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Motivation

• Large Graphs server
– Shortest route queries
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Motivation (cont.)

• Large Graphs server
– Distance queries

Answering a Query

• Graphs are large, but not too much
– Can run SP algorithm in seconds or minutes

– Too slow for answering queries

– Too much CPU to answer many queries

• We want to answer many queries fast
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Distance Query Usage

Closest mirror selection: 

• Fairly gross estimation is sufficient.

Application layer construction:

• Application level multicast trees

• Optimizing overlay routing

Building a Distance Query

• Trade-off CPU with storage:
pre-calculate all pair shortest paths

• Memory requirement is O(n2) – too large
– n=100k nodes  table size 1010 entries

– Internet AP (500k)  table size 2.51011

entries

• Not practical
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The IDMaps Approach

• Select ݐ ≪ ݊ points (tracers) in the graph

• Calculate and store the t2 distances among them

• Calculate and store the n t distances between each 
tracer and the rest of the graph

• Distance: 

[Trans. on Net. 2001, Francis et al.]

min{A-T1-B, A-T2-B, A-T1-T2-B}

T1 T2

A B

Questions and Challenges

• How many Tracers do we need? 

• Where Tracers should be located?

• Do we need to calculate all the t2 distances? 
– What is the tradeoff between overhead and 

accuracy?

• Do we need to calculate all n t distances ?
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Tracer Placement

Number of Centers:

Given a network G with n nodes, a bound d, 
find a smallest set of centers SC such that the 
distance between any node i and its

closest center Ci  SC is bounded by d. 

minimize  N

s.t., SC V, | SC | = N, and 

 v  V:  d(v, Cv)≤d

Tracer Placement

Given a network G with n nodes place K 
Tracers where it minimize the maximum 
distance between a node and the nearest 
Tracer.  

This problem is known as the minimum

K-center problem. 

The distance should satisfy the triangle inequality. 
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k-HST
k hierarchical well-seperated trees

• An attempt to solve both problems together

• An adaptation of an algorithm that was 
designed for a different problem

[Bartal, FOCS 1996]
[Awerbuch & Shavitt, Trans. on Net., 2001]

k-HST

Recursively partition the graph:
• Select an arbitrary node from current (parent) partition

– All the node within a random radius form a new (child) partition

– The radius is a factor of k smaller than parent partition radius

• Recurse until all partitions and singletons

• Build a virtual tree of partitions using child-parents

• Embed the tree
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k-HST

The randomization of the partition radius is 
done so that the probability that a short link is 
cut by the partition decreases exponentially as 
one climb the tree.

nodes close together are more likely to be 
partitioned down the tree

Using the k-HST

• Starting from the tree root – push the tracer 
location down until the diameter constraint 
is reached.
– Place the Tracers in the corresponding partition 

centers.

• Given a budget of centers
– Push the Tracers down from the largest 

diameter until meeting the budget
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Minimum k centers

• Known to be an NP complete problem

• A factor 2 approximation is solvable in 
O(N|E|)

Effect of Tracer Number
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Tracer-to-Tracer distance

• Storing all t2 links may be too large.

• A graph with 500,000 nodes (Internet APs)
– Say t=5,000 require us to hold 25M entries

– Important if links need to be ‘maintained’

• A simple reduction
– Using a Spanner
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Tracer to Node Table Size

• Maintain for each node distances to some 
closest Tracers
– Fixed number

– Based on the partition diameter
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IDMaps

• Advantage:
– Can be easily distributed (for the Internet)

• Main ideas:
– Spread enough Tracers in the Internet

– Each tracer measure the distance to all (or 
closest) AP

– Tracers measure the full clique among them

[Trans. on Net. 2001, Francis et al.]

No Sense of Geometry 

T1 T2

A BC
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Pro & Cons

• Excellent results for mirror selection
– With relaxed requirement: 

i 1≤i≤K d(sj,c)≤ αd(si,c)+β

• Bad estimation of short distances

Embedding

Given a weighted graph, embed the nodes in 
some metric space, such that:

• The distance in the embedding space is 
close to the distance in the graph

• Hope: multi-link path distances will be well 
estimated, as well.
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Embedding Solutions for Networking

• GNP [Ng and Zhang, Infocom’02]

– Euclidean Embedding in Rd, down-hill-simplex

– Not accurate, high max/var symmetric distortion

• BBS [Tankel and Shavitt, Infocom’03]

– Accurate and Scalable Euclidean Embedding in Rd

– Under estimation errors for long distances

• Hyperbolic Embedding [Tankel and Shavitt, Infocom’04]

– Improves embedding in some cases

Distortion = Max{ Real dist. /computed dist.,
computed dist. / Real dist.}

Other Embedding Methods

• Semi-Definite Programming (SDP)
Best known theoretical result- [Linial et al. 95]

• Multi-Dimensional Scaling (MDS)
Simple and low complexity implementation

• Down-Hill Simplex (DHS)

Used in GNP [Ng Zhang 02]
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BBS - Basic Idea

A physical model:

• particles = network nodes (Tracers, clients)

• inter-particle force & friction = difference 
between measured and embedded distances 

• Kinetic energy = drive particles out of local 
minima of the error function

Inter Particle Forces
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BBS Features

• Particles with larger estimation errors move 
faster

• Equilibrium points of the potential function 
are points where the field force, Fi, is zero 
for all particles Vi

• Friction slows down particles so they can 
slip into potential wells.
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Hyperbolic Embedding

Due to Internet economics, routes tend to pass through the center

Example: Poincare disk D2

Embedding Example in D2
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Curvature and Distances Ratio

Embedding Methods

• All pair (AP) 
– Embed n-nodes metric, n(n-1)/2 distance pairs, at once.

• Two phase (TP) 
– Embed Small subset of t Tracers, t(t-1)/2 distance pairs. 
– For each of the other nodes, embed its distances to several 

nearest Tracers.

• Random + Neighbors (RN)
– Embed with distances to

• The 1-neighborhood
• Order of log(n)peer nodes, selected uniformly at random.

– No fixed tracers

Not scalable
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Rand. Neigh. vs. Two Phase

Random + Neighbors

• Symmetric

• Central calculation

• Equally accurate for 
all distances.

Two Phase
• Non-symmetric
• Distributed
• Over-estimation of 

short distances
• Sensitive to Tracer 

failure

Two-Phase Embedding for AS Graph 1/00
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Two-Phase Embedding Rel. Error AS 1/00
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Nearly Tight Low Stretch 
Spanning Trees

Any graph G with n points has a distribution T
over spanning trees such that for any edge (u, v) 
the expected stretch ET~T [dT(u, v)/dG(u, v)] is 
bounded by ෨ܱ(log n). 

Can be extended for weighted graphs.

[Abraham, Bartal, Neiman, FOCS 2008]

Shortest Path Oracle with 
PreProcessing

• The stretch of a tree is not practical

• Build a DAG that captures the distances in 
the graph (pre-processing)
– Hierarchical  Logarithmic calculation time

– Linear size

• Use the DAG to calculate shortest path for a 
point to point query
– Logarithmic time
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Multi-level Proximity Routing 
(MPR)

• An hierarchical soft clustering structure for a 
weighted graph G = (V,A).

• A query algorithm is answering pair distance 
queries by searching the paths of the source 
and the destination in the hierarchy.

• The result is an approximation of the shortest 
path.

• Can be approximated

MPR Hierarchical Construction
• The input graph is the level 1 graph

• Building level l+1 graph (aggregation)
– Select: 

• each l-level node scores its neighbors

• Scores are used to decide which nodes are selected 
to the higher level

– Interpolate
• Connect the l+1 level nodes using 1-, 2-, or 3-hop 

paths

– Post filter
• Remove redundant links
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• Sub graph Gi, contains node i and its 2-
neighborhood, and the links from i and its 
1-neighborhood to its 2-neighborhood

• The coverage set of neighbor j of node i

→Select score of neighbor j of node i

Score Stage

• Each cluster head i which is not selected 
iteratively select neighbors j1,j2 …jk
with maximum select score until

• Here  <1 is the aggregation factor. 
• Increasing it yields more optimal but denser 

MPR, with larger memory and run time 
complexities.

Select Stage
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• l-level path types among parents

where p1 and p2 are selected parents of their 
unselected child u1 and u2 respectively. 

• The least cost computed path between vi and vj is 
the corresponding edge weight wij

<l+1>. 

• In order to reduce the aggregation complexity, the 
edge eij

<l+1> is filtered if wij
<l+1> is not less than

Interpolate Stage

Aggregation Step
Select Stage

Interpolate Stage

Sibling
Edges
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MPR Experiments
Graph Nodes Arcs/ 

Edges
Basic MPR CPU*

Build sec Query ms

DIMES IP 
Delay

w16/08
138721 602970

(directed)
47.7 0.15

DIMACS

9’th Euro-
Road

18010173 42188664

(directed)
1681.3 0.42

Simulate 
Ad-Hoc

1281966 8554957

(undirected)
688.1 1.9

ε-MPR Aggregation

•Basic (Heuristic) Aggregation is accurate 
enough (tunable threshold) for most pairs

•No tight worst-case analysis 

•Select enough parents until the tractability 
conditions are satisfied:

–εP-stretched paths among parents

–εC-stretched arcs among adjacent children

•If εP=0 →(1+εC)-stretched query
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DIMES IP Delay
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