Clustering

Clustering

Grouping similar objects

- People with common interests
- Proteins with equal/similar functions
- Web pages in the same topic
- ..

Clustering • Data clustering vs. Graph clustering

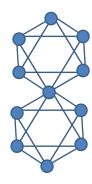
Data Clustering – Review

- Find relationships and patterns in the data
- Get insights in underlying characteristics
- Find groups of "similar" genes/proteins/people

- Deal with numerical values
- They have many features (not just color)

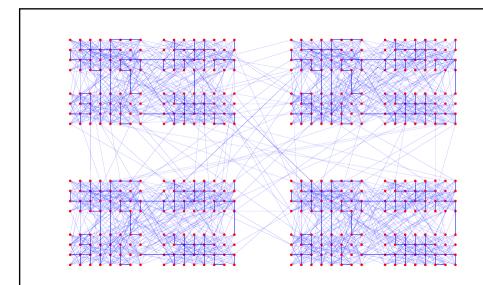
Clustering Issues

• Soft vs. hard



All vertices have degree 64.

- Known vs. unknown number of clusters
- Hierarchy



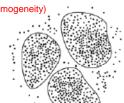
Sixteen modules with 32 vertices each clearly form four larger clusters.

[Lancichinetti, Fortunato, and Kertesz, New J. of Phys., 2009]

Data Clustering - Review

Clustering is a process of partitioning a set of data (or objects) in a set of meaningful sub-classes, called clusters.

- Helps users understand the natural grouping or structure in a data set.
- <u>Cluster</u>: a collection of data objects that are "similar" to one another and thus
 can be treated collectively as one group.
- · A good clustering method produces high quality clusters in which:
 - The intra-class (that is, intra-cluster) similarity is high. (homogeneity)
 - The inter-class similarity is low. (separation)
- The quality of a clustering result depends on both the similarity measure used and its implementation.
- Clustering = function that maximizes similarity between objects within a cluster and minimizes similarity between objects in different clusters.



7

Distance Metrics

- There are many possible distance metrics between objects
- Theoretical properties of distance metrics, d:

$$-d(a,b) >= 0$$

$$-d(a,a)=0$$

$$-d(a,b) = 0 \implies a=b$$

$$-d(a,b) = d(b,a) - symmetry$$

$$-d(a,c) \le d(a,b) + d(b,c) - triangle inequality$$

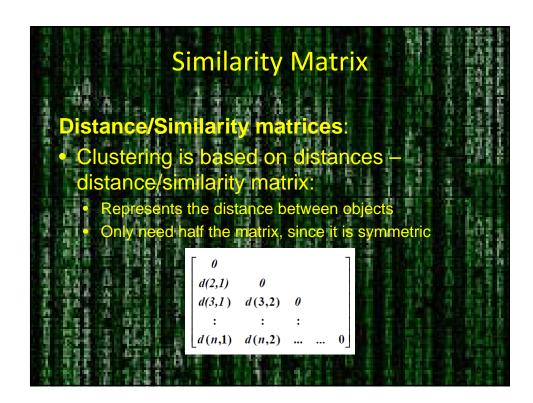
Distance Metrics

Example distances:

- Euclidean (L₂) distance
- Manhattan (L₁) distance
- $L_m: (|x_1-x_2|^m+|y_1-y_2|^m)^{1/m}$
- L_{∞} : max($|x_1-x_2|, |y_1-y_2|$)
- Inner product: $x_1x_2+y_1y_2$
- Correlation coefficient
- For simplicity, we will concentrate on Euclidean distance

9

 (x_2, y_2)



Hierarchical Clustering

Hierarchical Clustering:

- 1. Scan the distance matrix for the minimum
- 2. Join items into one node
- 3. Update the matrix and repeat from step 1

11

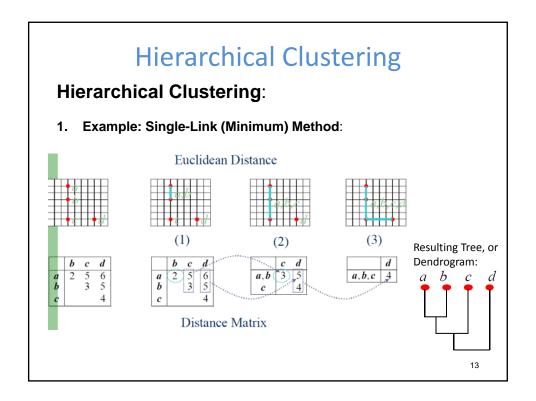
Hierarchical Clustering

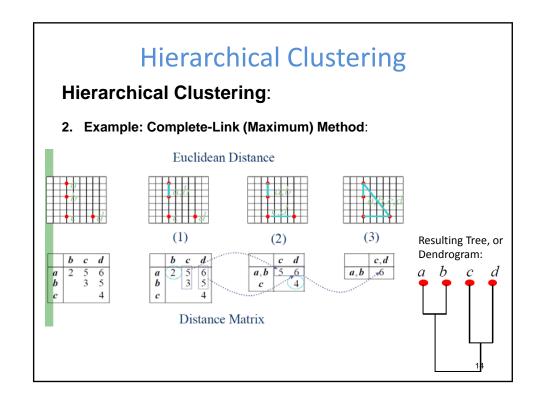
Hierarchical Clustering:

Distance between two points – easy to compute

Distance between two clusters – harder to compute:

- 1. Single-Link Method / Nearest Neighbor
- 2. Complete-Link / Furthest Neighbor
- 3. Average of all cross-cluster pairs



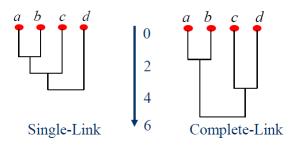


Hierarchical Clustering

Hierarchical Clustering:

In a dendrogram, the *length of each tree branch* represents the distance between clusters it joins

Different dendrograms may arise when different linkage methods are used



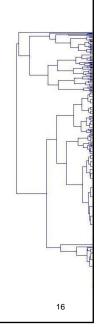
15

Hierarchical Clustering

Hierarchical Clustering:

How do you get clusters from the tree?

Where to cut the tree?

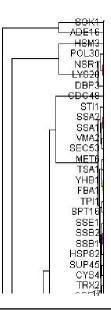


Hierarchical Clustering

Hierarchical Clustering:

How do you get clusters from the tree?

Where to cut the tree?



K-Means

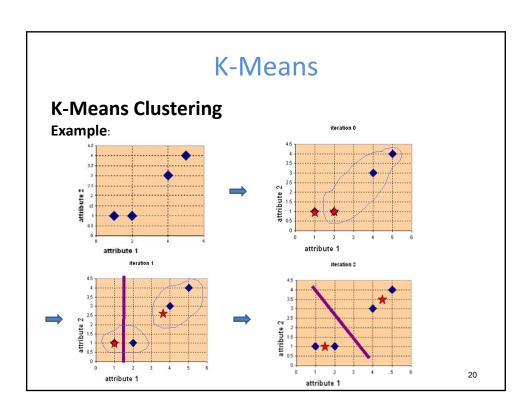
K-Means Clustering:

- Basic idea: use cluster centroids (means) to represent cluster
- Assigning data elements to the closest cluster (centroid)
- Goal: minimize intra-cluster dissimilarity

K-Means

K-Means Clustering:

- 1) Pick K objects as centers of K clusters and assign all the remaining objects to these centers
 - Each object will be assigned to the center that has minimal distance to it
 - Solve any ties randomly
- 2) In each cluster C, find a new center X so as to minimize the total sum of distances between X and all other objects in C
- 3) Reassign all objects to new centers as explained in step (1)
- 4) Repeat the previous two steps until the algorithm converges



Clustering Algorithms – Review

- Differences between the two clustering algorithms:
 - Hierarchical Clustering:
 - Need to select Linkage Method
 - To perform any analysis, it is necessary to partition the dendrogram into k
 disjoint clusters, cutting the dendrogram at some point. A limitation is that it
 is not clear how to choose this k
 - K-means
 - Need to select K
 - In both cases: Need to select distance/similarity measure
- K-medoids
 - Centers are data points
- Hierarchical and k-means clust. implemented in Matlab

2

Nearest Neighbours Clustering

Nearest neighbours "clustering:"

```
Input:
          D=\{t_1, t_2, ..., t_n\} // Set of elements
                     // matrix showing distance between elements
                     // threshold
Output:
                     //Set of k clusters
Nearest-Neighbor algorithm
          K_1 = \{t_1\}; \text{ add } K_1 \text{ to } K;
                                          // t1 initialized the first cluster
          for i =2 to n do // for t2 to tn add to existing cluster or place in new one
                     find the t_m in some cluster K_m in K such that d(t_m,t_i) is the smallest;
                     if d(t_m, t_i) \leq \theta then
                                K_m = K_m \cup \{t_i\}
                                                                           // existing cluster
                                k = k + 1; K_k = \{t_i\}; add K_k to K
                                                                           // new cluster
                                                                                              22
```

Nearest Neighbours Clustering

Nearest neighbours "clustering:"

Example:

- · Given: 5 items with the distance between them
- Task: Cluster them using the Nearest Neighbor algorithm with a threshold θ =2

Item	A	В	C	D	E
	0	1	2	2	3
В		0	2	4	3
С			0	1	5
D				0	3
E					0

- -A: K1={A}
- -B: $d(B,A)=1 < \theta => K1=\{A,B\}$
- -C: $d(C,A)=d(C,B)=2 \le \theta => K1=\{A,B,C\}$
- -D: d(D,A)=2, d(D,B)=4, d(D,C)=1 = $dmin \le \theta => K1=\{A,B,C,D\}$
- -E: d(E,A)=3, d(E,B)=3, d(E,C)=5, $d(E,D)=3=dmin > \theta =>K2=\{E\}$

Pros and cons:

- 1. No need to know the number of clusters to discover beforehand (different than in k-means and hierarchical).
- 2. We need to define the threshold θ

23

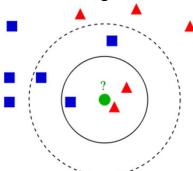
k-NN Clustering

k-nearest neighbors "clustering" -- classification algorithm, but we use the idea here to do clustering:

- For point v, create the cluster containing v and top k closest points to v,
 - e.g., based on Euclidean distance.
- Do this for all points v.
- All of the clusters are of size k, but they can overlap.
- The challenge: choosing k.

k-Nearest Neighbours (k-NN) Classification

- An object is classified by a majority vote of its neighbors
 - It is assigned to the <u>class</u> most common amongst its k nearest neighbors



Example:

- The test sample (green circle) should be classified either to the first class of blue squares or to the second class of red triangles.
- If k = 3 it is classified to the second class (2 triangles vs only 1 square).
- If k = 5 it is classified to the first class (3 squares vs. 2 triangles).

25

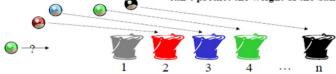
What is Classification?

The goal of data classification is to organize and categorize data into distinct classes.

- > A model is first created based on the training data (learning).
- > The model is then validated on the testing data.
- Finally, the model is used to classify new data.
- Given the model, a class can be predicted for new data.

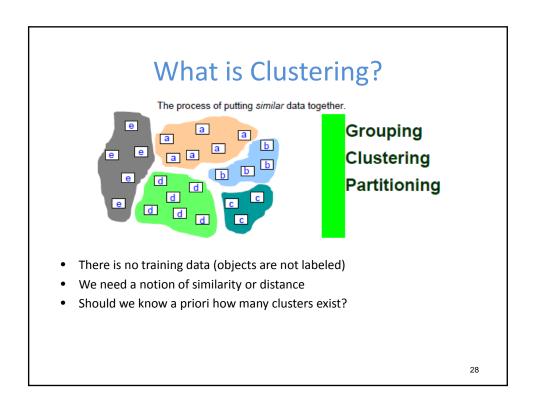
Example:

With classification, I can predict in which bucket to put the ball, but I can't predict the weight of the ball.



<u>Application:</u> medical diagnosis, treatment effectiveness analysis, protein function prediction, interaction prediction, etc.





Supervised and Unsupervised

Classification = Supervised approach

> We know the class labels and the number of classes

Clustering = Unsupervised approach

➤ We do not know the class labels and may not know the number of classes

?

29

Classification vs. Clustering

Classification

Clustering

- known number of classes
- · based on a training set
- used to classify future observations
- Classification is a form of supervised learning
- · unknown number of classes
- no prior knowledge
- used to understand (explore) data
- Clustering a form of <u>unsupervised</u> learning

