Streaming Algorithms
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Data Streams

» A data stream is a sequence
of data that is too large to be
stored in available memory

+ Examples:
— Network traffic

— Sensor networks

- Ap{)roxmate query o o g

mization and answering in
Iarge databases

— Scientific data streams
— ..And more
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Basic Data Stream Model

e Single pass over the data: iy, i,,...,
— Typically, we assume n is known (but not always)
e Bounded storage (typically n“or log® n)

— Units of storage: bits, words, coordinates or
~€lements” (e.g., points, nodes/edges)

e Fast processing time per element
— Randomness OK (in fact, almost always necessary)

v
8219192463942342385256 ...

Counting Distinct Elements

e Stream elements: numbers from {1...m}
¢ Goal: estimate the number of distinct elements DE in
the stream
— Upto l+¢
— With probability 1-P
e Simpler goal: for a given T>0, provide an algorithm
which, with probability 1-P:
— Answers YES, if DE> (1+¢)T
— Answers NO, if DE< (1-¢)T
e Run, in parallel, the algorithm with
T=1, 1+¢, (1+€)%,..., n
— Total space multiplied by log,,.n = log(n)/ ¢
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Vector Interpretation

Stream:82191924494254258525

Vector X: -. = B =B
123456789

e Initially, x=0
e Insertion of i is interpreted as
X; =X +1
e Want to estimate DE(x) = the number of
non-zero elements of x

Counting Complexity?
* One path over the data = O(n) time

« Space complexity: O(m)
— m is the number of DE

» We want better space complexity
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An Approximation

» Pick a hash function h that maps each of
the n elements to at least log,n bits.

» For each stream element a, let r(a) be the
number of trailing 0’s in h(a).

* Record R = the maximum r(a) seen.
 Estimate = 2R,

[Flajolet & Martin, J. of Comp. and Sys. Sc., 85]
[Alon, Matias, & Szegedy, STOC, 1996]

Intuition

« The more different elements you see, the
more likely you are to see something
unusual.

— Here, “unusual” means “hash value ends in a
lot of 0’s.”

« With a good random hash function
— %2 of the elements end with 0
— Y4 of the elements end with 00
— 1/8 of the elements end with 000
— 27 of the element end with i Os




Analysis

» The probability that a given h(a) ends in at

leastr O’sis 2.

If there are m different elements, the
probability that R > r is 1 —|(1-2")™.

Prob. all h(a)'s Probability any
end in fewer than given h(a) ends in
r 0. fewer than r 0’s.

Analysis (2)

Since 2Tissmall, 1-(1-2")" = 1-e ™2 |
f2r>>m,1-(1-2)m=1-(1-m2")
~m/2'=0.
f2r<<m,1-(1-2)"~1-e™ =~1.
Thus, 2R will almost always be around m.
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Why it doesn’t work?

« E(2R ) is not bounded.

— Probability halves when R -> R +1, but value
doubles, up to maximum possible R.

« Workaround involves using many hash
functions and getting many samples.
* How are samples combined?
? What if one very large value?
? All values are a power of 2.

Solution

« Partition your samples into small groups.
— About log of the number of samples.

* Run in parallel the algorithm with different
hash function
— Take the average of groups.

* Then take the median of the averages.
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Counting Distinct Elements

e Stream elements: numbers from {1...m}
e Goal: estimate the number of distinct elements DE in
the stream
— Upto l+¢
— With probability 1-P
e Simpler goal: for a given T>0, provide an algorithm
which, with probability 1-P:
— Answers YES, if DE> (1+¢)T
— Answers NO, if DE< (1-¢)T
e Run, in parallel, the algorithm with
T=1, 1+¢, (1+€)%,..., n
— Total space multiplied by log,,.n = log(n)/ ¢

Estimating DE(x)

Vector X: -. =B = B
123456789

Set S: + ++ (T=4)
e Choose a random set S of coordinates
— For each i, we have Pr[ieS]=1/T 08
e Maintain Sumg(x) = Z;_s X; Pr | o7 I
e Estimation algorithm I: o6 \
— YES, if Sumg(x)>0
— NO, if Sumg(x)=0 0.5
e Analysis: 04
—  Pr=Pr[Sumg(x)=0] = (1-1/T)PE
— For T large enough: (1-1/T)PE me DT 03
— Using calculus, for ¢ small enough: 02
o If DE> (1+¢)T, then Pr = e(1+:) < 1/e - ¢/3
e if DE< (1-¢)T, thenPr=e(1%) > 1/e +¢/3 0.1 \\‘A
[ e e o B B o L BRAS SR aaae
13 5 7 9 11 13 15 17 19

DE
[Flajolet & Martin, J. of Comp. and Sys. Sc., 85]
[Alon Matiag &Szoaedy STOC 10041
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Generalization: Moments

« Suppose a stream has elements chosen
from a set of n values.

* Let m; be the number of times value i
OCCurs.

« The k " moment is the sum of (m, )< over
all 1.

21

Special Cases

« 0 moment = number of different elements
in the stream.
— The problem just considered.

* 1t moment = sum of the numbers of
elements = length of the stream.
— Easy to compute.

« 2"d moment = a measure of how uneven
the distribution is.

22
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Estimating L, norm
can also work for other moments

Alon-Matias-Szegedy’96

Choose r, ... r,to be i.i.d. r.v., with
Pr[r=1]=Pr[r=-1]=1/2
Maintain
=31 X,
under increments/decrements to x;
Algorithm [:
Y=2Z2
“Claim”: Y “approximates” ||x||,? with “good”
probability
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Analysis

We will use Chebyshev inequality

— Need expectation, variance

The expectation of Z2 = (3, x, )?is equal to
E[Z2] = E[3;;rxirx] = 2% % Elrir]

We have

— For i#}, E[rir] = E[r] E[r] =0 — term disappears

— For i=], E[rr] =1

Therefore

E[Z7] = ¥ x? =|x|],?
(unbiased estimator)

Analysis, ctd.

+ The second moment of Z? = (31, x, )?is equal to the expectation of
Z8= (% ) (X ) (X ) (%)
* This can be decomposed into a sum of
- Y (rx) —expectation= 3, x4
- 63 (XX )? —expectation= 63 x? x?
— Terms involving single multiplier r, x; (€.9., r{X4ryXor5X5M4X,)
—expectation=0

Total: 3, x4+ 62i<j X2 ij

« The variance of Z2 is equal to
E[Z-B2[Z7] = 3, x* + 6% X? 2 — (X x?)?
=2 X6y X X2 = XXt -2 3 g X2 X?
=43 X Xj2
S2(3 %2y
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Analysis, ctd.

We have an estimator Y=22
- E[Y]=%x?
— 02=Var[Y] £2 (3, x2)?
Chebyshev inequality:

Pr[ |E[Y]-Y|2co]<1/c?
Algorithm II:
— Maintain Z, ... Z, (and thus Y, ... Y, ), define Y =}, Y, /k
— E[YT =kXix?/k=%x?
— 02=Var[Y] < 2k(T; x;2)2/k2 =2 (3 x2)2/k
Guarantee:

Pri|Y’ - 3, x? | 2c (2/k)12 Y, x21<1/c?

Setting c to a constant and k=0(1/¢?) gives (1+ €)-
approximation with const. probability
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