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Hyperbolic Geometry and Graphs

Yuval Shavitt

Euclid axioms.

1. Every two points lie on exactly one line.

2. Any line segment with given endpoints
may be continued in either direction.

3. It is possible to construct a circle
with any point as its centre and with a radius of any length.

4. All right angles are equal.
5. Given a line L and a pointnoton L,

there is one and only one line which contains the point
and which is parallel to L.
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° N
It is this fifth axiom, /7
the Parallel Postulate, / Hniaue
that caused Point
a lot of trouble. \ Line L
d

The question was, could this be derived from the other axioms
and common notions as a theorem?

If so, it could be removed from the list of axioms,
which would then be a smaller yet still (hopefully) complete set.

Euclid himself seems to be unsure on this question.
He certainly seems to go out of his way to

avoid using the Parallel Postulate in his opening theorems.

Many, many mathematicians attempted to prove
the Parallel Postulate to be either a necessary axiom,
or a theorem. All failed until the 19" century,

when Gauss, Lobachevsky and Bolyai found a solution.

Carl Friedrich Gauss Nikolai Lobachevsky  Janos Bolyai
(1777-1855) (1792-1856) (1802-1860)
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They had the idea of replacing the Parallel Postulate
with another axiom, without removing the idea
that the axioms should be consistent.

The revised fifth axiom
looked like this:

Given a line
and a point not on that line, \
there are infinitely many lines

parallel to the given line
through the point.

All the other axioms were the same.
This new geometry was shown to be consistent,

and so another geometry could stand alongside Euclid’s

as a possible way of modelling the universe.

This proved Euclid to have been remarkably far—sighted
in including his fifth axiom in his list. The work above shows

that it cannot be derived from the others, and is thus essential.

So what does Non-Euclidean Geometry look like?

Well, there are a number of non-Euclidean geometries.

We will look at here
hyperbolic geometry,
as investigated by Gauss,
Lobachevsky and Bolyai,
which can be modelled simply
by the following

geometry-in-a-circle.




A"ven/|iro/ T

We are free to interpret
the notions of
‘point’ and ‘line’
in Euclid’s axioms
as we wish, as long
as we are consistent.

The picture shows
two (straight) ‘lines’
in this geometry;
these are arcs of circles that
meet the black circle edge
at right angles.

A straight line in any geometry
is the shortest distance
between two points
(the geodesic).

We have an unusual idea
of distance in operation here
that means these circular arcs
are indeed the shortest distance
between the given points.

If we regard our black circle as the unit circle,
centre O, in the Argand diagram,
the distance between the points z; and z, is

-1 22—21
d(z,, z,) =tanh _
1-212

2

If z,=1and z, = -1, then d(z,, z,) = tanh"}(1) = co.

The distance function (or metric) here is such that towards the
edge of the circle, distances get bigger and bigger.
The distance across the entire circle is infinite.
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The area of each triangle
here, for example, is the same.

Angle A = 13.7°
iEEIEEiZEE What are the angles here?
Analersum = 146.2 90°, 45° and 30°, which add
to 165°. The angle-sum
of a triangle in
hyperbolic geometry

is less than 180°.

/

A miraculous fact:
circles in this
geometry,
(even with our

D strange idea of
B distance),
Centre A, radius AB look exactly like
circles in Euclidean
geometry.

Centre E, radius EF

Centre C, radius CD

Their centres, however, don’t: the less central
that the centre of the circle is,
the more it diverges from the Euclidean centre.
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&-Hyperbolic Spaces

° A S—hyperbolic space is a geodesic metric space in which
every geodesic triangle is O-thin.

® Definition by Rips —Thin Triang]csl:

* Obviously a Euclidean metric is o0-hyperbolic, as  is not

bounded.

1. “8-hyperbolic space”, Wikipedia, http:/ /en.wikipedia.org/wiki/%CE%94-hyperbolic_space.

/ 3/50

o-Hyperbolicity of Infinite Lattices

* Infinite lattices may be Euclidean or hyperbolic:

® For an infinite triangle lattice, the distance from the triangle’s

sides keeps growing & growing as the triangle is growing.
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o-Hyperbolicity of Infinite Lattices

® On the other hand, other types of lattices may be hyperbolic,
like a tree (which is O-hyperbolic):

/ 5/50
&-Hyperbolicity of Finite Graphs

® Finite graphs are (almost) always hyperbolic.

® Jet’s take a triangular lattice as an example:
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&-Hyperbolicity of Finite Graphs
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&-Hyperbolicity of Finite Graphs

* Finite graphs are (almost) always hyperbolic.

e Jet’s take a triangular lattice as an example:

/ 11750
&-Hyperbolicity of Finite Graphs

® Finite graphs are (almost) always hyperbolic.

® Jet’s take a triangular lattice as an example:

® Therefore in this example, the graph is 2-hyperbolic.

® In the general form, for a side of length 1, the graph is EJ-
hyperbolic.

10
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&-Hyperbolic Spaces

® In a Euclidean space, we can represent three points A, B, C with a

triangle1 :

B
\We! !

C
y JAC|

® The shortest distance from A to B is of length | AB|, and so on.

\1_ “Tight spans and Gromov hyperbolicity”, Calculus VI, http:/ /calculus7.org/2012/11/11/tight-spans-and-gromov-hyperbolicity /. J
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&-Hyperbolic Spaces

® There is another way to represent this': B
Qa c
¢ This tripod representation yields 3 equations: A- C
a+b =|AB|
a+c=]AC|
b+ c =|BC|

® Solving this set of equations yields:

1

a =5 (|AB| +1AC| = |BC])
1

b= (l4B] +[BC| ~1ACD

1
¢ =5 (14CI +[BC| = |AB])

®  Wedenotea = (B|C),, the Gromov product of B and C with respect to A.

\1. “Tight spans and Gromov hyperbolicity”, Calculus VII, http:/ /calculus7.org/2012/11/11/tight-spans-and-gromov-hyperbolicity /.
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&-Hyperbolic Spaces

® The geometric way to arrive to this result is by inscribing a
circle in the trianglelz

® The circle divides the sides such that we get a, b, and c.

\1_ “Tight spans and Gromov hyperbolicity”, Calculus VI, http:/ /calculus7.org/2012/11/11/tight-spans-and-gromov-hyperbolicity/

1.
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&-Hyperbolic Spaces

® How may we represent 4 points this way'?

¢ At first we may try by analogy:

® However, this way we have only 5 degrees of freedom, while we have a set of 6
different distances.

® A solution is not guaranteed. For example:
o Suppose |AB|=|BC|=|CD|=|DA|=1 and |AC|=|BD|=2.
® Both B & D must be on the midpoint between A and C.
e However, |BD | must be 2, not 0.

“Tight spans and Gromov hyperbolicity”, Calculus VII, http:/ /calculus7.org/2012/11/11/tight-spans-and-gromov-hyperbolicity /.
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&-Hyperbolic Spaces

® We add another degree of freedom!:

® We can solve 6 equations with 6 variables.

* Even simpler — note that A, B, C form a tripod with side lengths
of ate, b, c+f.
¢ This immediately yields: b = (A | C).
e Similarly,a = (B|C),, ¢ = (A|B), d=(A | C)p.

\1_ “Tight spans and Gromov hyperbolicity”, Calculus VI, http:/ /calculus7.org/2012/11/11/tight-spans-and-gromov-hyperbolicity /. J
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&-Hyperbolic Spaces

Al
2

2

* Consider the perfect matchings between the points A, B, C, D'
|AB| +|CD|=(a+b+c+d)+2e
|AD| + |BC| =(a+b+c+d)+2f
|AC| + |BD| =(a+ b +c+d)+2e+2f

\1. “Tight spans and Gromov hyperbolicity”, Calculus VII, http:/ /calculus7.org/2012/11/11/tight-spans-and-gromov-hyperbolicity /.
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&-Hyperbolic Spaces

|AB|+ |CD|=(a+b+c+d)+2e
|[AD| + |BC|=(a+b+c+d)+2f

&

® D¢ and 2f are the amounts by which the longest matching
exceeds the other two'.

® In particular, the rectangle collapses into an edge when the
two longest matchings have the same size (as happens in a
tree).

\1_ “Tight spans and Gromov hyperbolicity”, Calculus VI, http:/ /calculus7.org/2012/11/11/tight-spans-and-gromov-hyperbolicity /.

|AC| + |BD| = (a+ b +c+d)+2e+2f

18/50\

&-Hyperbolic Spaces

|AB|+ |CD|=(a+b+c+d)+2e
|AD| + |BC|=(a+b+c+d)+2f

2 C

® Definition: a metric space is Gromov hyperbolic if for
every 4 pointsl:

36 = 0,min(e, f) <6

® More intuitively — if the rectangle in the middle is not “too
fat”.

1. “Tight spans and Gromov hyperbolicity”, Calculus VI, http://calculus.org/2012/11/11/tight-spans-and-gromov-hyperbolicity /.
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|AC| +|BD| = (a+b+c+d)+2e+2f
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&-Hyperbolicity of Finite Graphs

® An equivalent definition:

Given a graph G = (V, E) and 4 vertices vy, v,, v, v, €V, let:
dy = d(vy,v;) + d(vs,v4)
dy = d(vy,v3) + d(vy, v4)
dz = d(vy,vy) + d(v3,v3)

Without loss of generality, let:
di=dy, > dj

We define:
dy —d;
2

5(171, vz,vg,v4,) =

¢ The hyperbolicity of the graph is therefore defined by:

6= max 6(vq,vq,V3,1,)
V1,V2,V3,V4€ V

21/50

&-Hyperbolicity of Finite Graphs

® Example on a 4X8 grid:
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&-Hyperbolicity of Finite Graphs
* Example on a 4X8 grid:
V.o — — — e = Vv,
{ @ qQ
® @ q
V; O == QV,
d, =10+ 10 =20
\_ /
/ 23/50
&-Hyperbolicity of Finite Graphs
® Example on a 4X8 grid:
Vio = — = — — — oV,
® @ @ @ @
@ @ @ @ L )
V; O @ @ © OV,
d, =10+ 10 =20
d,=7+7=14
\ )

16
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&-Hyperbolicity of Finite Graphs
* Example on a 4X8 grid:
Vio @ @ @ @ @ QVv,
O @ @ L @ ®—0
O @ @ @ @ @ )
vV, O L L L L L OV,
d, =10+ 10 =20
d; =3+3=6
\_ /
/ 25/50
&-Hyperbolicity of Finite Graphs
® Example on a 4X8 grid:
O L L L @ L O
® @ @ @ @ @ @
@ @ @ @ @ @ L
O L L @ L @ O
d, =10+ 10 =20
d,=7+7=14
d;=3+3=6
20— 14
0= =3
\ 2 )

17
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Applications

* Estimating distances on the Internet by embedding it onto a
hyperbolic space':
¢ Closest-server.
® Building an application level multicast tree.
e Label routing2.
* Classical problems in hyperbolic space’:
® PTAS for TSP problem when cities lie in H.
® Nearest neighbor search data structure with O(log n) query
time, O(n?) space.

® And more others!

. Y. Shavitt and T. Tankel, “Hyperbolic Embedding of Internet Graphs for Distance Estimation and Overlay Construction”, IEEE/ACM Transactions on Networking,

16(1):25—36, 2008.

. D. Krioukov, E. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguna, “Hyperbolic Geometry of Complex Networks”, Physical Review E, v.82, 036106, 2010.
. R. Krauthgamer and J. Lee, “Algorithms on Negatively Curved Spaces”, FOCS '06 Procecdings of the 47th Annual IEEE Symposium on Foundations of Computer Science,

pp. 119-132, 2006.

/
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The Problem

® Brute force solution for finding a graph’s 5—Hyperbolicity
includes going over O(n*) quads of vertices.

® Not feasible for large networks.

* How may we find & (ora good estimate) more
efficiently?

® This is your home assignment
® You can assume O(E) = O(V)




