
1

יובל שביט' פרופ

303חדר , בנין הנדסת תכנה

shavitt@eng.tau.ac.il

12:00-13:00' יום א.: ק.ש

Cסדנא בשפת Cסדנא בשפת

מנהלותמנהלות

דרישות קדם :
(0509-1821)קורס תכנות •
(0512-2510)מבני נתונים ואלגוריתמים •

למי מיועד הקורס?
6או 5בסמסטר תלמידי הנדסת חשמל ואלקטרוניקה •

מטרת הקורס
שפור מיומנות בתכנות•
.נסיון בכתיבת תכנה בגודל משמעותי•

מבנה הקורסמבנה הקורס

weekLecture Recitation assignments

1C fast basics: remainder of the C basics, including
memory allocation, pointers, and structs.

Review of the development
environment, command-line
arguments.

2I/O in C: handling files, stdin/out/err, EOF, EOL.
Windows.

A small programming
assignment (2 weeks)

3

4Multi processing and IPC (pipes and sockets),
introduction to threads

larger programming
assignment (3 weeks)

5raw sockets and sniffers

6feedback on assignment 1

7Final assignment (7 weeks)

Hello World in CHello World in C

#include <stdio.h>

void main()
{

printf(“Hello, world!\n”);
}

Preprocessor used to
share information
among source files

- Clumsy

+ Cheaply implemented

+ Very flexible

Hello World in CHello World in C

#include <stdio.h>

void main()
{

printf(“Hello, world!\n”);
}

Program mostly a
collection of functions

“main” function special:
the entry point

“void” qualifier indicates
function does not return
anything

I/O performed by a library
function: not included in
the language

Euclid’s algorithm in CEuclid’s algorithm in C

int gcd(int m, int n)
{

int r;
while ((r = m % n) != 0) {

m = n;
n = r;

}
return n;

}

“New Style” function
declaration lists
number and type of
arguments

Originally only listed
return type.
Generated code did
not care how many
arguments were
actually passed.

Arguments are call-
by-value

2

Euclid’s algorithm in CEuclid’s algorithm in C

int gcd(int m, int n)
{

int r;
while ((r = m % n) != 0) {

m = n;
n = r;

}
return n;

}

Automatic variable

Storage allocated on
stack when function
entered, released
when it returns.

All parameters,
automatic variables
accessed w.r.t. frame
pointer.

Extra storage
needed while
evaluating large
expressions also
placed on the stack

n
m

ret. addr.
r

Frame
pointer Stack

pointer

Excess
arguments
simply
ignored

Euclid’s algorithm in CEuclid’s algorithm in C

int gcd(int m, int n)
{

int r;
while ((r = m % n) != 0) {

m = n;
n = r;

}
return n;

}

Expression: C’s
basic type of
statement.

Arithmetic and
logical

Assignment (=)
returns a value, so
can be used in
expressions

% is remainder

!= is not equal

Euclid’s algorithm in CEuclid’s algorithm in C

int gcd(int m, int n)
{

int r;
while ((r = m % n) != 0) {

m = n;
n = r;

}
return n;

}

High-level control-flow
statement. Ultimately
becomes a conditional
branch.

Supports “structured
programming”

Each function
returns a single
value, usually an
integer. Returned
through a specific
register by
convention.

Pieces of CPieces of C

 Types and Variables
• Definitions of data in memory

 Expressions
• Arithmetic, logical, and assignment operators in an

infix notation

 Statements
• Sequences of conditional, iteration, and branching

instructions

 Functions
• Groups of statements and variables invoked

recursively

C TypesC Types

 Basic types: char, int, float, and double

 Meant to match the processor’s native types
• Natural translation into assembly
• Fundamentally nonportable

 Declaration syntax: string of specifiers followed by a
declarator

 Declarator’s notation matches that in an expression

 Access a symbol using its declarator and get the
basic type back

C Type ExamplesC Type Examples

int i;

int *j, k;

unsigned char *ch;

float f[10];

char nextChar(int, char*);

int a[3][5][10];

int *func1(float);

int (*func2)(void);

Integer

j: pointer to integer, int k

ch: pointer to unsigned char

Array of 10 floats

2-arg function

Array of three arrays of five …

function returning int *

pointer to function returning int

3

C TypedefC Typedef

 Type declarations recursive, complicated.

 Name new types with typedef

 Instead of

int (*func2)(void)

use

typedef int func2t(void);

func2t *func2;

C StructuresC Structures

 A struct is an object with named fields:

struct {
char *name;
int x, y;
int h, w;

} box;

 Accessed using “dot” notation:

box.x = 5;
box.y = 2;

Struct bit-fieldsStruct bit-fields

 Way to aggressively pack data in memory

struct {
unsigned int baud : 5;
unsigned int div2 : 1;
unsigned int use_external_clock : 1;

} flags;

 Compiler will pack these fields into words

 Very implementation dependent: no guarantees of
ordering, packing, etc.

 Usually less efficient
• Reading a field requires masking and shifting

C UnionsC Unions

 Can store objects of different types at different times

union {
int ival;
float fval;
char *sval;

};

 Useful for arrays of dissimilar objects

 Potentially very dangerous

 Good example of C’s philosophy
• Provide powerful mechanisms that can be abused

Alignment of data in structsAlignment of data in structs

 Most processors require n-byte objects to be in
memory at address n*k

 Side effect of wide memory busses

 E.g., a 32-bit memory bus

 Read from address 3 requires two accesses, shifting

4 3 2

1

4 3 2 1

Alignment of data in structsAlignment of data in structs

 Compilers add “padding” to structs to ensure proper
alignment, especially for arrays

 Pad to ensure alignment of largest object (with
biggest requirement)

struct {
char a;
int b;
char c;

}

 Moral: rearrange to save memory

a
bbbb
c

a
bbbb
c

Pad

4

C Storage ClassesC Storage Classes

#include <stdlib.h>

int global_static;
static int file_static;

void foo(int auto_param)
{

static int func_static;
int auto_i, auto_a[10];
double *auto_d = malloc(sizeof(double)*5);

}

Linker-visible.
Allocated at fixed
location

Visible within file.
Allocated at fixed
location.

Visible within func.
Allocated at fixed
location.

C Storage ClassesC Storage Classes

#include <stdlib.h>

int global_static;
static int file_static;

void foo(int auto_param)
{

static int func_static;
int auto_i, auto_a[10];
double *auto_d = malloc(sizeof(double)*5);

}

Space allocated on
stack by function.

Space allocated on
stack by caller.

Space allocated on
heap by library routine.

malloc() and free()malloc() and free()

 Library routines for managing the heap

int *a;
a = (int *) malloc(sizeof(int) * k);
a[5] = 3;
free(a);

 Allocate and free arbitrary-sized chunks of memory
in any order

malloc() and free()malloc() and free()

 More flexible than automatic variables (stacked)

 More costly in time and space
• malloc() and free() use complicated non-constant-time

algorithms
• Each block generally consumes two additional words

of memory
 Pointer to next empty block
 Size of this block

 Common source of errors
• Using uninitialized memory
• Using freed memory
• Not allocating enough
• Neglecting to free disused blocks (memory leaks)

Dynamic Storage AllocationDynamic Storage Allocation

 What are malloc() and free() actually doing?

 Pool of memory segments:

Free

malloc()

Dynamic Storage AllocationDynamic Storage Allocation

 Rules:
• Each segment contiguous in memory (no holes)
• Segments do not move once allocated

 malloc()
• Find memory area large enough for segment
• Mark that memory is allocated

 free()
• Mark the segment as unallocated

5

Dynamic Storage AllocationDynamic Storage Allocation

 Three issues:

 How to maintain information about free memory

 The algorithm for locating a suitable block

 The algorithm for freeing an allocated block

Simple Dynamic Storage AllocationSimple Dynamic Storage Allocation

 Three issues:

 How to maintain information about free memory
• Linked list

 The algorithm for locating a suitable block
• First-fit

 The algorithm for freeing an allocated block
• Coalesce adjacent free blocks

Simple Dynamic Storage AllocationSimple Dynamic Storage Allocation

Next

Size

Next

SizeSize
Free block Allocated block

malloc()

First large-enough
free block selected

Free block divided
into two

Previous next
pointer updated

Newly-allocated
region begins with
a size value

Simple Dynamic Storage AllocationSimple Dynamic Storage Allocation

free(a)

Appropriate
position in free list
identified

Newly-freed region
added to adjacent
free regions

Dynamic Storage AllocationDynamic Storage Allocation

 Many, many variants

 Other “fit” algorithms

 Segregation of objects by sizes
• 8-byte objects in one region, 16 in another, etc.

 More intelligent list structures

Memory PoolsMemory Pools

 An alternative: Memory pools

 Separate management policy for each pool

 Stack-based pool: can only free whole pool at once
• Very cheap operation
• Good for build-once data structures (e.g., compilers)

 Pool for objects of a single size
• Useful in object-oriented programs

 Not part of the C standard library

6

ArraysArrays

 Array: sequence of identical
objects in memory

 int a[10]; means space for ten
integers

 By itself, a is the address of the first integer

 *a and a[0] mean the same thing

 The address of a is not stored in memory: the
compiler inserts code to compute it when it appears

 Ritchie calls this interpretation the biggest
conceptual jump from BCPL to C

Multidimensional ArraysMultidimensional Arrays

 Array declarations read right-to-left

 int a[10][3][2];

 “an array of ten arrays of three arrays of two ints”

 In memory

2 2 2

3

2 2 2

3

2 2 2

3

...

10

Seagram Building, Ludwig
Mies van der Rohe,1957

Multidimensional ArraysMultidimensional Arrays

 Passing a multidimensional array as an argument
requires all but the first dimension

int a[10][3][2];

void examine(a[][3][2]) { … }

 Address for an access such as a[i][j][k] is

a + k + 2*(j + 3*i)

Multidimensional ArraysMultidimensional Arrays

 Use arrays of pointers for variable-sized
multidimensional arrays

 You need to allocate space for and initialize the
arrays of pointers

int ***a;

 a[3][5][4] expands to *(*(*(a+3)+5)+4)

The value

int ** int * int

int ***a

C ExpressionsC Expressions

 Traditional mathematical expressions

y = a*x*x + b*x + c;

 Very rich set of expressions

 Able to deal with arithmetic and bit manipulation

C Expression ClassesC Expression Classes

 arithmetic: + – * / %

 comparison: == != < <= > >=

 bitwise logical: & | ^ ~

 shifting: << >>

 lazy logical: && || !

 conditional: ? :

 assignment: = += -=

 increment/decrement: ++ --

 sequencing: ,

 pointer: * -> & []

7

Bitwise operatorsBitwise operators

 and: & or: | xor: ^ not: ~ left shift: << right shift: >>

 Useful for bit-field manipulations

#define MASK 0x040

if (a & MASK) { … } /* Check bits */

c |= MASK; /* Set bits */

c &= ~MASK; /* Clear bits */

d = (a & MASK) >> 4; /* Select field */

Lazy Logical OperatorsLazy Logical Operators

 “Short circuit” tests save time

if (a == 3 && b == 4 && c == 5) { … }

equivalent to

if (a == 3) { if (b ==4) { if (c == 5) { … } } }

 Evaluation order (left before right) provides safety

if (i <= SIZE && a[i] == 0) { … }

Conditional OperatorConditional Operator

 c = a < b ? a + 1 : b – 1;

 Evaluate first expression. If true, evaluate second,
otherwise evaluate third.

 Puts almost statement-like behavior in expressions.

Side-effects in expressionsSide-effects in expressions

 Evaluating an expression often has side-effects

a++ increment a afterwards

a = 5 changes the value of a

a = foo() function foo may have side-effects

Pointer ArithmeticPointer Arithmetic

 From BCPL’s view of the world

 Pointer arithmetic is natural: everything’s an integer

int *p, *q;

*(p+5) equivalent to p[5]

 If p and q point into same array, p – q is number of
elements between p and q.

 Accessing fields of a pointed-to structure has a
shorthand:

p->field means (*p).field

C StatementsC Statements

 Expression

 Conditional
• if (expr) { … } else {…}
• switch (expr) { case c1: case c2: … }

 Iteration
• while (expr) { … } zero or more iterations
• do … while (expr) at least one iteration
• for (init ; valid ; next) { … }

 Jump
• goto label
• continue; go to start of loop
• break; exit loop or switch
• return expr; return from function

8

The Switch StatementThe Switch Statement

 Performs multi-way branches

switch (expr) {
case 1: …

break;
case 5:
case 6: …

break;
default: …

break;
}

tmp = expr;
if (tmp == 1) goto L1
else if (tmp == 5) goto L5
else if (tmp == 6) goto L6
else goto Default;
L1: …
goto Break;

L5:;
L6: …
goto Break;

Default: …
goto Break;

Break:

Switch Generates Interesting CodeSwitch Generates Interesting Code

 Sparse case labels tested sequentially

if (e == 1) goto L1;
else if (e == 10) goto L2;
else if (e == 100) goto L3;

 Dense cases use a jump table

table = { L1, L2, Default, L4, L5 };
if (e >= 1 and e <= 5) goto table[e];

 Clever compilers may combine these

The Macro PreprocessorThe Macro Preprocessor

 Relatively late and awkward addition to the language

 Symbolic constants
#define PI 3.1415926535

 Macros with arguments for emulating inlining
#define min(x,y) ((x) < (y) ? (x) : (y))

 Conditional compilation
#ifdef __STDC__

 File inclusion for sharing of declarations
#include “myheaders.h”

Macro Preprocessor PitfallsMacro Preprocessor Pitfalls

 Header file dependencies usually form a directed
acyclic graph (DAG)

 How do you avoid defining things twice?

 Convention: surround each header (.h) file with a
conditional:

#ifndef __MYHEADER_H__
#define __MYHEADER_H__
/* Declarations */
#endif

Macro Preprocessor PitfallsMacro Preprocessor Pitfalls

 Macros with arguments do not have function call
semantics

 Function Call:
• Each argument evaluated once, in undefined order,

before function is called

 Macro:
• Each argument evaluated once every time it appears in

expansion text

Macro Preprocessor pitfallsMacro Preprocessor pitfalls

 Example: the “min” function
int min(int a, int b)
{ if (a < b) return a; else return b; }

#define min(a,b) ((a) < (b) ? (a) : (b))

 Identical for min(5,x)

 Different when evaluating expression has side-effect:
min(a++,b)
• min function increments a once
• min macro may increment a twice if a < b

9

Macro Preprocessor PitfallsMacro Preprocessor Pitfalls

 Text substitution can expose unexpected groupings

#define mult(a,b) a*b

mult(5+3,2+4)

 Expands to 5 + 3 * 2 + 4

 Operator precedence evaluates this as

5 + (3*2) + 4 = 15 not (5+3) * (2+4) = 48 as intended

 Moral: By convention, enclose each macro argument
in parenthesis:

#define mult(a,b) (a)*(b)

Nondeterminism in CNondeterminism in C

 Library routines
• malloc() returns a nondeterministically-chosen address
• Address used as a hash key produces

nondeterministic results

 Argument evaluation order
• myfunc(func1(), func2(), func3())
• func1, func2, and func3 may be called in any order

 Word sizes
int a;
a = 1 << 16; /* Might be zero */
a = 1 << 32; /* Might be zero */

Nondeterminism in CNondeterminism in C

 Uninitialized variables
• Automatic variables may take values from stack
• Global variables left to the whims of the OS

 Reading the wrong value from a union
• union { int a; float b; } u; u.a = 10; printf(“%g”, u.b);

 Pointer dereference
• *a undefined unless it points within an allocated array

and has been initialized
• Very easy to violate these rules
• Legal: int a[10]; a[-1] = 3; a[10] = 2; a[11] = 5;
• int *a, *b; a - b only defined if a and b point into the

same array

Nondeterminism in CNondeterminism in C

 How to deal with nondeterminism?
• Caveat programmer

 Studiously avoid nondeterministic constructs
• Compilers, lint, etc. don’t really help

 Philosophy of C: get out of the programmer’s way

 “C treats you like a consenting adult”
• Created by a systems programmer (Ritchie)

 “Pascal treats you like a misbehaving child”
• Created by an educator (Wirth)

 “Ada treats you like a criminal”
• Created by the Department of Defense

SummarySummary

 C evolved from the typeless languages BCPL and B

 Array-of-bytes model of memory permeates the
language

 Original weak type system strengthened over time

 C programs built from
• Variable and type declarations
• Functions
• Statements
• Expressions

Summary of C typesSummary of C types

 Built from primitive types that match processor types

 char, int, float, double, pointers

 Struct and union aggregate heterogeneous objects

 Arrays build sequences of identical objects

 Alignment restrictions ensured by compiler

 Multidimensional arrays

 Three storage classes
• global, static (address fixed at compile time)
• automatic (on stack)
• heap (provided by malloc() and free() library calls)

10

Summary of C expressionsSummary of C expressions

 Wide variety of operators
• Arithmetic + - * /
• Logical && || (lazy)
• Bitwise & |
• Comparison < <=
• Assignment = += *=
• Increment/decrement ++ --
• Conditional ? :

 Expressions may have side-effects

Summary of C statementsSummary of C statements

 Expression

 Conditional
• if-else switch

 Iteration
• while do-while for(;;)

 Branching
• goto break continue return

 Awkward setjmp, longjmp library routines for non-
local goto

Summary of CSummary of C

 Preprocessor
• symbolic constants
• inline-like functions
• conditional compilation
• file inclusion

 Sources of nondeterminsm
• library functions, evaluation order, variable sizes

The Main PointsThe Main Points

 Like a high-level assembly language

 Array-of-cells model of memory

 Very efficient code generation follows from close
semantic match

 Language lets you do just about everything

 Very easy to make mistakes

