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Motivation

» Large Graphs server

— Shortest route queries




Motivation (cont.)

arXiv mirror sites

 Large Graphs server

— Distance queries
GCC mirror sites

Ohur releases are available on the GNU FTP server and its murrors, The following sites murror the gee.g

(Phoenix, Arizena, USA) directly:

» Austria: gd fuw

. thanks to Antonin Sprinz] at tuwien ac.at
amkes 1o igor a1 onlinedirect by

v, thanlks to James Miller (jmiller at pasentingamericn oo
ou.com, thanks 1o Sergey Ivanoy (murers o1 skazkaforyou com)

fr, thanles ta fipmaint at lip fr

anks to fpmasnt at insa fr

i, thasks to fipmaint st wvsg &

Ain de, thanks to fip at fu-berlin de

e, thanks to emoenke at gwdg.de

thanks to fipadmin at mpi-sh mpg de

pee. cybens o, tharks 1o Sascha Schwasz (cm at eybermirror ong)

nitua gr, thanks to fipadm at nfua, gr

+, Budapes .tk ppke b, thanks to Adam Rak (neurhlp ot grmasl com)

» Tnpan: fip. & v, thanks 1o TWATZAKO Takahiro (fip-ndmin at dri ad jp)

» Japan: Op tsukuba wide ad p, thanks 1o Kohes Takabash (tsukuba-fip-servers at tsukuba wide ad jp)
« Larvia, Riga: webbostinpgeeks ce., thanks to Tgor (whg igp at gmail com)

+ The Netherlands, Nijmegen: £ anks to Jan Cristiaan van Winkel {jc at ATComputing ol)
* Slovakaa, Bratislava h harks b Jan Teluch (admin a1 2600.5k)

» UK: fip//ftp mirr reevware org/pub/gec, thanks to miror at mimorservice org

{ s, thanks to Internet bs (info at meernet bs)

5, thanks 1o Sergey Kutserey (s kutserey at gmail com)

m, thamks 1o admin at netgull com

o Bulgaria: ge
» Canada: hitp
* Canada: hitp.
» France (mo snapshots): f
« France, Brittany: fip.srisa fr
» France, Versailles: i

IS, Saint Louss: hip://gec

« US, San Jose: birp-

" s 8 8 8 s 8 0

LANL|

cn.arXiv.org (China)

frarXiv.org (France)

de arXiv.org (Germany)

in.arXiv.org (India)

jp.arXiv.org (Japan)

es.arxiv.org (Spain)

uk.arXivorg (UK}

lanl.arXiv.org (née xa.lanl.gov, U.S. mirror at Los Alamos)
arXiv.org (U.S. primary site at Cornell University)

Answering a Query

 Graphs are large, but not too much

— Can run SP algorithm in seconds or minutes

— Too slow for answering queries

— Too much CPU to answer many queries

« We want to answer many queries fast
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Distance Query Usage

Closest mirror selection:

 Fairly gross estimation is sufficient.
Application layer construction:

» Application level multicast trees

» Optimizing overlay routing

Building a Distance Query

 Trade-off CPU with storage:
pre-calculate all pair shortest paths

« Memory requirement is O(n?) — too large
— n=100k nodes = table size 10'° entries

— Internet AP (500k) = table size 2.5x10!!
entries

» Not practical
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The IDMaps Approach

Select t < n points (tracers) in the graph
Calculate and store the #* distances among them

Calculate and store the n- ¢ distances between each
tracer and the rest of the graph

Distance: min{A-T1-B, A-T2-B, A-T1-T2-B}

=R

[Trans. on Net. 2001, Francis ef al.]

Questions and Challenges

How many Tracers do we need?
Where Tracers should be located?

Do we need to calculate all the # distances?

— What is the tradeoff between overhead and
accuracy?

Do we need to calculate all #n- ¢ distances ?
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Tracer Placement

Number of Centers:

Given a network G with n nodes, a bound d,
find a smallest set of centers S such that the
distance between any node i and its

closest center C, € S 1s bounded by d.

minimize N
s.t., Sc <V, | S| =N, and
VveV:dy,C)d

Tracer Placement

Given a network G with n nodes place K
Tracers where 1t minimize the maximum
distance between a node and the nearest
Tracer.

This problem 1s known as the minimum

K-center problem.

The distance should satisfy the triangle inequality.
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k-HST

k hierarchical well-seperated trees

* An attempt to solve both problems together

* An adaptation of an algorithm that was
designed for a different problem

[Bartal, FOCS 1996]
[Awerbuch & Shavitt, Trans. on Net., 2001]

k-HST

Recursively partition the graph:

 Select an arbitrary node from current (parent) partition
— All the node within a random radius form a new (child) partition
— The radius is a factor of k£ smaller than parent partition radius

* Recurse until all partitions and singletons

* Build a virtual tree of partitions using child-parents

* Embed the tree
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k-HST

The randomization of the partition radius is
done so that the probability that a short link is
cut by the partition decreases exponentially as
one climb the tree.

—nodes close together are more likely to be
partitioned down the tree

Using the ~~-HST

« Starting from the tree root — push the tracer
location down until the diameter constraint
is reached.

— Place the Tracers in the corresponding partition
centers.

* Given a budget of centers

— Push the Tracers down from the largest
diameter until meeting the budget
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Minimum k£ centers

* Known to be an NP complete problem

A factor 2 approximation is solvable in
O(NIEJ)

Effect of Tracer Number
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Tracer-to-Tracer distance

« Storing all # links may be too large.

A graph with 500,000 nodes (Internet APs)
— Say t=5,000 require us to hold 25M entries
— Important if links need to be ‘maintained’

* A simple reduction

— Using a Spanner

R\

Effect of t-spanner on 1,000-node Inet network with 100 Tracers.




Tracer to Node Table Size

* Maintain for each node distances to some
closest Tracers
— Fixed number
— Based on the partition diameter

Percantags of improwamend
=
=

a0 25 o =E 0
Parcaniage of Comect Angwars

Mirror selection on 1.000-node Waxman network, 10 Tracers,
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IDMaps

» Advantage:

— Can be easily distributed (for the Internet)
* Main ideas:

— Spread enough Tracers in the Internet

— Each tracer measure the distance to all (or
closest) AP

— Tracers measure the full clique among them

[Trans. on Net. 2001, Francis ef al.]

Nd//Sense of Geometry
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Pro & Cons

» Excellent results for mirror selection

— With relaxed requirement:
Vi 1<isK d(s,c)< ad(s,c)+

* Bad estimation of short distances

Embedding

Given a weighted graph, embed the nodes in
some metric space, such that:

» The distance in the embedding space is
close to the distance in the graph

» Hope: multi-link path distances will be well
estimated, as well.

4/24/2013
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Embedding Solutions for Networking

Distortion = Max{ Real dist. /computed dist.,
computed dist. / Real dist.}

« GNP [Ng and Zhang, Infoconr02]
— Euclidean Embedding in R?, down-hill-simpl
— Not accurate, high max/var symmetric distortion
« BBS [Tankel and Shavitt, Infocom’03]
— Accurate and Scalable Euclidean Embedding in R?
— Under estimation errors for long distances
* Hyperbolic Embedding [Tankel and Shavitt, Infocom’04]

— Improves embedding in some cases

Other Embedding Methods

* Semi-Definite Programming (SDP)
Best known theoretical result- [Linial et al. 95]

* Multi-Dimensional Scaling (MDS)

Simple and low complexity implementation
* Down-Hill Simplex (DHS)
Used in GNP [Ng Zhang 02]

4/24/2013

13



BBS - Basic Idea

A physical model:
* particles = network nodes (Tracers, clients)

* inter-particle force & friction = difference
between measured and embedded distances

* Kinetic energy = drive particles out of local
minima of the error function

Inter Particle Forces
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Matched Trajectories with Friction
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* Particles with larger estimation errors move

faster

* Equilibrium points of the potential function
are points where the field force, F, 1s zero

BBS Features

for all particles V;

* Friction slows down particles so they can

slip into potential wells.

)
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Hyperbolic Embedding

Due to Internet economics, routes tend to pass through the center

Example: Poincare disk D?

4/24/2013
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Curvature and Distances Ratio

- CD=2a+h

Embedding Methods

o Allpair (AP) Not scalable

— Embed n-nodes metric, n(n-I)/Z diStarce-pais~at-ance.
* Two phase (TP)

— Embed Small subset of t Tracers, t(t-1)/2 distance pairs.

— For each of the other nodes, embed its distances to several
nearest Tracers.

* Random + Neighbors (RN)
— Embed with distances to

* The 1-neighborhood
 Order of log(n)peer nodes, selected uniformly at random.

— No fixed tracers

4/24/2013
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Rand. Neigh. vs. Two Phase

Two Phase Random + Neighbors
* Non-symmetric « Symmetric
 Distributed

e Over-estimation of
short distances

e Central calculation

» Equally accurate for

o all distances.
e Sensitive to Tracer

failure

Avg CPU Time(seconds)

Two-Phase Embedding for AS Graph 1/00

AS 1/00 Graph, 150 members, 10 tracers, 6-7 tracers/AP, weights [1,1000], dim=2 - 6
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Two-Phase Embedding Rel. Error AS 1/00
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Random + Neighbors Embedding Rel. Error AS 3/01

AS 3/01 (10900 nodes), 3200 LAN+TRANSIT members, embedding dim= 5
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Nearly Tight Low Stretch
Spanning Trees

Any graph G with # points has a distribution T
over spanning trees such that for any edge (u, v)
the expected stretch Er_, [dp(u, v)/dg(u, v)] 1s
bounded by O(log n).

Can be extended for weighted graphs.

[Abraham, Bartal, Neiman, FOCS 2008]

Shortest Path Oracle with
PreProcessing

» The stretch of a tree is not practical

* Build a DAG that captures the distances in
the graph (pre-processing)
— Hierarchical = Logarithmic calculation time
— Linear size

» Use the DAG to calculate shortest path for a
point to point query
— Logarithmic time

4/24/2013
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Multi-level Proximity Routing
(MPR)
» An hierarchical soft clustering structure for a
weighted graph G = (V,A).

* A query algorithm is answering pair distance
queries by searching the paths of the source
and the destination in the hierarchy.

* The result is an approximation of the shortest
path.

» Can be approximated

MPR Hierarchical Construction

» The input graph is the level 1 graph
 Building level /+1 graph (aggregation)
— Select:

« each /-level node scores its neighbors

» Scores are used to decide which nodes are selected
to the higher level

— Interpolate

 Connect the /+1 level nodes using 1-, 2-, or 3-hop
paths

— Post filter

* Remove redundant links

4/24/2013
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Score Stage

« Sub graph G;, contains node 1 and its 2-
neighborhood, and the links from 1 and its
1-neighborhood to its 2-neighborhood

* The coverage set of neighbor J of node 1
;Sji = {z|i~> j~ ...2is a shortest path in G;} .

—Select score of neighbor j of node 1

Select Stage

» Each cluster head 1 which is not selected
iteratively select neighbors J,,J, .. Jk
with maximum select score until

K] ~ . 1
E S5 > Mp E S5
k<p;

JEN b

» Here v <1 is the aggregation factor.

* Increasing it yields more optimal but denser
MPR, with larger memory and run time
complexities.
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Interpolate Stage

* [-level path types among parents {py ~~ po},
{p1 ~ w1 ~ pa} and {p1 ~ uy ~ us ~ pa}
where p, and p, are selected parents of their
unselected child u, and u, respectively.

* The least cost computed path between v; and v; is
the corresponding edge weight w;;<"*1>.

* In order to reduce the aggregation complexity, the
edge e;; <"1 is filtered if w; ;<*1> is not less than

[+1 [+1
Illlll,ri?gzj wfk >_|_, fij >.

Aggregatlon Step

Select Stage

Interpolate Stage

4/24/2013
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MPR Experiments
Graph Nodes |Arcs/ Basic MPR CPU*
Edges | Build sec |Query ms
DIMES IP
Delay 138721 602970 47.7
w16/08 (directed)
DIMACS
9'th Euro- | 18010173| 42188664| 1681.3
Road (directed)
Simulate | 1281966| 8554957 688.1
Ad-Hoc (undirected)

e-MPR Aggregation

Basic (Heuristic) Aggregation is accurate ¢
enough (tunable threshold) for most pairs

No tight worst-case analysis ¢

Select enough parents until the tractability
conditions are satisfied:

gp-stretched paths among parents —

gc-stretched arcs among adjacent children —

If £,=0 —(1+¢)-stretched query

4/24/2013
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¢ =0.7
&

-MPR Accuracy
DIMES IP Delay week 31/2007
Relative Delay Error

b3

Network

pe

Relative Delay Error

0.15

R

0.1

DIMES IP Delay

Euro-

0.03 0.05

Full Scan

Max 0.88(3h:20m)
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