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Our Graphs Become Larger

• Simple algorithms do not scale
– O(nk) for size k graphlets

• Two approaches:
– Find clever algorithms for counting small 

graphlets
– Approximate count for larger graphlets

Induced Subgraphs
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Graph

Potential Subgraphs
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NON-Induced Subgraphs
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Efficient Counting of Graphlets

Key Observations:

• It is easier to count non-induced graphlets

• Counting all non-induced graphlets can give 
us all induced graphlets of some size.

Tree Decomposition
A tree decomposition of a graph G = (V, E) is a pair 
(X, T), where X = {X1, ..., Xn} is a family of subsets 
of V, and T is a tree whose nodes are the subsets Xi, 
satisfying the following properties:

• Each graph vertex is associated with at least one 
tree node.

• For every edge (v, w) in the graph, there is a 
subset Xi that contains both v and w. 

• If Xi and Xj both contain a vertex v, then all nodes 
Xk of the tree in the (unique) path between Xi and 
Xj contain v as well.
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Treewidth

• The width of a tree decomposition is the 
size of its largest set Xi minus one. 

• The treewidth tw(G) of a graph G is the 
minimum width among all possible tree 
decompositions of G. 
– minus one in order to make the treewidth of a 

tree equal to one.

The Treewidth of Graphs

• Every complete graph Kn has treewidth n − 1. 

• A connected graph with at least two vertices has 
treewidth 1 if and only if it is a tree. 

• If a graph has a cycle, its treewidth is at least two.

• It is NP-complete to determine whether a given 
graph G has treewidth at most a given variable k.
– For fixed k, we can check if a graph has a treewidth of k

in O(nk), and find the tree decomposition.
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Examples

Why Treewidth?

Many algorithmic problems that are NP-
complete for arbitrary graphs may be solved 
efficiently by dynamic programming for 
graphs of bounded treewidth, using the tree-
decompositions of these graphs.

Example: k-coloring a graph

We will approximately count some graphlets
based on color-coding alg. [Alon, Yuster, and Zwick, JACM 1995]
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Counting Graphlets Using Color Coding

v

v

Counting Graphlets Using Color Coding



7

v

Counting Graphlets Using Color Coding
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v

Counting Graphlets Using Color Coding

Counting Trees in a Graph
(also graphlets with bounded treewidth)

Given a network G with n vertices and a tree 
T with k vertices, we consider the problem of 
counting the number of non-induced subtrees
of G that are isomorphic to T. 

Assume kO(log n)

[Alon, Yuster, and Zwick, JACM 1995]
[Alon et al., Bioinformatics 2008]
[Gonen & Shavitt, Internet Mathematics 2009]
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The Counting Algorithm

1. Color coding. Color each vertex of input graph 
G independently and uniformly at random with 
one of the k colors. 

2. Counting. Apply a dynamic programming 
routine (explained later) to count the number of 
non-induced occurrences of T in which each 
vertex has a unique color. 

3. Repeat the above two steps O(ek) times and add 
up the number of occurrences of T to get an 
estimate on the number of its occurrences in G. 

Color Coding

r - the total number of copies of T in G. 

We assign a color (ind. and uar) to each vertex 
of G from the color set [k]={1,…,k}. 

For some occurrence of T, the probability that 
all T’s vertices are assigned unique colors is 
p=k!/kk, thus the expected number of colorful 
copies in G is rp. 
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Let ࣠ denote the family of all copies of T in 
G. 

For each such copy F ∈࣠, let xF denote the 
indicator random variable whose value is 1 if 
and only if the copy is colorful in our random 
k-coloring of V(G), the vertices of G. 

Let X=∑F∈࣠ xF be the random variable 
counting the total number of colorful copies 
of T. 

By linearity of expectation, the expected value 
of X is E(X)=rp. 

Estimating X Variance

For every two distinct copies F,F′∈࣠, the 
probability that both F and F′ are colorful is at 
most p.

• in fact strictly smaller unless both copies 
have exactly the same set of vertices.

 the covariance Cov(xF,xF′) satisfies: 
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Estimating X Variance (cont.)

The variance of X:

Y = the average of s independent copies of X
(obtained by s independent random colorings)

E(Y)=E(X)=rp

Estimating X Variance (cont.)

Applying Chebyshev's inequality 
Let X be a random variable with finite expected 
value μ and finite non-zero variance σ2. Then for any 
real number k > 0,

the probability that Y is smaller than (or 
bigger than) its expectation by at least ɛrp is 
at most

if s=4/ɛ2p this probability is at most ¼.
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Decreasing the Error in Y

Compute Y t times independently.

Let Z be the median. 

The probability that the median is less than 
(1−ɛ)rp is the probability that at least half of 
the copies of Y computed will be less than this 
quantity, which is at most

A similar estimate holds for the probability 
that Z is bigger than (1+ɛ)rp.  

Decreasing the Error in Y (cont.)

If t=log(1/δ) then with probability 1−2δ the 
value of Z will lie in [(1−ɛ)rp,(1+ɛ)rp]. 

Note that the total number of colorings in the 
process is ts:

Our estimate for r is Z/p=Zkk/k!
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Counting Paths of length k

Let C(v,S) be the number of  colorful paths for 
which one of the endpoints is v. 

S is a subset of the color set {1,...,k}, 

col(v) is the color of vertex v. 

Given a color ℓ, for all v∈V(G):

Counting Paths of length k (cont.)

For each vertex v and color set S where |S|>1:

The number of single colorful paths of length 
k is

v u

w

C(v,S)

C(u,S-col(v))

C(v,{l})
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Counting Trees
•  – an arbitrary vertex of the tree selected to 

be the root.

• () – the rooted tree

• For each vertex v of the graph G, we 
compute c(v,τ(ρ),[k]), the number of [k]-
colorful rooted subtrees with root v, which 
are isomorphic to τ(ρ).

• The actual number of [k]-colorful 
occurrences of T in G is

q is equal to the number 
of vertices u in T, for 
which the rooted tree τ(u) 
is isomorphic to τ(ρ).

The Dynamic Program

x

u

Complexity of the dynamic program: O(2k|E|)
Overall complexity:

O(2k|V||E|)
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Remarks

• The algorithm can be extended for graphlets
with bounded treewidth.

• If the graphlet sized in O(log n) the (2e)k

term in the complexity is O(n)

• We can use this algorithms to count 
graphlets in a graph, graphlets attached to a 
node, and orbits (at least for trees).

Counting Cycles
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Time Complexity

As before

O(2k n |E|) – for calculating the paths for all v

Overall compelxity: O((2e)k|E||V|log(1/)/2)

Cycle with a Chord
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Mathematical Notations

• C(v,u,S) = the number of colorful paths from v to 
u in a specific coloring, using the colors in S.

• P(v,u,w,S) = the number of colorful paths from u
to w that are adjacent to v in a specific coloring, 
using the colors in S.

v u
S

vu w

The Algorithm

Algorithm’s Input:
A graph G(V,E), a vertex v, fault-tolerance , error 

probability 
Notation: let AV’,z,b(S) be the set of all pairs (S1,S2) 

such that the following hold:
• |S1| = z+1, 
• |S2|=b-z+1, 
• S1S2=S, 
• S1\{col(u)|uV’}S2\{col(u)|uV’}= 
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The Algorithm
1. Color each vertex of G independently and uniformly at random with             

one of the k colors.
2. Compute the number of cycles with a chord in the coloring; there are two 

cases:

2.1 Compute X1,v = the number of k-length cycles with a chord in case 1.
2.2 Compute X2,v = the number of k-length cycles with a chord in case 2.

3. Let Yv = the average of all the s X1,v+X2,v.
4. Return the median of all the t Yv multiplied by kk/k!.

v ℓ

k-ℓ

v
ℓ

k-ℓ

Case 1 Case 2

Repeat 
s=4kk/2k! 
times

Repeat 
t=log(1/) 
times

•For all S [k] s.t S={ℓ} C(v,w,S)=1 if 
col(v)=col(w)=ℓ, and 0 otherwise.

•For q=2 to k, for all S [k] s.t |S|=q

C(v,w,S) =   C(u,w,S\{col(v)})

Computing the number of paths between 
v,w, for every color-set S

uN(v)

v w

v w

uN(v)



20

1Case 

• P(v,u,w,S) = 1zℓ-1 C(v,w,S1)C(v,u,S2)

v z

k-ℓ

u

w

ℓ-z

# z-length colorful paths 
between u and w using 

colors in S1

# ℓ-z-length colorful 
paths between v and u 

using colors in S2

1zℓ-1

The sum is over all 
(S1,S2) in Av,z,ℓ(S)

1Case 

• # of cycles with a chord in case 1 = 
   P(v,u,w,S3)C(u,w,S4)

v z

k-ℓ

u

w

ℓ-z

# ℓ-length colorful paths 
between u and w that are 
adjacent to v using colors 

in S3

# k-ℓ-length colorful paths 
between u and w using 

colors in S4

1zℓ-1

The sum is over all (S3,S4) in 
A{u,w}ℓ,k([k]) and over all (S3,S4) 

in A{u,w},k-ℓ,k([k]) 

ℓ(u,w)E
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2Case 

# of cycles with a chord in case 2 = 
   C(v,w,S1)C(v,w,S2)

v

ℓ

k-ℓ

w

# k-ℓ-length colorful paths 
between v and w using colors 

in S2

# ℓ-length colorful paths 
between v and w using 

colors in S1

The sum is over all (S1,S2) in 
A{v,w},ℓ,k([k])

ℓwN(v)

Time Complexity

The time complexity of computing C(v,w,S) for every color-set S and 
every pair of vertices v,w in a given coloring is O(k2k|E||V|).

The time complexity of computing P(v,u,w,S) for every color-set S 
and fixed v,u,w (assuming C(v,w,S) is known) is 

1

1 1 1

2 (3 )
k k

k

z

k k
O O O

z



  

       
         

       
 




 



 

v z

k-ℓ

u

w

ℓ-z

Choosing the colors of the 
path between u and w that is 

going through v

Choosing the colors of the 
path between v and w

Case 1
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The time complexity of the first case, for every edge (u,w), every 
vertex v, and every color-set S, in a given coloring is 

Time Complexity
v z

k-ℓ

u

w

ℓ-z

Case 1

ܱ ෍ ෍ 3௞

ሺ௨,௪ሻ∈ா௩∈௏

ൌ ܱሺ3௞ ܧ ܸ ሻ

The time complexity of the second case, for every vertex 
v, every neighbor of v, and every color-set S, in a given 
coloring is 

Time Complexity

( ) 1

(2 | |)
k

k

v V w N v

k
O O E

  

  
   

  
  

 

v

ℓ

k-ℓ

w

Choosing the colors of the 
path between v and w 

Case 2
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Time Complexity

Time complexity = 
O((3e)k|E||V|log(1/)/2)

The total time complexity, for every vertex v and every color-set 
S, in a given coloring, is 

O(3k|E||V|).

Small Graphlets

• In many practical cases we are only 
interested in the graphlets of small size, ≤5

• We have already seen how to count 
triangles (and 3 node paths)

• How efficient can we find 4-node 
graphlets?

[Marcus & Shavitt, Computer Networks 2012]
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Maybe we can use our approx.?

Motif Time Complexity
O(|E||V|log(1/)/2)
O(|E|log(1/)/2)
O(|E|log(1/)/2)
O(|E||V|log(1/)/2)

(,) – Approximation:
Pr[(1-)#fy(1+)#f]1-2

Optimal Algorithms
• Counting all orbits

• Assume nodes labels 
are {1,2,…,n}



25

( )

Triangle Counting Per Node

All algs use Merge

In Merge:

NodeArray is not useful 
for counting s, will be 
needed by other 
algorithms.

O(d|E|)

Counting Cycles With Chord
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Counting Cycles With Chord

U

V

Counting Cycles With Chord

U

V

U V
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Counting Cycles With Chord

U

V

U V

Counting Cycles With Chord

U

V

U V

Example
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Counting Cycles With Chord

Merged

U’s
Neighbors

V’s
Neighbors

U

V

U V

Counting Cycles With Chord

Merged

U

V

U V

2

Merged 
 
 
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Counting Cycles With Chord

U

V

O(|E|*(2*dlogd+d+d))=O( |E|*dlogd)

Runtime Analysis

Iterate 
over all 
Edges

Sort both 
Neighbor 
lists

Merge 
Neighbor 
lists

Update count 
for relevant 
nodes

Counting Cycles With Chord

U

V

Runtime Analysis

*we can get time complexity of O(|E|*d)
Assuming graph veracities are labeled by the integers {1…n}

O(|E|*(2*dlogd+d+d))=O( |E|*dlogd)
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(

(

)

)

Counting Tail Triangles

O(d|E|)

Counting 4 Cliques
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Complexity

In bounded degree graphs ∑ ܰ ݓ ൌ ݀ଶ௪
(instead of |E|) so the complexity is O(d2|E|)

Counting 4 Cycles
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O(d|E|)

Counting Claws
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Summary for Graphlets

Motif Time Complexity
O(|E|2)
O(d|E|)
O(|V|)
O(d|E|)
O(d|E|)
O(|E|2)  or O(|E|d2)

Runtime Analysis for Orbits

O(d·|E|)

O(d·|E|+ |E|2)

O(|V|)

O(|E|)

For any real-world graph
O(|E|) = O(|V|)
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Performance

• Density seems to be an important factor

Comparison

Rage is faster even than FANMOD sampling

8k edges               20k edges               52k edges             92.6k edges
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Comparison

1000 nodes
B-A graphs

[Milenkovic, Lai, and Przulj, 2008]

[Hulovatyy and Solava, Notre Dame]

Comparison

200 nodes
E-R graphs
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Inferring Induced Count
4 Node Cycles

• Fix the over‐count occurred  due to subgraphs 
with access edges

3 counts

Induced Count =  NonInduced(       ) – 3*Induced(       ) – 1*Induced(       )

1 count

0 counts

= NonInduced(      ) + 3*NonInduced(      ) – 1*NonInduced(       )

Inferring Induced Counts of Orbits

Induced Count(        )  =  Non Induced Count (        ) – 3*Non-Induced  Count (       )

Induced Count(        )  =  Non Induced Count (        ) – 3*Non-Induced  Count (       )

Induced Count(           )  =  Non Induced Count (            ) 
– 2*Induced  Count (       )

– 3*Induced  Count (       )
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Sublinear Algorithm

• Assume a very large graph

• We can query the graph
– Minimize the query number

• Sublinear approximation

1    2   …    

1    2   …    

d(2)

1

n

d(1)

d(n)

Counting Stars: Model
• We assume graphs are 

represented by the incidence 
lists of the vertices, where 
each list is accompanied by 
its length. 

• Allowed queries:

– what is the degree, d(v), 
of any vertex v?

– who is the i’th neighbor of 
v, for any vertex v and 
index 1 i  d(v)?
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Approximating Stars

Upper Bound:
• Given an approximation parameter 0 <  < 1 and query 

access to a graph G, our algorithm outputs an estimate ’s
such that, with high constant probability, 

(1-)s(G) ’s  (1+) s(G),
where s(G) denotes the number of stars of size s+1 in the 
graph.

• The  expected query complexity and running time of the 
algorithm are

1
1

1

1 1
1

1

min , (log ,1/ )

( ) ( )

s
s

s

s s
s s

n n
O n poly n

G G


 







  
     
    

Main Idea-Upper Bound
• Consider a partition of the graph vertices into O(log n/)

buckets where in each bucket all vertices have the same 
degree (with respect to the entire graph) up to a multiplicative 
factor of (1O()). The degree in bucket Bi is ~(1+)i, 
=O().

• If we could get a good estimate of the size of each bucket by 
sampling, then we would have a good estimate of the number 
of s-stars (since the vertices in each bucket
are the centers of approximately the same 
number of stars).

• The difficulty is that some buckets may be very small and we
might not even hit them when sampling vertices. However, 
these buckets can significantly contribute to the number of 
stars in the graph. …


