
1

I/O in C

Input/Output in C

• C has no built-in statements for input or output.

• A library of functions is supplied to perform these
operations. The I/O library functions are listed
the “header” file <stdio.h>.

• You do not need to memorize them, just be
familiar with them.

Streams

• All input and output is performed with streams.

• A "stream" is a sequence of characters organized
into lines.

• Each line consists of zero or more characters and
ends with the "newline" character.

• ANSI C standards specify that the system must
support lines that are at least 254 characters in
length (including the newline character).

Types of Streams in C

• Standard input stream is called "stdin" and is
normally connected to the keyboard

• Standard output stream is called "stdout" and is
normally connected to the display screen.

• Standard error stream is called "stderr" and is
also normally connected to the screen.

Formatted Output with printf

printf () ;

• This function provides for formatted output to the
screen. The syntax is:

printf (“format”, var1, var2, …) ;
• The “format” includes a listing of the data types

of the variables to be output and, optionally,
some text and control character(s).

• Example:
float a ; int b ;
scanf (“%f%d”, &a, &b) ;
printf (“You entered %f and %d \n”, a, b) ;

Formatted Output with printf

• Format Conversion Specifiers:

d -- displays a decimal (base 10) integer

l -- used with other specifiers to indicate a "long"

e -- displays a floating point value in exponential

notation

f -- displays a floating point value

g -- displays a number in either "e" or "f" format

c -- displays a single character

s -- displays a string of characters

2

Input/Output in C

scanf () ;
• This function provides for formatted input from

the keyboard. The syntax is:
scanf (“format” , &var1, &var2, …) ;

• The “format” is a listing of the data types of the
variables to be input and the & in front of each
variable name tells the system WHERE to store
the value that is input. It provides the address for
the variable.

• Example:
float a; int b;
scanf (“%f%d”, &a, &b);

Input/Output in C

getchar () ;

• This function provides for getting exactly one
character from the keyboard.

• Example:

char ch;

ch = getchar () ;

Input/Output in C

putchar (char) ;

• This function provides for printing exactly one
character to the screen.

• Example:

char ch;

ch = getchar () ; /* input a character from kbd */

putchar (ch) ; /* display it on the screen */

Input/Output in C

getc (*file) ;

• This function is similar to getchar() except the
input can be from the keyboard or a file.

• Example:

char ch;

ch = getc (stdin) ; /* input from keyboard */

ch = getc (fileptr) ; /* input from a file */

Input/Output in C

putc (char, *file) ;

• This function is similar to putchar () except the
output can be to the screen or a file.

• Example:

char ch;

ch = getc (stdin) ; /* input from keyboard */

putc (ch, stdout) ; /* output to the screen */

putc (ch, outfileptr) ; /*output to a file */

File I/O in C

3

Files in C

• In C, each file is simply a sequential stream of
bytes. C imposes no structure on a file.

• A file must first be opened properly before it can
be accessed for reading or writing. When a file is
opened, a stream is associated with the file.

• Successfully opening a file returns a pointer to
(i.e., the address of) a file structure, which
contains a file descriptor and a file control block.

Files in C

• The statement:

FILE *fptr1, *fptr2 ;

declares that fptr1 and fptr2 are pointer variables
of type FILE. They will be assigned the address
of a file descriptor, that is, an area of memory that
will be associated with an input or output stream.

• Whenever you are to read from or write to the file,
you must first open the file and assign the
address of its file descriptor (or structure) to the
file pointer variable.

Opening Files

• The statement:

fptr1 = fopen ("mydata", "r") ;

would open the file mydata for input (reading).

• The statement:

fptr2 = fopen ("results", "w") ;

would open the file results for output (writing).

• Once the files are open, they stay open until you
close them or end the program (which will close
all files.)

Testing for Successful Open

• If the file was not able to be opened, then the
value returned by the fopen routine is NULL.

• For example, let's assume that the file mydata
does not exist. Then:

FILE *fptr1 ;
fptr1 = fopen ("mydata", "r") ;
if (fptr1 == NULL)
{

printf ("File 'mydata' did not open.\n") ;
}

Reading From Files

• In the following segment of C language code:

int a, b ;

FILE *fptr1, *fptr2 ;

fptr1 = fopen ("mydata", "r") ;

fscanf (fptr1, "%d%d", &a, &b) ;

the fscanf function would read values from the
file "pointed" to by fptr1 and assign those values
to a and b.

End of File (1)
• The end-of-file indicator informs the program

when there are no more data (no more bytes) to
be processed.

• There are a number of ways to test for the end-of-
file condition. One is to use the feof function
which returns a true or false condition:

fscanf (fptr1, "%d", &var) ;
if (feof (fptr1))
{

printf ("End-of-file encountered.\n”);
}

4

End of File (2)

• Another way to test for the end-of-file condition is
to use the value returned by the fscanf function:

int istatus ;

istatus = fscanf (fptr1, "%d", &var) ;
if (istatus == EOF)
{

printf ("End-of-file encountered.\n”) ;
}

Writing To Files

• In the following segment of C language code:

int a = 5, b = 20 ;

FILE *fptr2 ;

fptr2 = fopen ("results", "w") ;

fprintf (fptr2, "%d %d\n", a, b) ;

the fprintf functions would write the values stored
in a and b to the file "pointed" to by fptr2.

Closing Files

• The statements:

fclose (fptr1) ;

fclose (fptr2) ;

will close the files and release the file descriptor
space and I/O buffer memory.

Reading and Writing Files

#include <stdio.h>
int main ()
{

FILE *outfile, *infile ;
int b = 5, f ;
float a = 13.72, c = 6.68, e, g ;

outfile = fopen ("testdata", "w") ;
fprintf (outfile, "%6.2f%2d%5.2f", a, b, c) ;
fclose (outfile) ;

infile = fopen ("testdata", "r") ;

fscanf (infile,"%f %d %f", &e, &f, &g) ;

printf ("%6.2f,%2d,%5.2f\n", e, f, g) ;

}

Output:

12345678901234567890

13.72 5 6.68

