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Streaming Algorithms

Data Streams
• A data stream is a sequence 

of data that is too large to be 
stored in available memory

• Examples:
– Network traffic

– Sensor networks

– Approximate query 
optimization and answering in 
large databases

– Scientific data streams
– ..And more



5/26/2013

2

Basic Data Stream Model

• Single pass over the data: i1, i2,…,in
– Typically, we assume n is known (but not always)

• Bounded storage (typically n or logc n)
– Units of storage: bits, words, coordinates or 

„elements” (e.g., points, nodes/edges) 
• Fast processing time per element

– Randomness OK (in fact, almost always necessary)

8 2 1 9 1 9 2 4 6 3 9 4 2 3 4 2 3 8 5 2 5 6  ...

Counting Distinct Elements
• Stream elements: numbers from {1...m} 
• Goal: estimate the number of distinct elements DE in 

the stream
– Up to 1
– With probability  1-P

• Simpler goal: for a given T>0, provide an algorithm 
which, with probability 1-P:
– Answers YES, if DE> (1+)T
– Answers NO, if DE< (1-)T

• Run, in parallel, the algorithm with 
T=1, 1+, (1+)2,..., n

– Total space multiplied by log1+n  ≈ log(n)/ 
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Vector Interpretation

• Initially, x=0
• Insertion of i is interpreted as 

xi = xi +1
• Want to estimate DE(x) = the number of 

non-zero elements of x

Stream: 8 2 1 9 1 9 2 4 4 9 4 2 5 4 2 5 8 5 2 5 

Vector X: 
1  2  3  4  5  6  7  8  9 

Counting Complexity?

• One path over the data  O(n) time

• Space complexity: O(m)
– m is the number of DE

• We want better space complexity



5/26/2013

4

An Approximation

• Pick a hash function h that maps each of 
the n elements to at least log2n bits.

• For each stream element a, let r(a) be the 
number of trailing 0’s in h(a).

• Record R = the maximum r(a) seen.

• Estimate = 2R.

[Flajolet & Martin, J. of Comp. and Sys. Sc., 85]
[Alon, Matias, & Szegedy, STOC, 1996]

Intuition

• The more different elements you see, the 
more likely you are to see something 
unusual.
– Here, “unusual” means “hash value ends in a 

lot of 0’s.”

• With a good random hash function
– ½ of the elements end with 0

– ¼ of the elements end with 00

– 1/8 of the elements end with 000

– 2-i of the element end with i 0s
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Analysis

• The probability that a given h(a) ends in at 
least r  0’s is 2-r.

• If there are m different elements, the 
probability that R ≥ r is 1 – (1 - 2-r )m.

Probability any
given h(a) ends in
fewer than r 0’s.

Prob. all h(a)’s
end in fewer than
r 0’s.

Analysis (2)

• Since 2-r is small, 1 - (1-2-r)m ≈ 1 - e -m2   .

• If 2r >> m, 1 - (1 - 2-r)m ≈ 1 - (1 - m2-r)

≈ m /2r ≈ 0.

• If 2r << m, 1 - (1 - 2-r)m ≈ 1 - e -m2   ≈ 1.

• Thus, 2R will almost always be around m.

First 2 terms of the
Taylor expansion of e

x
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Why it doesn’t work?

• E(2R ) is not bounded.
– Probability halves when R -> R +1, but value 

doubles, up to maximum possible R. 

• Workaround involves using many hash 
functions and getting many samples.

• How are samples combined?
– Average? What if one very large value?

– Median? All values are a power of 2.

Solution

• Partition your samples into small groups.
– About log of the number of samples.

• Run in parallel the algorithm with different 
hash function
– Take the average of groups.

• Then take the median of the averages.



5/26/2013

7

Counting Distinct Elements
• Stream elements: numbers from {1...m} 
• Goal: estimate the number of distinct elements DE in 

the stream
– Up to 1
– With probability  1-P

• Simpler goal: for a given T>0, provide an algorithm 
which, with probability 1-P:
– Answers YES, if DE> (1+)T
– Answers NO, if DE< (1-)T

• Run, in parallel, the algorithm with 
T=1, 1+, (1+)2,..., n

– Total space multiplied by log1+n  ≈ log(n)/ 

Estimating DE(x)

• Choose a random set S of coordinates
– For each i, we have Pr[iS]=1/T

• Maintain SumS(x) = iS xi
• Estimation algorithm I:

– YES, if SumS(x)>0
– NO, if SumS(x)=0

• Analysis:
– Pr=Pr[SumS(x)=0] = (1-1/T)DE

– For T large enough: (1-1/T)DE ≈e-DE/T

– Using calculus, for  small enough:
• If DE> (1+)T, then Pr ≈ e-(1+) < 1/e - /3
• if DE< (1-)T,   then Pr ≈ e-( 1-) > 1/e + /3

Vector X: 
1  2  3  4  5  6  7  8  9 
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Series1

Set S: + + + (T=4)

DE

Pr

[Flajolet & Martin, J. of Comp. and Sys. Sc., 85]
[Alon, Matias, &Szegedy, STOC, 1996]
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Generalization: Moments

• Suppose a stream has elements chosen 
from a set of n values.

• Let mi be the number of times value i
occurs.

• The k th moment is the sum of (mi )k over 
all i.

22

Special Cases

• 0th moment = number of different elements 
in the stream.
– The problem just considered.

• 1st moment = sum of the numbers of 
elements = length of the stream.
– Easy to compute.

• 2nd moment = a measure of how uneven 
the distribution is.
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Estimating L2 norm
can also work for other moments

Alon-Matias-Szegedy’96

• Choose r1 … rm to be i.i.d. r.v., with 
Pr[ri=1]=Pr[ri=-1]=1/2  

• Maintain 
Z=∑i ri xi

under increments/decrements to xi

• Algorithm I: 
Y=Z2

• “Claim”: Y “approximates” ||x||22 with “good” 
probability
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Analysis

• We will use Chebyshev inequality
– Need expectation, variance

• The expectation of Z2 = (∑i ri xi )2 is equal to

E[Z2] = E[∑i,j rixirjxj] = ∑i,j xi x j E[rirj] 

• We have
– For i≠j, E[rirj] = E[ri] E[rj] =0 – term disappears

– For i=j, E[rirj] =1

• Therefore

E[Z2] = ∑i xi
2 =||x||22

(unbiased estimator)

Analysis, ctd.
• The second moment of Z2 = (∑i ri xi )2 is equal to the expectation of

Z4 = (∑i ri xi ) (∑i ri xi ) (∑i ri xi ) (∑i ri xi )
• This can be decomposed into a sum of

– ∑i  (ri xi )4 →expectation= ∑i  xi 
4 

– 6 ∑i<j  (ri rj xixj  )2 →expectation= 6∑i<j  xi
2 xj

2

– Terms involving single multiplier ri xi (e.g., r1x1r2x2r3x3r4x4)
→expectation=0

Total: ∑i  xi 
4 + 6∑i<j  xi

2 xj
2 

• The variance of Z2 is equal to 
E[Z4]-E2[Z2] = ∑i  xi 

4 + 6∑i<j  xi
2 xj

2 – (∑i xi
2 )2

= ∑i  xi 
4 + 6∑i<j  xi

2 xj
2 –∑i xi

4 -2 ∑i<j  xi
2 xj

2 

= 4∑i<j  xi
2 xj

2  

≤ 2 (∑i  xi 
2 )2
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Analysis, ctd.

• We have an estimator Y=Z2

– E[Y] = ∑i xi
2 

– σ2 =Var[Y] ≤ 2 (∑i  xi 
2 )2 

• Chebyshev inequality:
Pr[  |E[Y]-Y| ≥ cσ ] ≤ 1/c2

• Algorithm II:
– Maintain Z1 … Zk (and thus Y1 … Yk ), define Y’ = ∑i  Yi /k
– E[Y’]    = k ∑i xi

2 /k = ∑i x i
2 

– σ’2 = Var[Y’] ≤ 2k(∑i  xi 
2 )2 /k2 = 2 (∑i  xi 

2 )2 /k

• Guarantee:
Pr[ |Y’ - ∑i xi

2 | ≥c (2/k)1/2 ∑i xi
2 ] ≤ 1/c2

• Setting c to a constant and k=O(1/ε2) gives (1 ε)-
approximation with const. probability


