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Graph Centrality 

• Degree centrality 

– The node degree 

• Closeness centrality 

– (the sum of distances to all other nodes)-1 

• Betweenness centrality 

– The number of shortest path thru a node 

• Eigenvector centrality 

 

degree: normalized degree centrality 

divide by the max. possible, i.e. (N-1) 
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

CB (i)  g jk(i) /g jk
jk



Where gjk = the number of geodesics connecting j-k, and  

 gjk(i) = the number that node i is on. 

Usually normalized by: 



CB
' (i) CB (i ) /[(n 1)(n 2) /2]

number of pairs of vertices excluding 
the vertex itself 

betweenness centrality: definition 

36 

betweenness of vertex i 
paths between j and k that pass through i 

all paths between j and k 

directed graph: (N-1)*(N-2) 

Nodes are sized by degree, and colored by betweenness.  

example 

Can you spot nodes with 

high betweenness but 

relatively low degree?   

What about high degree but 

relatively low betweenness?  37 
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Eigenvector Centrality 

𝑥𝑖 =
1


 𝑥𝑗 =

1


 𝐴𝑖𝑗

𝑁

𝑗=1𝑗∈𝑁𝑖

𝑥𝑗 

 

X = AX 

X is the vector of Eigenvalues 

 

PageRank is conceptualy similar 

Adjacency matrix 

The Graph Diameter 
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• Diameter = the maximal distance between all 
pairs of vertices 

Unweighted graph 

• Shortest path from a node to all others: (m) 

• All pair shortest path: (nm)  (using BFS) 

• Using matrix product: O(n2.376 polylog(n)) 

– And (n2) space [Alon et al., FOCS 1992] 

• Fast algorithms that use (n2) space  

– (n3/log n) for dense graphs [Feder & Motwani, STOC 91] 

– O(n2(log log n)2/log n) for sparse graphs [Chan, SODA’06] 
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Unweighted Graph (cont.) 

• Estimating D by 𝐷  [Dor et al., 1997] 

– 𝐷  ≤ D ≤𝐷  +2 

– Time (n2) 

– Space (n2)  

• Testing if the diameter is below 𝐷  or the graph 
is -far from a graph with diameter (𝐷  ) [Parnas & 

Ron,2002] 

Bounds 

• Trivial bounds: 
For any vertex v: ecc(v) ≤D≤2·ecc(v) 
– ecc(v) is the eccentricity of v. 
– Can be computed in (m) time & space 

• Double sweep lower bound: 
choose v s.t. d(v,u)=ecc(u) for some u. 
– for trees (and other special graphs) D=ecc(v) 
– For other graphs it is a tighter lower bound 
– Can be computed in (m) time & space 

• Tree upper bound: 
for any spanning tree, the tree diameter is an u.b. 
• Can be computed in (m) time & space 
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Discussion 

• Iterate for different vertices can improve the 
bounds 

• For the tree upper bound, chose the highest 
degree node 

– Good for power-law graphs 

• Iterating may not always help 

– E.g., the tree u.b. for a cycle 

Experimnets 

• Internet router graph from Skitter (2005) 
n=1,719,037  m=11,095,298 

• A web graph (.uk domain, 2005) 
n=39,459,925  m=783,027,125 

• Peer to peer graph (eDonkey sharing, 2004) 
n=5,792,297  m=142,038,401 

• IP traffic graph 
n=2,250,498  m=19,394,216 
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Simulation Results 

iterations 

10,000 

5,000 

2,000 

10,000 

First iteration to hit the bound 

Portion of iteration hitting the bound 

Testing the Graph Diameter 

• We assume graphs are 
represented by the incidence lists 
of the vertices, where each list is 
accompanied by its length.  

• Allowed queries: 

– what is the degree, d(v), of any 
vertex v? 

– who is the i’th neighbor of v, 
for any vertex v and index 1  i 
 d(v)? 

 

Parnas & Ron, 1992 

1    2   …     

1    2   …     

d(2) 

1 

n 

d(1) 

d(n) 
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-far Definition 

Let Ps be a fixed parameterized property, 0<<1, 
and m a positive integer.  A graph G having at 
most m edges is -far from property Ps (with 
respect to the bound m), if the number of edges 
that have to be added and/or removed from G 
in order to obtain a graph having property Ps, is 
greater than m.  

Otherwise, G is -close to Ps.  

A Testing Algorithm 

A testing algorithm for (parametrized) property Ps, 
with boundary function (), is given a (size) 
parameter s>0, a distance parameter 0<<1, a 
bound m>0, and a query access to an unknown 
graph G having at most m edges. 

The output of the algorithm is accept or reject. 

• If G has property Ps, then the algorithm should 
output accept with prob. at  least 2/3 

• If G is -far from property Ps, then the algorithm 
output reject with prob. at least 2/3. 
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Diameter Testing 

Testing if a graph diameter is bounded by D. 

A family of algorithms which differ in: 

• The boundary function () 

• Query and time complexity 

• The value of  

Why Only small ?  

• Every connected graph with n vertices can be 
transformed into a graph with diameter at most D 
by adding at most n/D/2 edges. 

 
• Every connected graph with n vertices and m 

edges is -close to having diameter D for every  
𝜀 ≥
2

𝐷
∙
𝑛

𝑚
 

           

• 𝜀𝑛,𝑚 ≝
𝑚

𝑛
∙ 𝜀 
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Main Results 
Testing algorithms for diameter D 

1. Boundary function (D) =4D+2 
Query time O(1/ 𝜀𝑛,𝑚

3) 
1-sided error: always accept graphs with diameter at most D. 

2. Boundary function (D) =2D+2 

Query time O(
1

𝜀𝑛,𝑚
3 ∙ log

1

𝜀𝑛,𝑚

2
) 

2-sided error 

3. Boundary function (D) =D(1+
1

2𝑖−1
)+2,     2≤i≤log(D/2+1) 

Query time O(
1

𝜀𝑛,𝑚
3 ∙ log

1

𝜀𝑛,𝑚

2
),   𝜀 = (

𝑛
1−
1
𝑖+2∙log 𝑛

𝑖+2 𝑚
) 

          𝜀𝑛,𝑚 = (
𝑛
−
1
𝑖+2∙log 𝑛

𝑖+2
) 
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 4/1n
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Time and Query Complexity: 

1. 

2. 
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Algorithm 
Input:  D, n, m, . 
Parameters: C, k, . 
 
• Set  
 
• Uniformly select                           starting vertices. 
 
• For each starting vertex - perform a BFS  
   to distance at most C until k vertices are reached.  
 
• If at most S starting vertices reach < k vertices  
   then accept, otherwise reject. 

 mn,ε/1S 

Time and Query Complexity: O(k2S)= O(k2/n,m) 

ε
n

m
ε mn, 

Illustration of the Algorithm 

1 

S 

C 
2 

3 
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Proof of Correctness 

Good Vertex: If C-neighborhood contains  k vertices. 
 
Bad Vertex: If C-neighborhood contains < k vertices. 

C We Show:  
 
• Diameter  D                Almost (all) vertices are good. 

 
• Diameter > (D)                Many vertices are bad. 

Lemma 1: 
If at least (1-1/k)n of the vertices are good,  then the graph  
can be transformed into a graph with diameter at most 4C+2  
by adding at most 2n/k edges. 
 
Proof: 

c 

c 

c 

c 
Good 

Good 

Good 

Good Bad 

Bad 

Bad 
Bad 

Reducing the Diameter 


