Communities

Community Structure

Communities:

sets of tightly connected nodes

- People with common interests
- Proteins with equal/similar functions
- Web pages in the same topic
- ..

Karate Club

Graph have weights

(b)

[W. W. Zachary, Journal of Anthropological Research 1977]

Networks

- Small world
- Long tail degree distribution (power law)
- High clustering
- Clustering coefficient
 - Per node v: The number of edges connecting v's neighbors divided by maximum possible number ($k_v(k_v-1)/2$) $C_i = \frac{2|\{e_{jk}: v_j, v_k \in N_i, e_{jk} \in E\}|}{k_i(k_i-1)}$
 - Network: the average over all nodes

Traditional Clustering Methods

Weights

- The number of node independent path between the nodes
- The number of paths (not just node independent) weighted by the length (α^l) $W = \sum_{l=0}^{\infty} (\alpha A)^l = [I \alpha A]^{-1}$ A = adjacency matrix α is small

Adjacency Matrix

For a simple graph: $a_{ij} = 1$ iff i and j are neighbors

- For undirected graphs A is symmetric
 - Has a complete set of real eigenvalues and an orthogonal eigenvector basis.
- A^n_{ij} the number of paths of length n between i and j
 - $-\operatorname{tr}(A^3)/6$ the number of triangles in the graph
- The principle eigenvector as a measure of centrality

Isolated Node

- Both weights are small
- Small nodes will not be joined to their natural community and left isolated
- Other pathologies

Edge Betweenness

- Edge betweenness = the number of shortest path passing thru the edge
 - An edge connecting communities will have high edge betweenness
 - Multiple SPs
- Progressively remove edges from the graph

The Algorithm

- 1) Calculate the betweenness for all edges in the network.
- 2) Remove the edge with the highest betweenness.
- 3) Recalculate betweennesses for all edges affected by the removal.
- 4) Repeat from step 2 until no edges remain.

Why? Because if communities are connected by multiple edges, not all will have high betweenness

Complexity of (2) is O(mn), overall O(m²n)

[Givran & Newman, PNAS 2002]

Applying B.C. • Santa Fe collaboration Agent-based Models Mathematical Ecology Structure of RNA

K-Medoids

- Can be used for clustering a graph
- Is known to converge to optimal solution
- Complexity:
 - Each iteration requires
 - Running SP from every new medoid
 - Reassigning nodes to clusters
 - Calculating new cluster center (medoid)

Approximating k-Medoids (GkM)

- Do not iterate!
- Randomly select node with a condition
 - Minimum distance from previous Medoids
- Node assignment to clusters
 - If roughly equidistance \Rightarrow assign to smaller cluster
- How variable are the results? Not much! Why?
 - Min. distance spread the medoids
 - Large hubs

Other ways to Speed-up • Graph pruning — Remove links with low weights — Keep only the top n links This is the series of the