
3/7/2013

1

Graph Centrality

• Degree centrality

– The node degree

• Closeness centrality

– (the sum of distances to all other nodes)-1

• Betweenness centrality

– The number of shortest path thru a node

• Eigenvector centrality

degree: normalized degree centrality

divide by the max. possible, i.e. (N-1)

35

3/7/2013

2



CB (i)  g jk(i) /g jk
jk



Where gjk = the number of geodesics connecting j-k, and

 gjk(i) = the number that node i is on.

Usually normalized by:



CB
' (i) CB (i) /[(n 1)(n 2) /2]

number of pairs of vertices excluding
the vertex itself

betweenness centrality: definition

36

betweenness of vertex i
paths between j and k that pass through i

all paths between j and k

directed graph: (N-1)*(N-2)

Nodes are sized by degree, and colored by betweenness.

example

Can you spot nodes with

high betweenness but

relatively low degree?

What about high degree but

relatively low betweenness? 37

3/7/2013

3

Eigenvector Centrality

𝑥𝑖 =
1


 𝑥𝑗 =

1


 𝐴𝑖𝑗

𝑁

𝑗=1𝑗∈𝑁𝑖

𝑥𝑗

X = AX

X is the vector of Eigenvalues

PageRank is conceptualy similar

Adjacency matrix

The Graph Diameter

3/7/2013

4

• Diameter = the maximal distance between all
pairs of vertices

Unweighted graph

• Shortest path from a node to all others: (m)

• All pair shortest path: (nm) (using BFS)

• Using matrix product: O(n2.376 polylog(n))

– And (n2) space [Alon et al., FOCS 1992]

• Fast algorithms that use (n2) space

– (n3/log n) for dense graphs [Feder & Motwani, STOC 91]

– O(n2(log log n)2/log n) for sparse graphs [Chan, SODA’06]

3/7/2013

5

Unweighted Graph (cont.)

• Estimating D by 𝐷 [Dor et al., 1997]

– 𝐷 ≤ D ≤𝐷 +2

– Time (n2)

– Space (n2)

• Testing if the diameter is below 𝐷 or the graph
is -far from a graph with diameter (𝐷) [Parnas &

Ron,2002]

Bounds

• Trivial bounds:
For any vertex v: ecc(v) ≤D≤2·ecc(v)
– ecc(v) is the eccentricity of v.
– Can be computed in (m) time & space

• Double sweep lower bound:
choose v s.t. d(v,u)=ecc(u) for some u.
– for trees (and other special graphs) D=ecc(v)
– For other graphs it is a tighter lower bound
– Can be computed in (m) time & space

• Tree upper bound:
for any spanning tree, the tree diameter is an u.b.
• Can be computed in (m) time & space

3/7/2013

6

Discussion

• Iterate for different vertices can improve the
bounds

• For the tree upper bound, chose the highest
degree node

– Good for power-law graphs

• Iterating may not always help

– E.g., the tree u.b. for a cycle

Experimnets

• Internet router graph from Skitter (2005)
n=1,719,037 m=11,095,298

• A web graph (.uk domain, 2005)
n=39,459,925 m=783,027,125

• Peer to peer graph (eDonkey sharing, 2004)
n=5,792,297 m=142,038,401

• IP traffic graph
n=2,250,498 m=19,394,216

3/7/2013

7

Simulation Results

iterations

10,000

5,000

2,000

10,000

First iteration to hit the bound

Portion of iteration hitting the bound

Testing the Graph Diameter

• We assume graphs are
represented by the incidence lists
of the vertices, where each list is
accompanied by its length.

• Allowed queries:

– what is the degree, d(v), of any
vertex v?

– who is the i’th neighbor of v,
for any vertex v and index 1 i
 d(v)?

Parnas & Ron, 1992

1 2 …

1 2 …

d(2)

1

n

d(1)

d(n)

3/7/2013

8

-far Definition

Let Ps be a fixed parameterized property, 0<<1,
and m a positive integer. A graph G having at
most m edges is -far from property Ps (with
respect to the bound m), if the number of edges
that have to be added and/or removed from G
in order to obtain a graph having property Ps, is
greater than m.

Otherwise, G is -close to Ps.

A Testing Algorithm

A testing algorithm for (parametrized) property Ps,
with boundary function (), is given a (size)
parameter s>0, a distance parameter 0<<1, a
bound m>0, and a query access to an unknown
graph G having at most m edges.

The output of the algorithm is accept or reject.

• If G has property Ps, then the algorithm should
output accept with prob. at least 2/3

• If G is -far from property Ps, then the algorithm
output reject with prob. at least 2/3.

3/7/2013

9

Diameter Testing

Testing if a graph diameter is bounded by D.

A family of algorithms which differ in:

• The boundary function ()

• Query and time complexity

• The value of 

Why Only small ?

• Every connected graph with n vertices can be
transformed into a graph with diameter at most D
by adding at most n/D/2 edges.


• Every connected graph with n vertices and m

edges is -close to having diameter D for every
𝜀 ≥
2

𝐷
∙
𝑛

𝑚

 

• 𝜀𝑛,𝑚 ≝
𝑚

𝑛
∙ 𝜀

3/7/2013

10

Main Results
Testing algorithms for diameter D

1. Boundary function (D) =4D+2
Query time O(1/ 𝜀𝑛,𝑚

3)
1-sided error: always accept graphs with diameter at most D.

2. Boundary function (D) =2D+2

Query time O(
1

𝜀𝑛,𝑚
3 ∙ log

1

𝜀𝑛,𝑚

2
)

2-sided error

3. Boundary function (D) =D(1+
1

2𝑖−1
)+2, 2≤i≤log(D/2+1)

Query time O(
1

𝜀𝑛,𝑚
3 ∙ log

1

𝜀𝑛,𝑚

2
), 𝜀 = (

𝑛
1−
1
𝑖+2∙log 𝑛

𝑖+2 𝑚
)

 𝜀𝑛,𝑚 = (
𝑛
−
1
𝑖+2∙log 𝑛

𝑖+2
)

Main Results
(D)  Remarks

2D+2

Any

One Sided

Error

2D
12

1
1

i





































m)2i(

nlogn 2i

1
1

Two Sided

Error

4D/3 + 2

 4/1n
~ 

i = 2

D+4

 )n(logpoly/1

for D = poly(logn)

i = log(D/2 + 1)









3ε

1
O
~

Time and Query Complexity:

1.

2.

3/7/2013

11

Algorithm
Input: D, n, m, .
Parameters: C, k, .

• Set

• Uniformly select starting vertices.

• For each starting vertex - perform a BFS
 to distance at most C until k vertices are reached.

• If at most S starting vertices reach < k vertices
 then accept, otherwise reject.

 mn,ε/1S 

Time and Query Complexity: O(k2S)= O(k2/n,m)

ε
n

m
ε mn, 

Illustration of the Algorithm

1

S

C
2

3

3/7/2013

12

Proof of Correctness

Good Vertex: If C-neighborhood contains  k vertices.

Bad Vertex: If C-neighborhood contains < k vertices.

C We Show:

• Diameter  D Almost (all) vertices are good.

• Diameter > (D) Many vertices are bad.

Lemma 1:
If at least (1-1/k)n of the vertices are good, then the graph
can be transformed into a graph with diameter at most 4C+2
by adding at most 2n/k edges.

Proof:

c

c

c

c
Good

Good

Good

Good Bad

Bad

Bad
Bad

Reducing the Diameter

