

Distance Query Usage

Closest mirror selection:

- Fairly gross estimation is sufficient. Application layer construction:
- Application level multicast trees
- Optimizing overlay routing

- Trade-off CPU with storage: pre-calculate all pair shortest paths
- Memory requirement is $O(n^2)$ too large
 - n=100k nodes \Rightarrow table size 10¹⁰ entries
 - Internet AP (500k) \Rightarrow table size 2.5×10¹¹ entries
- Not practical

Number of Centers:

Given a network G with *n* nodes, a bound *d*, find a smallest set of centers S_C such that the distance between any node *i* and its

closest center $C_i \in S_C$ is bounded by *d*.

minimize N s.t., $S_C \subseteq V$, $|S_C| = N$, and $\forall v \in V$: $d(v, C_v) \leq d$

Tracer Placement

Given a network G with *n* nodes place K Tracers where it minimize the maximum distance between a node and the nearest Tracer.

This problem is known as the minimum K-center problem.

The distance should satisfy the triangle inequality.

k hierarchical well-seperated trees

- An attempt to solve both problems together
- An adaptation of an algorithm that was designed for a different problem

[Bartal, FOCS 1996] [Awerbuch & Shavitt, Trans. on Net., 2001]

k-HST

The randomization of the partition radius is done so that the probability that a short link is cut by the partition decreases exponentially as one climb the tree.

 \Rightarrow nodes close together are more likely to be partitioned down the tree

Using the *k*-HST

- Starting from the tree root push the tracer location down until the diameter constraint is reached.
 - Place the Tracers in the corresponding partition centers.
- Given a budget of centers
 - Push the Tracers down from the largest diameter until meeting the budget

- Known to be an NP complete problem
- A factor 2 approximation is solvable in O(N|E|)

Tracer-to-Tracer distance

- Storing all t^2 links may be too large.
- A graph with 500,000 nodes (Internet APs)
 - Say t=5,000 require us to hold 25M entries
 - Important if links need to be 'maintained'
- A simple reduction
 - Using a Spanner

Tracer to Node Table Size

- Maintain for each node distances to some closest Tracers
 - Fixed number
 - Based on the partition diameter

IDMaps

• Advantage:

- Can be easily distributed (for the Internet)
- Main ideas:
 - Spread enough Tracers in the Internet
 - Each tracer measure the distance to all (or closest) AP
 - Tracers measure the full clique among them

[Trans. on Net. 2001, Francis et al.]

Pro & Cons

- Excellent results for mirror selection
 - With relaxed requirement: $\forall i \ 1 \le i \le K \ d(s_{i}, c) \le \alpha d(s_{i}, c) + \beta$
- Bad estimation of short distances

Embedding

Given a weighted graph, embed the nodes in some metric space, such that:

- The distance in the embedding space is close to the distance in the graph
- Hope: multi-link path distances will be well estimated, as well.

A physical model:

- particles = network nodes (Tracers, clients)
- inter-particle force & friction = difference between measured and embedded distances
- Kinetic energy = drive particles out of local minima of the error function

BBS Features

- Particles with larger estimation errors move faster
- Equilibrium points of the potential function are points where the field force, F_i , is zero for all particles V_i
- Friction slows down particles so they can slip into potential wells.

Nearly Tight Low Stretch Spanning Trees

Any graph G with *n* points has a distribution *T* over spanning trees such that for any edge (u, v) the expected stretch $E_{T\sim T} [d_T(u, v)/d_G(u, v)]$ is bounded by $\tilde{O}(\log n)$.

Can be extended for weighted graphs.

[Abraham, Bartal, Neiman, FOCS 2008]

Shortest Path Oracle with PreProcessing

- The stretch of a tree is not practical
- Build a DAG that captures the distances in the graph (pre-processing)
 - Hierarchical \Rightarrow Logarithmic calculation time
 - Linear size
- Use the DAG to calculate shortest path for a point to point query
 - Logarithmic time

Multi-level Proximity Routing (MPR)

- An hierarchical soft clustering structure for a weighted graph G = (V,A).
- A query algorithm is answering pair distance queries by searching the paths of the source and the destination in the hierarchy.
- The result is an approximation of the shortest path.
- Can be approximated

MPR Experiments				
Graph	Nodes	Arcs/	Basic MPR CPU*	
		Edges	Build sec	Query ms
DIMES IP Delay w16/08	138721	602970 (directed)	47.7	0.15
DIMACS 9'th Euro- Road	18010173	42188664 (directed)	1681.3	0.42
Simulate Ad-Hoc	1281966	8554957 (undirected)	688.1	1.9

