

network-level information error reporting: unreachable host, net port, protocol	vork, 3 3	e <u>Code</u> 0 0 1 2 3	description echo reply (ping) dest. network unreachable dest host unreachable dest protocol unreachable dest port unreachable	 The Global Internet co (AS) interconnected wi Stub AS: small corporat Multihomed AS: large co Transit AS: provider 	
 echo request/reply (used by ping) network-layer "above" IP: ICMP msgs carried in IP datagrams 	•	3 6 dest network unknown 3 7 dest host unknown 4 0 source quench (congestion control - not used) 8 0 echo request (ping) 9 0 route advertisement			
	4 [P		 Two-level routing: Intra-AS: administrato Inter-AS: unique standa 		
	0				
 ICMP message: type, code plus first 8 bytes of IP datagram causing error 	plus 10	õ	router discovery		
	um 11 12	0	TTL expired bad IP header		

- s of Autonomous Systems ach other:
 - ation (no transit)
 - sponsible for choice

Intra-AS border (exterior gateway) routers

Intra-AS Routing

- Also known as Interior Gateway Protocols (IGP)
- Most common IGPs:
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First
 - IGRP: Interior Gateway Routing Protocol (Cisco propr.)

RIP (Routing Information Protocol)

- Distance vector algorithm
- Included in BSD-UNIX Distribution in 1982
- Distance metric: # of hops (max = 15 hops)
- Can you guess why?
- Distance vectors: exchanged every 30 sec via Response Message (also called advertisement)
- Each advertisement: route to up to 25 destination nets

<u>RIP: Link Failure and Recovery</u>

- If no advertisement heard after 180 sec --> neighbor/link declared dead
 - routes via neighbor invalidated
 - new advertisements sent to neighbors
 - neighbors in turn send out new advertisements (if tables changed)
 - Ink failure info quickly propagates to entire net
 - poison reverse used to prevent ping-pong loops (infinite distance = 16 hops)

<u>RIP Table processing</u>

- RIP routing tables managed by application-level process called route-d (daemon)
- advertisements sent in UDP packets, periodically repeated

RIP Table example (continued)

Router: giroflee.eurocom.fr

Destination	Gateway	Flags	Ref	Use	Interface	
127.0.0.1	127.0.0.1	UH	0	26492	100	
192.168.2.	192.168.2.5	υ	2	13	fa0	
193.55.114.	193.55.114.6	υ	3	58503	le0	
192.168.3.	192.168.3.5	υ	2	25	qaa0	
224.0.0.0	193.55.114.6	υ	3	0	le0	
default	193.55.114.129	UG	0	143454		

- Three attached class C networks (LANs)
- Router only knows routes to attached LANs
- Default router used to "go up"
- Route multicast address: 224.0.0.0
- Loopback interface (for debugging)

OSPF (Open Shortest Path First)

- open": publicly available
- Uses Link State algorithm
 - LS packet dissemination
 - Topology map at each node
 - Route computation using Dijkstra's algorithm
- OSPF advertisement carries one entry per neighbor router
- Advertisements disseminated to entire AS (via flooding)

OSPF "advanced" features (not in RIP) Security: all OSPF messages authenticated (to prevent malicious intrusion); TCP connections used Multiple same-cost paths allowed (only one path in RIP) For each link, multiple cost metrics for different TOS (eg, satellite link cost set "low" for best effort; hgh for real time) Integrated uni- and multicast support: Multicast OSPF (MOSPF) uses same topology data base as OSPF Hierarchical OSPF in large domains.

Hierarchical OSPF

- Two-level hierarchy: local area, backbone.
 - Link-state advertisements only in area
 - each nodes has detailed area topology; only know direction (shortest path) to nets in other areas.
- Area border routers: "summarize" distances to nets in own area, advertise to other Area Border routers.
- Backbone routers: run OSPF routing limited to backbone.
- Boundary routers: connect to other ASs.

IGRP (Interior Gateway Routing Protocol)

- CISCO proprietary; successor of RIP (mid 80s)
- Distance Vector, like RIP
- several cost metrics (delay, bandwidth, reliability, load etc)
- uses TCP to exchange routing updates
- Loop-free routing via Distributed Updating Alg.
 (DUAL) based on *diffused computation*

13

14

Internet inter-AS routing: BGP

- BGP (Border Gateway Protocol): the de facto standard
- Path Vector protocol:
 - similar to Distance Vector protocol
 - each Border Gateway broadcast to neighbors (peers) *entire path* (I.e, sequence of ASs) to destination
 - E.g., Gateway X may send its path to dest. Z:

20

22

Internet inter-AS routing: BGP

Suppose: gateway X send its path to peer gateway W

- W may or may not select path offered by X
 cost, policy (don't route via competitors AS), loop
- prevention reasons. If W selects path advertised by X, then:
 - Path (W,Z) = w, Path (X,Z)
- Note: X can control incoming traffic by controling it route advertisements to peers:
 - e.g., don't want to route traffic to Z -> don't advertise any routes to Z

Internet inter-AS routing: BGP

- BGP messages exchanged using TCP.
- BGP messages:

21

23

- OPEN: opens TCP connection to peer and authenticates sender
- UPDATE: advertises new path (or withdraws old)
- KEEPALIVE keeps connection alive in absence of UPDATES; also ACKS OPEN request
- NOTIFICATION: reports errors in previous msg; also used to close connection

Why different Intra- and Inter-AS routing ? Policy: Inter-AS: admin wants control over how its traffic routed, who routes through its net. Intra-AS: single admin, so no policy decisions needed Scale: hierarchical routing saves table size, reduced update traffic Performance: Intra-AS: can focus on performance Intra-AS: policy may dominate over performance

Router Architecture Overview

Two key router functions:

- run routing algorithms/protocol (RIP, OSPF, BGP)
- switching datagrams from incoming to outgoing link

need froe blocking

27

Transition From IPv4 To IPv6

- Not all routers can be upgraded simultaneous
 - 🛭 no "flag days"
 - How will the network operate with mixed IPv4 and IPv6 routers?
- Two proposed approaches:
 - Dual Stack: some routers with dual stack (v6, v4) can "translate" between formats

37

 Tunneling: IPv6 carried as payload in IPv4 datagram among IPv4 routers

Dual Stack Approach

