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Community Detection

Community

In social sciences:

e Community is formed by individuals such that those within a
group interact with each other more frequently than with
those outside the group

— a.k.a. group, cluster, cohesive subgroup, module in different contexts

e Community detection: discovering groups in a network where
individuals’ group memberships are not explicitly given

* Two types of groups in social media

— Explicit Groups: formed by user subscriptions
— Implicit Groups: implicitly formed by social interactions
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Taxonomy of Community Criteria

Node-Centric Community
— Each node in a group satisfies certain properties
Group-Centric Community

— Consider the connections within a group as a whole. The group has to
satisfy certain properties without zooming into node-level

Network-Centric Community
— Partition the whole network into several disjoint sets

Hierarchy-Centric Community
— Construct a hierarchical structure of communities

Node-Centric Community Detection

Nodes satisfy different properties
— Complete Mutuality
* cliques
— Reachability of members
¢ k-clique, k-clan, k-club
— Nodal degrees
¢ k-plex, k-core
— Relative frequency of Within-Outside Ties
¢ LS sets, Lambda sets
Commonly used in traditional social network analysis
Here, we discuss some representative ones




Complete Mutuality: Cliques

e Clique: a maximum complete subgraph in which all nodes

are adjacent to each other

Nodes 5, 6, 7 and 8 form a clique
Cliques of size 3:

e 1,2,and 3

e 1,3,and4

e 45,and6

e NP-hard to find the maximum clique in a network
— Hard to approx within n'¢ [Hastad, Acta Mathematica, 1999]

e Straightforward implementation to find cliques is very
expensive in time complexity
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Finding the Maximum Clique

In a clique of size k, each node maintains degree >= k-1
— Nodes with degree < k-1 will not be included in the maximum clique
e Recursively apply the following pruning procedure

— Sample a sub-network from the given network, and find a clique in the
sub-network, say, by a greedy approach

— Suppose the clique above is size k, in order to find out a larger clique,
all nodes with degree <= k-1 should be removed.

Repeat until the network is small enough

Many nodes will be pruned as social media networks follow a
power law distribution for node degrees
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Maximum Cliqgue Example

e Suppose we sample a sub-network with nodes {1-9} and find a
clique {1, 2, 3} of size 3

* Inorder to find a clique >3, remove all nodes with degree <=3-
1=2
— Remove nodes 2 and 9
— Remove nodes 1 and 3
— Remove node 4
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GreedyMaxClique

e Works well for B-A like graphs
* A greedy algorithms:
— Start with the highest degree node

— Iteratively examine nodes in decreasing degree
order

— If node connects tp all nodes in the group - add it
to the group

e Complexity O(|E|) or O(d?)

[Siganos et al., J. of Communications and Networks, 2006]
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Clique Percolation Method (CPM)

* Cligue is a very strict definition, unstable

* Normally use cliques as a core or a seed to find larger
communities

* CPM is such a method to find overlapping communities
— Input
e A parameter k, and a network
— Procedure
 Find out all cliques of size k in a given network

e Construct a cligue graph. Two cliques are adjacent if they share k-1
nodes

¢ Each connected components in the clique graph form a
community
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CPM Example

Cliques of size 3:

(3)
e {1, 2,3}, {1, 3,4}, {4,5, 6},
0“0 == {5,6,7} (56,8} {5 7,8}
|/

{6,7,8}

Communities: @ ®"®‘
Go = | @ e
(@29) D,
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achability : k-clique, k-club

O

« Anynode in a group should be reachable in k hops

. k-cliaue: a maximal subgraph in which the largest geodesic
distance between any two nodes <=k

¢ k-club: a substructure of diameter <= k

2 4
p Cliques: {1, 2, 3}
2-cliques: {1, 2, 3,4, 5},{2,3,4,5, 6}
3 5 2-clubs: {1,2,3,4},11, 2,3,5},{2,3, 4,5, 6}

* Ak-clique might have diameter larger than k in the subgraph
- Eg.{1,2,3,4,5}

e Commonly used in traditional SNA

* Often involves combinatorial optimization
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Group-Centric Community Detection:
Density-Based Groups

* The group-centric criterion requires the whole group to satisfy
a certain condition
— E.g., the group density >= a given threshold

* Asubgraph G.(V., E,) is ay — dense quasi-clique if
2|E,

AAED R

where the denominator is the maximum number of degrees.

* Asimilar strategy to that of cliques can be used

— Sample a subgraph, and find a maximaly — dense quasi-clique
(say, of size |V;|)
— Remove nodes with degree less than the average degree
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A Sub-linear Algorithm

e Given a “B-A like graph”
* Find a dense quasi-clique in sublinear time

— (k, &)-dense-core

~ B
— 0(n'"2), where B<2/5, k = O(log n)

[Gonen et al., Comp. Net., 2008]

Definitions

Definition 1. Closeness to a clique: Let C* denote the k-vertex clique. Denote by
dist(G, C*) the distance (as a fraction of (g]} between a graph G over k vertices and
C*. Namely, if dist(G,C*) = ¢ then e(g) edges should be added in order to make G
into a clique. A graph G over k vertices is e-close to being a clique if dist(G, C*) < e.

Definition 2. (%, €)-dense-core: consider a graph G. A subset of k vertices in the graph
is a (k, €)-dense-core if the subgraph induced by this set is e-close to a cligue.

Definition 3. Let C' be a subset of vertices of a graph G. The d-nucleus of C, denoted
by H, is the subset of vertices of C with degree (not induced degree) at least d.

For a set of vertices X, let I'(X') denote the set of vertices that neighbor at least one
vertex in X, and let I's(X') denote the set of vertices that neighbor all but at most §|X|
vertices in X. We next introduce our main definition.




(k, d, ¢, &)-Jellyfish subgraph

A graph G contains a (k, d, c, &)-Jellyfish subgraph if it
contains a subset C of vertices, with |C| = k, that is a (k, &)-
dense-core, which has a non-empty d-nucleus H, s.t., the
following conditions hold:
1. Forallv €C, vneighbors at least (1 - &)|H| vertices in H.
2. Forall but ¢ |l (H)| vertices, if a vertex v €V neighbors
at least (1 - &)|H| vertices in H then v has at least
(1-¢)| C| neighbors in C.
3. Forall but |H| vertices in G, if deg(v) 2d thenv €H. /.
4. L H)I/IC] <c. '

A short pause

* We looked at finding max cliques and quasi-
cligues

* This will give us the largest community
— The core of the network

* What about the other communities?
— Need an algorithms for all cliques
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Network-Centric Community Detection

¢ Network-centric criterion needs to consider the
connections within a network globally

* Goal: partition nodes of a network into disjoint sets
* Approaches:

— (1) Clustering based on vertex similarity

— (2) Latent space models (multi-dimensional scaling )

— (3) Block model approximation

— (4) Spectral clustering

— (5) Modularity maximization
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(1) Clustering based on vertex similarity

Clustering based on Vertex Similarity

* Apply k-means or similarity-based clustering to nodes
e Vertex similarity is defined in terms of the similarity of their
neighborhood

* Structural equivalence: two nodes are structurally equivalent
iff they are connecting to the same set of actors

Nodes 1 and 3 are
structurally equivalent;
So are nodes 5 and 6.

e Structural equivalence is too restrict for practical use.
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(1) Clustering based on vertex similarity

Vertex Similarity

. .. . el (or . oy ) — |.-'\";'I'_].-'\-"J-|
Jaccard Similarity J(g(_(__(ud(u?__ g‘_’,) = MoN]

|IN:iNN;|

* Cosine similarity Cosine(vi,v;) = INTIN

{5} 1
Jaccard(4,6) = T 4{5}6 5 ~:

cosine(4,6) = ==
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(2) Latent space models

Latent Space Models

* Map nodes into a low-dimensional space such that the
proximity between nodes based on network connectivity is
preserved in the new space, then apply k-means clustering

e Multi-dimensional scaling (MDS)
— Given a network, construct a proximity matrix P representing the
pairwise distance between nodes (e.g., geodesic distance)
— Let SeR™ denote the coordinates of nodes in the low-dimensional
space gt~ (- luTypop)i- t11?) =P
Centered matrix n n
— Objective function: min ||SS7 — P||%
— Solution: §— VAZ
— Visthetop ¢ eigenvectors of p,and A is a diagonal matrix of top
eigenvalues A = diag(A;, Ao, -+, Ag)
Reference: http://www.cse.ust.hk/~weikep/notes/MDS.pdf 69
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(2) Latent space models

011122334
101233 4435
1 1012 2334
. 121011223
g?OdESIC P=|232101112
distance 232110112
3432110011
ol 34321110 2
s 454322120
0.4
02l 246 3.96 2.21
-2 o7 396 646 3.71
o 13 - 1.96 3.96 221
o 506 - 0.85 135 082 —0.6:
02 P = -065 -1.15 0.68 0.85 1.23
—0.65 -1.15 0.68 0.85 1.23
04 -221 -=3.71 32 212 1.79 3.68
~204 -354 -204 -065 179 2.46 2.35
-06 -3.65 -6.15 -3.656 -127 3.68 2.35 6.23
-0.8
L | | | e ] —033 005 ~151 006 ]
3 -2 -1 g 1 2 3 -055 0.4 =256 017
1 -033 005 151 006
—0.11 —001 —053 —001
& v=| 010 -006 |, A:[2](')56 126]. S=VAZ2=| 047 -0.08
. 0.10 —0.06 : 047 -0.08
Two communities: 032 0.1 147 0.4
028 —0.79 129 —0.95
{1,2,3,4}and {5, 6,7, 8, 9} 052 058 242 070
70

MDS Example

(3) Block model approximation

Block Models

o O © O O]

Table 3.1:  Adjacency Matrix

Table 3.2: Ideal Block Structure
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Relax S to be numerical values, then the optimal solution
corresponds to the top eigenvectors of A

020 052
0.11 -043
020 052
038 -030 Two communities:
s=| 047 015 .z:[i‘f 204]. =>
0.47 0.15 . {11 21 31 4} and {51 6! 7! 81 9}
0.41 0.28
038 024
012 011 71
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(4) Spectral clustering

Cut

* Most interactions are within group whereas interactions
between groups are few

e community detection = minimum cut problem
* Cut: A partition of vertices of a graph into two disjoint sets

*  Minimum cut problem: find a graph partition such that the
number of edges between the two sets is minimized
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(4) Spectral clustering

Ratio Cut & Normalized Cut

*  Minimum cut often returns an imbalanced partition, with one
set being a singleton, e.g. node 9

* Change the objective function to consider community size

x ,
A 1 cut(C;, C;)
Ratio Cut(m) = k Z el C;:a community
=1 ! |C,|: number of nodes in C,
cut(Cy, C;) vol(C;): sum of degrees in C,

A.
ized Cut(r) = 1§~ cut(Ci, Ci)
Normalized Cut(w) = - 2 wol(C)
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(4) Spectral clustering

Ratio Cut & Normalized Cut Example

For partitioninred: 7

Ratio Cut(m;) =

1

= =9/16 = 0.56
5 ) /16 6
1

1

1 1
Normalized Cut(m,) = -3 iy —) = 14/27 = 0.52

For partition in green:

= 9/20 = 0.45 < Ratio Cut(m)

2 2
— + —) = 7/48 = 0.15 < Normalized Cut(7m,)

1 /2
Ratio Cut(ws) = (1 +

b |

Normalized Cut(ms) TRET:
& )

7~ N RS
~—

1
2

Both ratio cut and normalized cut prefer a balanced partition
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(4) Spectral clustering

Spectral Clustering

¢ Both ratio cut and normalized cut can be reformulated as

min T'I'(STZS)
Se{0,1}nxk

D— A graph Laplacian for ratio cut

° Where L= { I — D Y2AD~Y2 normalized graph Laplacian

D = d’iag(dl Jdo, -, ([“) A diagonal matrix of degrees

o Spectral relaxation: minTr(STLS) s.t. STS = I,
S
e Optimal solution: top eigenvectors with the smallest
eigenvalues

Reference: http://www.cse.ust.hk/~weikep/notes/clustering.pdf 75

5/5/2013

13



(4) Spectral clustering

Spectral Clustering Example

Two communities:
{1,2,3,4}and {5, 6, 7, 8, 9}

The 1% eigenvector
means all nodes belong ﬁ k-means

to the same cluster, no

D = diag(3,2,3,4,4,4,4,3,1) use
3 -1 -1 -1 0 0 0 0 0] [0.33 —0.38 ]
-1 2 -1 0 0 0 0 0 o0 0.33 —0.48
-1 -1 3 -1 0 0 0 0 0 0.33 —0.38
B -1 0 -1 4 -1 -1 0 0 0 0.33 —0.12
L=D-A= 0 0 0 -1 4 -1 -1 -1 0 :> S=1033 0.16
0 0 0 -1 -1 4 -1 =1 0 0.33  0.16
0o 0 0 0 -1 -1 4 —1 -1 0.33  0.30
o 0 0 0 -1 -1 -1 3 0 0.33 024
0O 0 0 0 0 0 -1 0 1| L 0.33 051 |
Centered matrix 76

(5) Modularity maximization

Modularity Maximization

* Modularity measures the strength of a community partition
by taking into account the degree distribution

e Given a network with m edges, the expected number of edges
between two nodes with degrees d;and d; is d;d;/2m
The expected number of edges

between nodes 1 and 2 is
3*2/(2*14) =3/14

» Strength of a community: Z Aij — did;[2m
Given the degree distribution 1I€CJEC

L‘
l J&
e Modularity: ¢ 2,,,2 > (Aij — did;/2m)
1

ieC,.i€C,

i =&
e Alarger value indicates a good community structure

77
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(5) Modularity maximization

Modularity Matrix

Centered matrix

e Modularity matrix: p— 4 - dd”/2m  (Bij = Aij — did;/2m)

ij

* Similar to spectral clustering, Modularity maximization can be
reformulated as

max Q = QLT,-(S"‘BS) st. STS = I
m

¢ Optimal solution: top eigenvectors of the modularity matrix

* Apply k-means to S as a post-processing step to obtain
community partition
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(5) Modularity maximization

Modularity Maximization Example

Two Communities:
{1,2,3,4}and {5, 6,7, 8, 9}

ﬁk—means

~0.32 079 068 057 —043 —043 043 -032 -0.11 0. 2708
0.79 —0.14 079 -0.29 —029 —0.29 —0.29 -021 —0.07 0. 2671

0.68 079 —032 057 —043 —043 —043 —032 —0.11 ~0.2708

057 —0.29 057 —0.57 043 043 —057 —043 —0.14 0. 6063

B=| —043 -0.29 -043 043 -057 043 043 057 —0.14 -0. 3487
—0.43 —0.29 043 043 043 057 043 057 -0.14 0. 3467
043 -0.29 043 -0.57 0.43 043 —0.57 0.57 0.86 0. 3385

—0.32 —0.21 -032 —043 057 057 057 —0.32 —0.11 0. 1885
-0.11 -0.07 -011 -0.14 -0.14 -0.14 086 -0.11 —0.04 -0.1862

Modularity Matrix
79
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A Unified View for Community Partition

e Latent space models, block models, spectral clustering, and
modularity maximization can be unified as

" N Soft Community Community
Network A Utility Matrix M Indicator S Partition H

“Construct M dependmg\‘ ™~ _,'
i cti Compute Top Apply K-Means
on the Objective Eigenvectors pg‘isterm
Function Y . g .

modified proximity matrix P if latent space models
Utility Matrix M adjacency matrix A if block models

J y Matrix M = . ~ . .

graph Laplacian L if spectral clustering
modularity maximization B if modularity maximization

Reference: http://www.cse.ust.hk/~weikep/notes/Script_community_detection.m *°

Hierarchy-Centric Community Detection

e Goal: build a hierarchical structure of communities
based on network topology

* Allow the analysis of a network at different
resolutions

* Representative approaches:
— Divisive Hierarchical Clustering (top-down)
— Agglomerative Hierarchical clustering (bottom-up)
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