
5/27/2013

1

Median Calculation

Just like Linear-Time Sorting

Based on slides by David Luebke

Order Statistics

● The ith order statistic in a set of n elements is
the ith smallest element

● The minimum is thus the 1st order statistic

● The maximum is (duh) the nth order statistic

● The median is the n/2 order statistic
■ If n is even, there are 2 medians

● How can we calculate order statistics?

● What is the running time?

5/27/2013

2

Order Statistics

● How many comparisons are needed to find the
minimum element in a set? The maximum?

● Can we find the minimum and maximum with
less than twice the cost?

● Yes:
■ Walk through elements by pairs

○ Compare each element in pair to the other

○ Compare the largest to maximum, smallest to minimum

■ Total cost: 3 comparisons per 2 elements =
O(3n/2)

Finding Order Statistics:
The Selection Problem

● A more interesting problem is selection:
finding the ith smallest element of a set

● We will show:
■ A practical randomized algorithm with O(n)

expected running time

■ A cool algorithm of theoretical interest only with
O(n) worst-case running time

5/27/2013

3

Quicksort Code

Quicksort(A, p, r)

{

if (p < r)

{

q = Partition(A, p, r);

Quicksort(A, p, q);

Quicksort(A, q+1, r);

}

}

Partition

● Clearly, all the action takes place in the
partition() function
■ Rearranges the subarray in place

■ End result:
○ Two subarrays

○ All values in first subarray all values in second

■ Returns the index of the “pivot” element
separating the two subarrays

● How do you suppose we implement this?

5/27/2013

4

Partition In Words

● Partition(A, p, r):
■ Select an element to act as the “pivot” (which?)

■ Grow two regions, A[p..i] and A[j..r]
○ All elements in A[p..i] <= pivot

○ All elements in A[j..r] >= pivot

■ Increment i until A[i] >= pivot

■ Decrement j until A[j] <= pivot

■ Swap A[i] and A[j]

■ Repeat until i >= j

■ Return j

Randomized Order Stat

● Key idea: use partition() from quicksort
■ But, only need to examine one subarray

■ This savings shows up in running time: O(n)

● We will use the randomized partition:
q = RandomizedPartition(A, p, r)

A[q] A[q]

qp r

5/27/2013

5

Randomized Selection

RandomizedSelect(A, p, r, i)

if (p == r) then return A[p];

q = RandomizedPartition(A, p, r)

k = q - p + 1;

if (i == k) then return A[q];

if (i < k) then

return RandomizedSelect(A, p, q-1, i);

else

return RandomizedSelect(A, q+1, r, i-k);

A[q] A[q]

k

qp r

Randomized Selection

● Analyzing RandomizedSelect()
■ Worst case: partition always 0:n-1

T(n) = T(n-1) + O(n) = ???

= O(n2) (arithmetic series)

○ No better than sorting!

■ “Best” case: suppose a 9:1 partition
T(n) = T(9n/10) + O(n) = ???

= O(n) (Master Theorem, case 3)

○ Better than sorting!

5/27/2013

6

Randomized Selection

● Average case
■ For upper bound, assume ith element always falls

in larger side of partition:

■ Let’s show that T(n) = O(n) by substitution

1

2/

1

0

2

1,max
1

n

nk

n

k

nkT
n

nknkT
n

nT

What happened here?

What happened here?“Split” the recurrence

What happened here?

What happened here?

What happened here?

Randomized Selection

● Assume T(n) cn for sufficiently large c:

 n
nc

nc

n
nn

nn
n

c

nkk
n

c

nck
n

nkT
n

nT

n

k

n

k

n

nk

n

nk

1
22

1

2
1

22

1
1

2

12

2

2

)(
2

)(

12

1

1

1

1

2/

1

2/

The recurrence we started with

Substitute T(n) cn for T(k)

Expand arithmetic series

Multiply it out

5/27/2013

7

What happened here?Subtract c/2

What happened here?

What happened here?

What happened here?

Randomized Selection

● Assume T(n) cn for sufficiently large c:

The recurrence so far

Multiply it out

Rearrange the arithmetic

What we set out to prove

enough) big is c if(

24

24

24

1
22

1)(

cn

n
ccn

cn

n
ccn

cn

n
ccn

ccn

n
nc

ncnT

Worst-Case Linear-Time Selection

● Randomized algorithm works well in practice

● What follows is a worst-case linear time
algorithm, really of theoretical interest only

● Basic idea:
■ Generate a good partitioning element

■ Call this element x

5/27/2013

8

Worst-Case Linear-Time Selection

● The algorithm in words:
1. Divide n elements into groups of 5

2. Find median of each group (How? How long?)

3. Use Select() recursively to find median x of the n/5
medians

4. Partition the n elements around x. Let k = rank(x)

5. if (i == k) then return x

if (i < k) then use Select() recursively to find ith smallest
element in first partition

else (i > k) use Select() recursively to find (i-k)th smallest
element in last partition

Worst-Case Linear-Time Selection

● (Sketch situation on the board)

● How many of the 5-element medians are x?
■ At least 1/2 of the medians = n/5 / 2 = n/10

● How many elements are x?
■ At least 3 n/10 elements

● For large n, 3 n/10 n/4 (How large?)

● So at least n/4 elements x

● Similarly: at least n/4 elements x

5/27/2013

9

Worst-Case Linear-Time Selection

● Thus after partitioning around x, step 5 will
call Select() on at most 3n/4 elements

● The recurrence is therefore:

enough big is if

20

)(2019

)(435

435

435)(

ccn

ncncn

ncn

ncncn

nnTnT

nnTnTnT

???

???

???

???

???

n/5 n/5

Substitute T(n) = cn

Combine fractions

Express in desired form

What we set out to prove

Worst-Case Linear-Time Selection

● Intuitively:
■ Work at each level is a constant fraction (19/20)

smaller
○ Geometric progression!

■ Thus the O(n) work at the root dominates

5/27/2013

10

Linear-Time Median Selection

● Given a “black box” O(n) median algorithm,
what can we do?
■ ith order statistic:

○ Find median x

○ Partition input around x

○ if (i (n+1)/2) recursively find ith element of first half

○ else find (i - (n+1)/2)th element in second half

○ T(n) = T(n/2) + O(n) = O(n)

■ Can you think of an application to sorting?

Linear-Time Median Selection

● Worst-case O(n lg n) quicksort
■ Find median x and partition around it

■ Recursively quicksort two halves

■ T(n) = 2T(n/2) + O(n) = O(n lg n)

