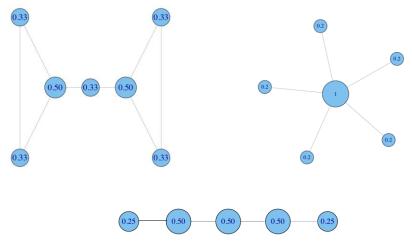
Graph Centrality

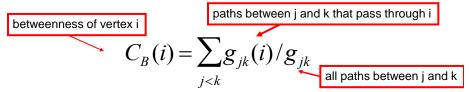
- Degree centrality
 - The node degree
- Closeness centrality
 - (the sum of distances to all other nodes)⁻¹
- Betweenness centrality
 - The number of shortest path thru a node
- Eigenvector centrality

degree: normalized degree centrality

divide by the max. possible, i.e. (N-1)



betweenness centrality: definition



Where g_{jk} = the number of geodesics connecting *j*-*k*, and $g_{jk}(i)$ = the number that node *i* is on.

Usually normalized by:

$$C'_B(i) = C_B(i) / [(n-1)(n-2)/2]$$

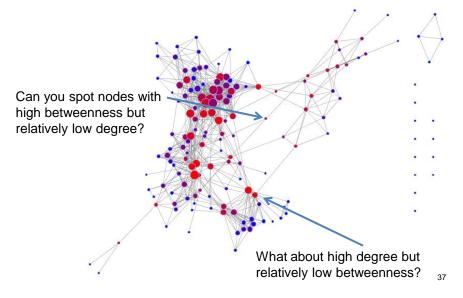
number of pairs of vertices excluding
the vertex itself

directed graph: (N-1)*(N-2)

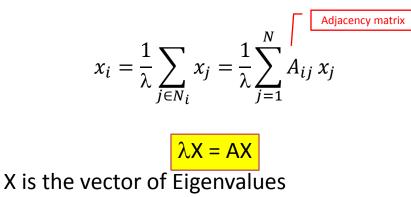
36

example

Nodes are sized by degree, and colored by betweenness.



Eigenvector Centrality



PageRank is conceptualy similar

The Graph Diameter

 Diameter = the maximal distance between all pairs of vertices

Unweighted graph

- Shortest path from a node to all others: $\Theta(m)$
- All pair shortest path: $\Theta(n \cdot m)$ (using BFS)
- Using matrix product: O(n^{2.376} polylog(n))
 And Θ(n²) space [Alon *et al.*, FOCS 1992]
- Fast algorithms that use $\Theta(n^2)$ space
 - $\Theta(n^3/log n)$ for dense graphs [Feder & Motwani, STOC 91]
 - $O(n^2(log \ log \ n)^2/log \ n)$ for sparse graphs [Chan, SODA'06]

Unweighted Graph (cont.)

- Estimating D by \overline{D} [Dor *et al.,* 1997]
 - $-\,\overline{D} \leq \mathsf{D} \leq \overline{D} + 2$
 - Time $\Omega(n^2)$
 - Space $\Theta(n^2)$
- Testing if the diameter is below \overline{D} or the graph is ε -far from a graph with diameter $\beta(\overline{D})$ [Parnas & Ron,2002]

reject

accept

Bounds

- <u>Trivial bounds</u>: For any vertex v: ecc(v) $\leq D \leq 2 \cdot ecc(v)$
 - $\operatorname{ecc}(v)$ is the eccentricity of v.
 - Can be computed in $\Theta(m)$ time & space
- <u>Double sweep lower bound</u>: choose v s.t. d(v,u)=ecc(u) for some u.
 - for trees (and other special graphs) D=ecc(v)
 - For other graphs it is a tighter lower bound
 - Can be computed in $\Theta(m)$ time & space
- <u>Tree upper bound</u>: for any spanning tree, the tree diameter is an u.b.
 - Can be computed in $\Theta(m)$ time & space

Discussion

- Iterate for different vertices can improve the bounds
- For the tree upper bound, chose the highest degree node
 - Good for power-law graphs
- Iterating may not always help
 - E.g., the tree u.b. for a cycle

Experimnets

- Internet router graph from Skitter (2005) n=1,719,037 m=11,095,298
- A web graph (.uk domain, 2005) n=39,459,925 m=783,027,125
- Peer to peer graph (eDonkey sharing, 2004) n=5,792,297 m=142,038,401
- IP traffic graph
 n=2,250,498 m=19,394,216

Simulation Results

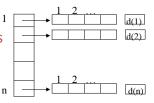
	t.l.b.	d.s.l.b.	h.d.t.u.b.	r.t.u.b.	t.u.b.	iterations
INET	29 998 0.0001	31 2 0.49	34 26 0.1002	34 23 0.0633	38 127 0.0011	10,000
P2P	8 210 0.0094	9 1 0.7005	10 1 0.039	10 120 0.0032	10 3237 0.0001	5,000
WEB	26	32	33	33	34	2,000
IP	816 0.001 9	1 0.985 9	34 0.0015 9	46 0.0025 9	1572 0.0005 10	10,000
	5331 0.0001	1 0.989	4 0.0543	12 0.0346	6284 0.0001	10,000

Portion of iteration hitting the bound

First iteration to hit the bound

Testing the Graph Diameter

- We assume graphs are represented by the incidence lists of the vertices, where each list is accompanied by its length.
- Allowed queries:
 - what is the degree, d(v), of any vertex v?
 - who is the i'th neighbor of v, for any vertex v and index 1≤ i ≤ d(v)?



Parnas & Ron, 1992

ϵ -far Definition

Let P_s be a fixed parameterized property, $0 < \varepsilon < 1$, and m a positive integer. A graph G having at most m edges is ε -far from property P_s (with respect to the bound m), if the number of edges that have to be added and/or removed from Gin order to obtain a graph having property P_s , is greater than $\varepsilon \cdot m$.

Otherwise, G is ε -close to P_{s} .

A Testing Algorithm

A testing algorithm for (parametrized) property P_s , with boundary function $\beta(\cdot)$, is given a (size) parameter s>0, a distance parameter $0<\varepsilon<1$, a bound m>0, and a query access to an unknown graph G having at most m edges.

The output of the algorithm is *accept* or *reject*.

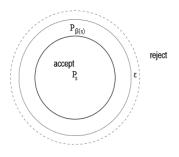
- If G has property P_s, then the algorithm should output accept with prob. at least 2/3
- If G is ε -far from property P_s , then the algorithm output reject with prob. at least 2/3.

Diameter Testing

Testing if a graph diameter is bounded by D.

A family of algorithms which differ in:

- The boundary function $\beta(\cdot)$
- Query and time complexity
- The value of $\boldsymbol{\epsilon}$



Why Only small ϵ ?

 Every connected graph with *n* vertices can be transformed into a graph with diameter at most *D* by adding at most *n/_D/2_* edges.

 \prod

• Every connected graph with *n* vertices and *m* edges is ε -close to having diameter *D* for every $\varepsilon \ge \frac{2}{D} \cdot \frac{n}{m}$

•
$$\mathcal{E}_{n,m} \stackrel{\text{\tiny def}}{=} \frac{m}{n} \cdot \mathcal{E}$$

Main Results Testing algorithms for diameter D

- 1. Boundary function $\beta(D) = 4D+2$ Query time O(1/ $\varepsilon_{n,m}^3$) 1-sided error: always accept graphs with diameter at most D.
- 2. Boundary function $\beta(D) = 2D+2$ Query time $O(\frac{1}{\varepsilon_{n,m^3}} \cdot \log \frac{2}{\varepsilon_{n,m}})$ 2-sided error
- 3. Boundary function $\beta(D) = D(1 + \frac{1}{2^{i}-1}) + 2$, $2 \le i \le \log(D/2 + 1)$ Query time $O(\frac{1}{\varepsilon_{n,m}^{3}} \cdot \log^{2} \frac{1}{\varepsilon_{n,m}})$, $\varepsilon = \Omega(\frac{n^{1 - \frac{1}{l+2} \cdot \log n}}{(i+2)m})$ $\varepsilon_{n,m} = \Omega(\frac{n^{-\frac{1}{l+2} \cdot \log n}}{(i+2)})$

Main Results

	β(D)	3	Remarks
1.	2D+2	Any	One Sided Error
2.	$\left(1 + \frac{1}{2^{i} - 1}\right) \cdot \mathbf{D} + 2$	$\Omega\!\!\left(\frac{n^{1-\frac{1}{i+2}}\!\cdot\!\log n}{(i+2)\!\cdot\!m}\right)$	Two Sided Error
	4D/3 + 2	$\widetilde{\Omega}\!\left(\!n^{-1/4}\right)$	i = 2
	D+4	$\Omega(1/\operatorname{poly}(\log n))$ for D = poly(logn)	i = log(D/2 + 1)

Time and Query Complexity:

 $\widetilde{O}\left(\frac{1}{\epsilon^3}\right)$

Algorithm

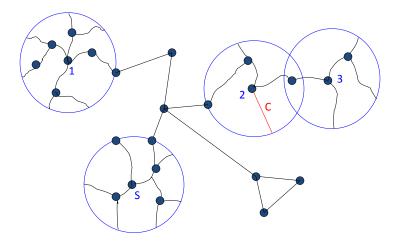
Input: D, n, m, ϵ . Parameters: C, k, α .

• Set
$$\varepsilon_{n,m} = \frac{m}{n} \cdot \varepsilon$$

- Uniformly select $S = \Theta(1/\epsilon_{n,m})$ starting vertices.
- For each starting vertex perform a BFS to distance at most C until k vertices are reached.
- If at most α·S starting vertices reach < k vertices then accept, otherwise reject.

Time and Query Complexity: $O(k^2 \cdot S) = O(k^2 / \epsilon_{n,m})$

Illustration of the Algorithm



Proof of Correctness

Good Vertex: If C-neighborhood contains $\geq k$ vertices.

Bad Vertex: If C-neighborhood contains < k vertices.

We Show:

- Diameter ≤ D → Almost (all) vertices are good.
- Diameter > $\beta(D)$ \longrightarrow Many vertices are bad.

Reducing the Diameter

Lemma 1:

If at least (1-1/k)n of the vertices are good, then the graph can be transformed into a graph with diameter at most 4C+2 by adding at most 2n/k edges.

Proof:

