain. 
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Figure ‎8.8: Model climbs upside down. 

8.5 Other results 

8.5.1 Area conservation 

Caterpillar internal area while crawling is shown in Figure ‎8.9. 

 

Figure ‎8.9: Change in caterpillar area during crawling. 

The change in caterpillar area while crawling is only 6.14%. This result correlates 

with the observation that caterpillars have nearly constant volume (See section ‎6.2.3). 
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8.5.2 Internal Pressure 

The model was tested with various levels of internal pressure -   . As was shown in 

section ‎6.3.2, as long as    is above a certain threshold, crawling is independent of the 

magnitude of internal pressure. 
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9 Discussion 

The chapter will firstly discuss the use of impedance control for Assur tensegrity 

structures in general. Secondly, we will focus on the caterpillar model and what we 

can learn from it. 

9.1 Controlling Assur tensegrity structures using impedance 

control 

Impedance control is a well-known control scheme [24]. Nevertheless, no work has 

been done on its application to tensegrity structures. 

We found that impedance control keeps the Assur tensegrity structure in singular 

configuration, thus maintaining the stability of the structure. In addition, impedance 

control enables us to produce a soft model with a controllable degree of softness. 

The implementation of impedance control in our model is very simple since each 

element is controlled separately and independently. As mentioned in section ‎3.4, all 

tensegrity structures have infinitesimal motion at their singular configuration, and the 

actual passive compliance of the structure around this point is determined, among 

other things, by the elasticity of the materials. The passive compliance of a tensegrity 

structure is usually much greater that the passive compliance of a standard industrial 

robot. The use of impedance control in our model can be thought of as a way to 

increasing this compliance (where the stiffness coefficient   is equivalent to Young’s 

modulus). 

In addition, Assur tensegrity structures, unlike most other tensegrity structures, are 

statically determinate structures which allow simple shape change. 

These two characteristics (simple control and passive compiance) make this 

combination (Assur tensegrity + impedance control) very useful for soft robotics. In 

contrast to using soft materials, this method requires relatively simple control; in 

contrast to using rigid bodies, it manifests softness. Figure ‎9.1. 
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Figure ‎9.1: Comparing Assur tensegrity structures with other types of robots. 

9.2 Caterpillar model 

The model exhibits several characteristics which are analogous to those of the 

biological caterpillar as described in the following sections: 

Empirical testing of the model has demonstrated that effective crawling requires that 

each stride be executed in three different stages, as described in section ‎8.2.1. 

Trimmer et al. [2] examined the kinematics of the biological caterpillar and found 

kinematic differences between three anatomic parts of the caterpillar: the thoracic 

segments, the midbody segments and the posterior segments. This distinction is 

similar to the three stride stages of the caterpillar model.  

Also, caterpillar model can navigate different terrains and in different directions using 

the same crawling pattern without adjusting the control scheme. This is made possible 

by slow stride speed and firm ground planting. The same is true for the biological 

caterpillar [28]. 

The internal pressure of the biological caterpillar is not a function of its size. During 

growth, its body mass is increased 10,000-fold, while internal pressure remains 

constant [26]. In the same way, our model is able to use the same strut force 

regardless of model size. 

It was proposed above that the mechanical properties of caterpillar muscles may 

assume responsibility for some of the control tasks otherwise carried out by the 

nervous system. Our model demonstrates that using impedance control for each cable 
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(which mimics the mechanical properties of caterpillar muscles) does indeed simplify 

high-level control. Also, caterpillar muscle develops force slowly. For comparison, 

caterpillar muscle force development is about four to seven times slower than that of 

an insect flight muscle [9]. The model show that adding the low pass filter to the cable 

controller, which makes the cable react slower, eases high-level control and results in 

smoother motion. Note that the time constant of the filter was determined empirically 

in order to optimize results. Only afterwards was the comparison made to the 

biological muscle, both of which exhibited similar time constants (Figure ‎8.4). In 

addition, other crawling parameters related to time (e.g., the duration of one stride) 

are comparable in both the model and the biological caterpillar.   

On the other hand, there is a discrepancy between the stride length of the model and 

that of the biological caterpillar. There are two reasons for this discrepancy: Firstly, 

the biological caterpillar has longer segments. Secondly, the biological caterpillar can 

contract up to four segments at a time. In our model, only three segments are 

contracted at a time. The reason for this limitation is that, when four segments are 

contracted and lifted together, the impact of gravity becomes much larger (especially 

in stages 1 and 3, where segments are supported only on one side). This makes it 

difficult to program locomotion in a way that will be robust in all crawling directions 

(vertical and upside-down). This is also the reason that the all of the model segments 

have legs, in contrast to the biological caterpillar. Fixing this discrepancy requires the 

change of many control parameters and should be improved in future versions of the 

model. 

Our research also suggests a few characteristics that the biological caterpillar may 

possess: 

Cable forces do not change significantly during motion (Figure ‎8.5). They have more-

or-less the same magnitude while crawling and while at rest. This suggests that 

caterpillars invest little additional energy when crawling as opposed to resting. 

In our model, stride timing is strongly dependent on the signals that the legs send 

when touching the ground. Without those signals, locomotion is not robust – it tends 

to be inefficient and many times unstable. Observations show that feedback from the 

legs is not essential for maintaining locomotion gait in fast insects like the cockroach, 

while it is critical in slow insects like the phasmid (the stick insect) [29]. Although we 
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were not able to find similar information on the caterpillar, their slower gait makes it 

reasonable to assume that they also need leg feedback. The model introduced in this 

thesis strongly supports this hypothesis. 

9.3 Further Research 

Future research can follow three directions:  

Firstly, the model can be improved in a number of ways. It should be optimized by 

increasing stride length. To do so, gravitational sensors would need to be added, 

which would allow for better control and better performance. In addition, the ability 

to control stride frequency would allow for variable velocity, and a more complex 

control algorithm could be designed to enable the model to navigate through obstacles 

and over gaps.  

Secondly, the model can be expanded into three dimensions. The transition from two 

to three dimensions is possible but would present several complications, particularly 

because Assur trusses theory for three dimensional structures is not yet fully 

complete.  

Finally, the construction of a physical mechanical model will greatly help to increase 

our understanding of these types of soft/rigid robots. 
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Appendix A - Development of the equations for 

shape change and softness. 

The following two sections present the development of equations (‎6.12) - (‎6.17). 

Section ‎A.1 analyzes shape change without external forces, and section A.2 analyzes 

the effect of external forces (meaning softness). The lengths, forces, torques and 

reactions that a segment possesses and which will be used in our analysis are shown 

in Figure A.1. 

 

Figure A.1: Segment lengths, forces, torques and reactions. 

A.1. Shape change without external forces 

Since there are no external forces, reactions             equal zero. Equilibrium on 

each bar in   direction gives:         . The other equilibrium equations are: 
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Gives: 
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Adding eq. 2 to eq. 3 gives      . The remaining two equations are: 
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This can be reduced to: 
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The solution of these equations is:  

                   

Strut length and shear angle can be calculated by: 
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) 

A.2. Softness 

The analysis is performed only for the case that both cables have the same virtual 

force (         ) and stiffness coefficient (     ), which will be denoted as    and 

  respectively. Also, analysis is performed for the three following cases: (a) axial 

force, (b) bending torque and (c) bending force. 

A.2.1. Axial force 

 

Figure A.2: A segment under axial force. 
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Equilibrium on the whole segment gives:                 . Equilibrium on 

each bar in   direction gives:         . The other equilibrium equations are: 

{
 
 

 
 

                    

          
 

 
     

 

 
     

          
 

 
     

 

 
     

 

Again, adding eq. 2 to eq. 3 gives       . Placing: 
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This can be reduced to: 
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And the solution is: 

         
  
  

          
  
  

           

Cable force must be greater than zero. Therefore: 

  
 
  (      )      

  
 
  (   

  
  

    )            

This means that the external force must be less than the strut force (  ) in order to 

maintain segment stability. This is only for external compression force. There is no 

mathematical limit for tension force. 
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A.2.2. Bending torque 

 

Figure A.3: A segment under bending torque. 

Equilibrium on the whole segment gives:                  . Equilibrium on 

each bar in   direction gives:         . The other equilibrium equations are: 
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Adding eq. 2 to eq. 3 gives: 

                 

Placing the expressions for       and   in the remaining two equations gives: 
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This can be reduced to: 
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For small angles, it can be approximated that          and           which 

simplifies the expression for the bending angle to: 

   
  

   
 

Cable forces must be greater than zero. Therefore: 
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Note that the limitation of the bending moment magnitude does not depend on its 

direction. For a positive moment the limitation is due to a decreasing tension of the 

bottom cable (  ), and for a negative moment the limitation is due to a decreasing 

tension of the upper cable (  ). 

A.2.3. Bending force 

 

Figure A.4: A segment under bending force. 

Equilibrium on the whole segment gives: 

                                     (   ) 

Equilibrium on each bar in   direction gives: 

              

The other equilibrium equations are: 
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Adding eq. 2 to eq. 3 gives: 
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Placing the expressions for       and   in the remaining two equations gives: 
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This can be reduced to: 
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For small bending angles the approximate solution is: 
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Cables forces must be greater than zero: 
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Again, the limitation of the bending force magnitude does not depend on its direction. 



83 

 

Appendix B - Single-segment algorithm 

The purpose of the algorithm is to change the shape of a grounded segment while 

keeping the ground reactions and internal torque as low as possible. 

When both legs of a segment are connected to the ground, the segment has one DOF – 

the bending angle (see Figure ‎6.16). The forces that act on each bar of the segment 

are:  

 

Figure B.1: The forces acting on each bar of a grounded segment. 

In equilibrium the strut force equals      . In the case that there is no gravity, it is easy 

to show that: 

       
  
 
                                               

The geometric parameters of the segment are: 

 

Figure B.2: The geometric parameters of the segment. 

Where   is the segment angle,     and    are the cable lengths,    is the strut length,   

is the bar length,    is the leg length and   is the distance between two legs. 
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The calculation of   is given by: 

     (   
 
 ⁄  )      

The needed lengths of the cables for a new segment angle    can be calculated by: 

   
    (    )              

          
       

Therefore, to change the shape of the segment from an angle  α  to a new angle    , 

while keeping the internal moment and ground reactions zero, the following algorithm 

is used: 

1. Use the current      and    to calculate    .  

2. Use     and the new angle    to calculate the new    
  and   

    

3. Set  the cable commands such that     (  
  )     (  

  )  
  

 
 



 

‎תקציר

‎,גופם‎את‎להקשיח‎מנת‎על‎ובלחץ‎בנוזלים‎המשתמשים‎,רך‎גוף‎ הזחלים‎הינם‎בעלי‎חיים‎בעלי

ת‎עצבים‎פשוטה‎יחסית,‎אך‎עדיין‎הם‎מסוגלים‎מכניזם‎הידוע‎כשלד‎הידרוסטאטי.‎לזחלים‎מערכ

‎לבצע‎מגוון‎רחב‎של‎תנועות‎מורכבות.

ידי‎שימוש‎במבנים‎-מימדית‎של‎זחל,‎המחכה‎את‎תנועת‎הזחל‎על-עבודה‎זו‎מציגה‎סימולציה‎דו

‎של‎ ‎רציפה ‎לא ‎מרשת ‎המורכבים ‎מבנים ‎הינם ‎טנזגריטי ‎מבני ‎טנזגריטי". ‎"אסור הנקראים

‎רשת ‎בתוך ‎בלחיצה ‎נגרמת‎‎אלמנטים ‎אלו ‎מבנים ‎של ‎יציבותם ‎במתיחה. ‎אלמנטים ‎של רציפה

‎האלמנטים. ‎כלל ‎של ‎פנימי ‎משקל ‎משיווי ‎תת‎כתוצאה ‎הינם ‎טנזגריטי" ‎"אסור קבוצה‎-מבני

‎חדשנית‎של‎מבני‎טנזגריטי.

‎מיוצגת‎במודל‎כ"טריאדה"‎דו ‎חוליה‎של‎הזחל, מימדית‎המורכבת‎משני‎מוטות‎המחוברים‎-כל

.‎שני‎הכבלים‎מייצגים‎את‎שני‎השרירים‎האורכיים‎הראשיים‎של‎הזחל,‎בעזרת‎שני‎כבלים‎ובוכנה

‎של‎הבקרה‎סכמת‎גם‎ ‎המכאני, ‎למבנה ‎בנוסף ‎ההידרוסטאטי. ‎השלד ‎את ‎מייצגת ‎הבוכנה בעוד

‎המודל‎מבוססת‎על‎עקרונות‎הלקוחים‎מהזחל‎הביולוגי.

‎,המוצעת‎הבקרה‎סכמת‎עם‎ביחד‎ יוצרים‎מודל‎התכונות‎המיוחדות‎של‎מבני‎"אסור‎טנזגריטי",

‎הניתנת‎רכות‎רמת‎ישנה‎במודל‎לחוליות‎ ‎בנוסף, ‎ואינטואיטיבית. ‎פשוטה ‎בצורה ‎לבקרה הניתן

‎לוויסות-‎.קשיחה‎או‎רכה‎להיות‎יכולה‎חולייה‎כל‎

‎העובדה‎היא‎,שכזו‎לתכונה‎דוגמא‎.הביולוגי‎הזחל‎של‎לאלו‎הדומות‎תכונות‎מספר‎למודל‎,בנוסף

01,111‎נו‎תלוי‎בגודלו.‎במהלך‎גדילת‎הזחל,‎מסתו‎גדלה‎פי‎שהלחץ‎הפנימי‎של‎הזחל‎הביולוגי‎אי

‎ללא‎,פנימיים‎כוחות‎באותם‎להשתמש‎יכול‎המודל‎,לכך‎בדומה‎.קבוע‎נשאר‎הפנימי‎הלחץ‎בעוד

‎הם‎כאשר‎רבה‎אנרגיה‎משקיעים‎אינם‎שזחלים‎כך‎על‎מצביע‎גם‎שלנו‎המודל‎.המודל‎בגודל‎תלות

‎נוחה.נעים,‎מעבר‎לאנרגיה‎אותה‎הם‎משקיעים‎במ
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