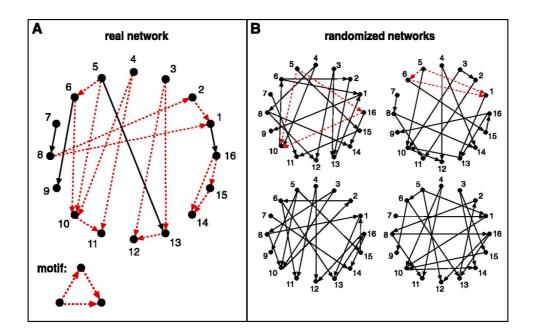


Network Motifs: Why

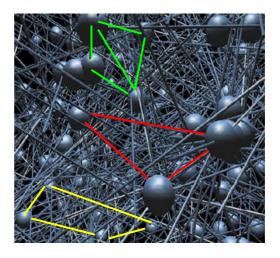
- Complex networks appear in all areas of science
- Share global properties: power-laws, small world, long tail.
- We want to uncover their structural design principles.

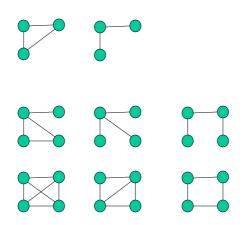

- Use local sub-structure

R. Milo *et al*. Network motifs: Simple building blocks of complex networks. *Science*, 298:824--827, 2002.

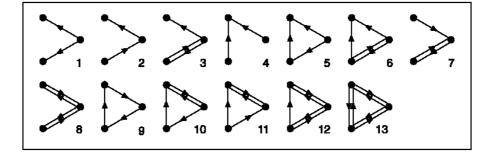
Definition

• Network motifs: patterns of interconnections occurring in complex networks at numbers that are significantly higher than those in randomized networks.


 $Z = (N_{\text{real}} - N_{\text{rand}})/S.D.$

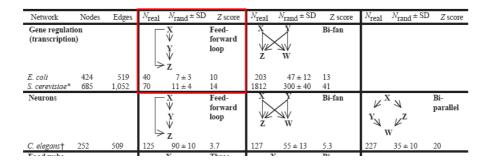

Graphlets

A large complex networks has many small subgraphs:


- How many Δ ?
- How many \square ?
- How many \square ?

Counting All possible Graphlets

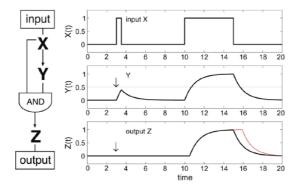
All 3-node Directed Graphlets



199 4-node directed connected graphlets

$\bar{\uparrow}$	Š.	$\bar{\uparrow}$	$\tilde{\mathcal{O}}$	\bar{N}	$\tilde{\mathbf{A}}$	4	Ā	$\bar{\diamondsuit}$	$\bar{4}$	$\bar{\bar{\mathbb{A}}}$	\$	$\overline{\leq}$	\$	4	\$	$\bar{\mathbf{v}}$	4	$\overline{4}$	$\overline{\diamond}$
$\bar{\mathbf{A}}$	$\bar{\mathbb{A}}$	Ē	÷	$\bar{\mathbf{T}}$	~	Ā	4	Ā	Ŕ	$\bar{\Phi}$	$\overline{\mathbf{A}}$	Ā	$\bar{\Phi}$	Ā	Ā	4	$\bar{\mathbb{A}}$	$\bar{\Phi}$	$\bar{\downarrow}$
ē	Ā	Ā	$\overline{\zeta}$	$\bar{\downarrow}$	Š	4	$\bar{4}$	4-	Ÿ.	$\bar{\Psi}$	ē	\$	$\bar{\Phi}$	4	\$	Ā	$\overline{\diamond}$	ā	\$
4	4	4 -		Ā	$\overline{\mathbf{A}}$	\bar{A}	$\bar{4}$	\bar{A}	$\bar{\Phi}$	\$	\$	$\bar{\Diamond}$	$\bar{\diamond}$	$\bar{\diamondsuit}$	$\overline{\diamond}$	\$	$\bar{\Phi}$	\bar{Q}	\bar{Q}
Ä	$\bar{\mathbf{A}}$	Ā	\bar{A}	$\bar{\clubsuit}$	Ŕ	Ā	$\bar{\Phi}$	$\overline{\diamond}$	Ā	Ş	Ā	\$	$\bar{\Phi}$	$\bar{\Phi}$	Ā	Ā	Ā	Ā	$\bar{\diamondsuit}$
\bar{Q}	Ā	$\bar{\diamondsuit}$	$\bar{\Diamond}$	Ā	4	Ā	$\bar{\mathbf{A}}$	$\overline{\mathbf{V}}$	$\bar{\Psi}$	$\bar{\clubsuit}$	$\overline{\clubsuit}$	$\bar{\Phi}$	$\bar{\diamondsuit}$	$\bar{\diamondsuit}$	$\bar{\diamondsuit}$	$\bar{4}$	$\bar{\clubsuit}$	4	$\bar{\psi}$
$\overline{\Phi}$	$\bar{\Psi}$	$\overline{\clubsuit}$	$\bar{\Phi}$	Ā	↓	$\bar{\textcircled{A}}$	4	$\bar{\Phi}$	$\bar{\Phi}$	$\bar{\Phi}$	$\bar{\clubsuit}$	$\overline{\mathbf{A}}$	$\bar{\diamondsuit}$	$\bar{\Phi}$	₩.	$\bar{\textcircled{A}}$	$\bar{\Phi}$	$\bar{\Phi}$	$\bar{\Phi}$
\$	$\bar{\Phi}$	$\overline{\clubsuit}$	$\overline{\Phi}$	$\bar{\downarrow}$	$\overline{\downarrow}$	$\overline{\uparrow}$	$\bar{\Psi}$	$\overline{}$	\$	$\overline{\mathbf{A}}$	$\overline{\Phi}$	$\bar{\Phi}$	$\overline{\clubsuit}$	$\bar{\Phi}$	$\bar{\textcircled{A}}$	$\bar{\Phi}$	\$	$\overline{\Phi}$	Ð
5	$\bar{\Phi}$	4	$\bar{4}$	$\overline{\mathbf{A}}$	$\bar{4}$	4	Ī.	Ţ.	4	4	4	\$	\$	$\overline{\diamond}$	$\overline{\Phi}$	$\overline{\Phi}$	$\overline{\Phi}$	$\overline{\Phi}$	$\bar{\Phi}$
4	$\bar{\Phi}$	\overline{Q}	Ā	4	4	$\bar{\Phi}$	$\bar{\Phi}$	Ā	$\bar{\Phi}$	$\overline{\Phi}$	$\bar{\clubsuit}$	\$	$\bar{\Phi}$	$\overline{\Phi}$	\$	\$	$\overline{\Phi}$	$\overline{\Phi}$	

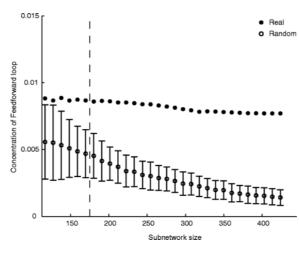
5 nodes: 9364 6 nodes: 1,530,843


Motifs in Biological Networks

Some motifs are clearly significant

 $Z = (N_{\text{real}} - N_{\text{rand}})/S.D.$

The Gene regulation network of *Escherichia coli*



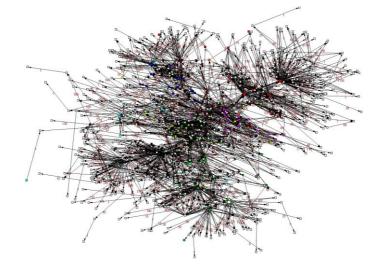
[Shen-Orr et al., Nature Genetics 2002]

Motif Appearance in Subnetworks

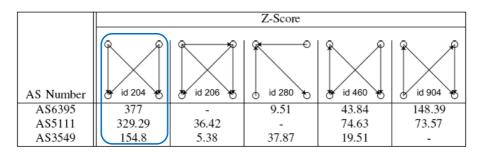
E. coli transcription network

Di

Neurons			>	× ₩ ₩ ₩	Feed- forward loop		s₩	Bi-fan	K ^Y	x v v v w	Bi- parallel
C. elegans†	252	509	125	90 ± 10	3.7	127	55 ± 13	5.3	227	35 ± 10	20
Food webs				x ¥ ¥	Three chain	к, к	W ^Z	Bi- parallel			
Little Rock Ythan St. Martin Chesapeake Coachella Skipwith B. Brook Electronic ci		984 391 205 67 243 189 104	3219 1182 469 80 279 184 181	Z 3120 ± 50 1020 ± 20 450 ± 10 82 ± 4 235 ± 12 150 ± 7 130 ± 7 Y	NS 3.6 5.5 7.4 Feed-	7295 1357 382 26 181 397 267 X	$\begin{array}{c} 2220 \pm 210 \\ 230 \pm 50 \\ 130 \pm 20 \\ 5 \pm 2 \\ 80 \pm 20 \\ 80 \pm 25 \\ 30 \pm 7 \end{array}$	25 23 12 8 5 13 32 Bi-fan	K	x N	Bi-
(forward log			>	¥ ₩ z	forward loop	Z	S.			w Z	parallel
s15850 s38584	10,383 20,717	14,240 34,204	424 413	2 ± 2 10 ± 3	285 120	1040 1739	1±1 6±2	1200 800	480 711	2 ± 1 9 ± 2	335 320
s38417	23,843	33,661	612	3 ± 2	400	2404	1 ± 1	2550	531	2 ± 2	340
s9234	5,844	8,197	211	2 ± 1	140	754	1 ± 1	1050	209	1 ± 1	200
s13207	8,651	11,831	403	2 ± 1	225	4445	1 ± 1	4950	264	2 ± 1	200
Electronic c (digital fract		ipliers)	/ ×←	- z	Three- node feedback loop	x	v ₩ ₩	Bi-fan		\rightarrow_{Y} \downarrow \leftarrow_{W}	Four- node feedback loop
s208	122	189	10	1 ± 1	9	4	1 ± 1	3.8	5	1±1	5
s420	252	399	20	1 ± 1	18	10	1 ± 1	10	11	1 ± 1	11
s838‡	512	819	40	1 ± 1	38	22	1 ± 1	20	23	1 ± 1	25
World Wide	Web			X	Feedback with two mutual dyads		S z z	Fully connected triad	<i>¶</i> ×←	× z	Uplinked mutual dyad
nd.edu§	325,729	1.46e6	1.1e5	$2e3 \pm 1e2$	800	6.8e6	5e4±4e2	15,000	1.2e6	1e4 ± 2e	2 5000

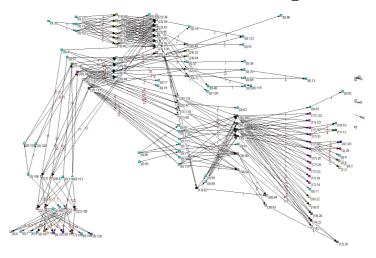

Feed

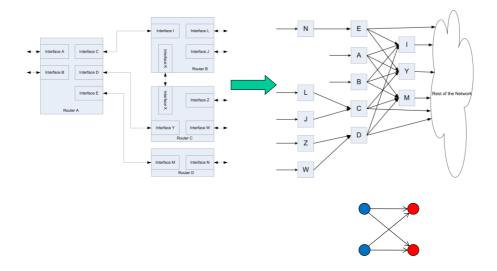
Nour


х

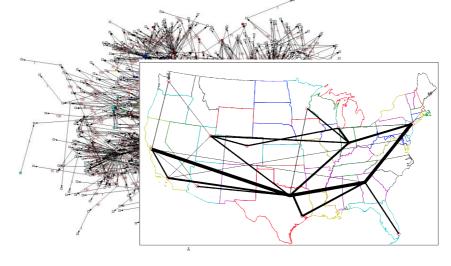
Bi-fan

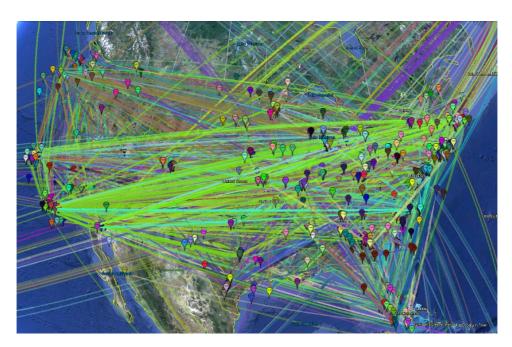
The IP Interface Graph


IP Interface Graph


Traceroute create graphs which tend to have many small bi-partite. WHY?

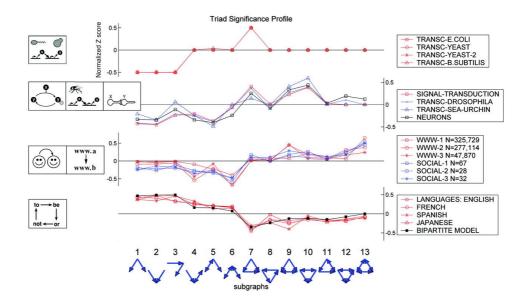
[Feldman & Shavitt, Globecom 08]

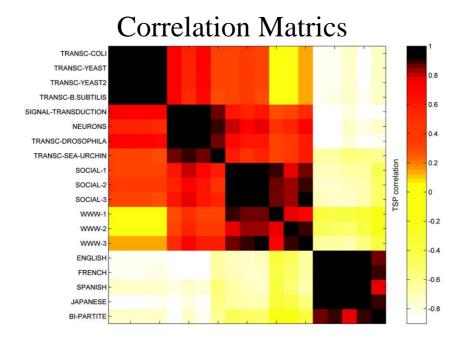

The IP Interface Graph



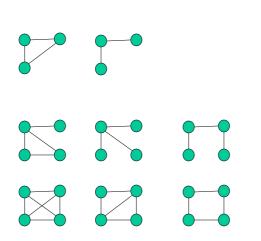
Using Bi-Fan to find Internet PoPs

We use Bi-Fans to Auto-find PoPs


[Feldman, Shavitt, & ZIlberman, Comp. Net. Feb. 2012]


Comparing Networks by Local Structure

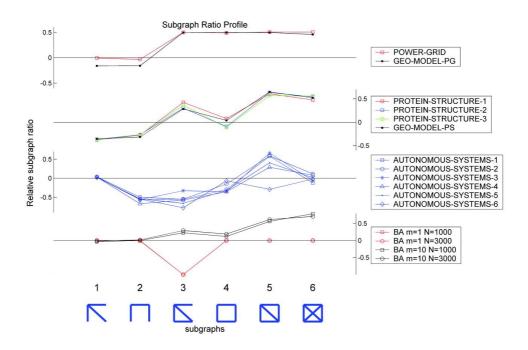
 $Z_i = (N_{\text{real}_i} - \langle N_{\text{rand}_i} \rangle) / \text{std}(N_{\text{rand}_i})$ Significance Profile: $SP_i = \frac{Z_i}{\sqrt{\sum_{k=1}^n Z_i^2}}$


Motifs in large graphs tend to have higher Z scores. The normalization emphasizes the relative significance of subgraphs, rather than the absolute significance.

> Superfamilies of Evolved and Designed Networks, Ron Milo *et al.*, Science 2004.

Undirected Graphs

There are only 2 triads. Use also tetrads.

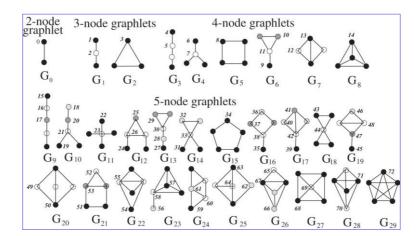

Subgraph Ratio Profile (SRP)

- Unlike triads, the normalized Z scores of tetrads show a significant dependence on the network size.
- Therefore, instead of an SP based on Z scores, we use the abundance of each subgraph *i* relative to random networks:

$$\Delta_{i} = (N_{\text{real}_{i}} - \langle N_{\text{rand}_{i}} \rangle) / (N_{\text{real}_{i}} + \langle N_{\text{rand}_{i}} \rangle + \varepsilon)$$

 ε ensures that $|\Delta|$ is not misleadingly large when the subgraph appears very few times in both. Here, $\varepsilon = 4$.

$$SRP_i = \frac{\Delta_i}{\sqrt{\sum_{k=1}^n {\Delta_i}^2}}$$



Comparing Networks

- Given two networks how to compare there are identical? Similar?
 - Measure degree dist., CC, graphlet distribution
- Good to show that two graphs are different
- New definition
 - Degree distributions: how many nodes have k edges attached to them
 - Graphlet distribution: how many nodes have graphlet Y attached to them

[Pržulj, Bioinformatics 2007]

Graphlets and Automorphism Orbits

