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Abstract—Fair bandwidth sharing at routers has several advantages, in-
cluding protection of well-behaved flows and possible simplification of end-
to-end congestion control mechanisms. Traditional mechanisms to achieve
fair sharing (e.g., Weighted Fair Queueing, Flow Random Early Discard)
require per-flow state to determine which packets to drop under conges-
tion, and therefore are complex to implement at the interior of a high-speed
network. In recent work, Stoica et al. have proposed Core-Stateless Fair
Queueing (CSFQ), a scheme to approximate fair bandwidth sharing with-
out per-flow state in the interior routers. In this paper, we also achieve
approximate fair sharing without per-flow state, however our mechanism
differs from CSFQ. Specifically, we divide each flow into a set of layers,
based on rate. The packets in a flow are marked at an edge router with a
layer label (or “color”). A core router maintains a color threshold and drops
layers whose color exceeds the threshold. Using simulations, we show that
the performance of our Rainbow Fair Queueing (RFQ) scheme is compa-
rable to CSFQ when the application data does not contain any preferential
structure. RFQ outperforms CSFQ in goodput when the application takes
advantage of the coloring to encode preferences.
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I. INTRODUCTIONFAIR bandwidth sharing at routers protects well-behaved
flows from mis-behaving flows and may simplify or en-

hance end-to-end congestion control mechanisms. Three types
of mechanisms can be used to achieve fair bandwidth sharing.
Per-flow queueing mechanisms (e.g., [1], [2]) operate by main-
taining a separate queue for each flow and performing FIFO
ordering with tail-drop on each queue. Per-flow dropping mech-
anisms (e.g., Flow Random Early Drop (FRED) [3]) employ
a single FIFO queue, but maintain per-flow state to determine
which packets to drop under congestion. Because both of these
mechanisms require per-flow state, their suitability for use over
very high speed backbone trunks with a large number of flows
has been questioned.

Recently, Stoica et al. have proposed a scheme that approxi-
mates fair bandwidth sharing without requiring per-flow state in
the core routers [4]. The main idea behind their Core-Stateless
Fair Queueing (CSFQ) architecture is to keep per-flow state at
slower edge routers and carry that information in packets to the
core. Specifically, packets are labeled with flow arrival rate;
core routers estimate the fair share and probabilistically drop
packets whose arrival rate (as marked) exceeds the fair share.
Through extensive simulations, CSFQ is shown to achieve a rea-
sonable degree of fairness: CSFQ tends to approach the fairness
of Deficit Round Robin (DRR) [5] and to offer considerable im-
provement over FIFO or Random Early Detection (RED) [6].
CSFQ offers great promise for making fair bandwidth sharing

feasible in high-speed networks.
In this paper, we also aim to achieve approximate fair sharing

without per-flow state. Our approach is a combination of a
color labeling scheme and a buffer management mechanism. We
divide each flow into a set of layers, with a globally consistent
rate per layer. The packets in a flow are each marked at the
edge router with a label that reflects the “color” of the layer.
A core router maintains a color threshold C; packets with a
color label larger than C are dropped. During congestion, the
color threshold is decreased; when congestion clears, the color
threshold is increased. Because the coloring is based on rate, the
discarding of packets is approximately fair. We call our scheme
Rainbow Fair Queueing (RFQ), due to the use of “colors” to
convey rate information.

The main differences between RFQ and CSFQ are:� The state information carried by the packets are the color
layers they belong to, rather than the explicit rate of their
flows.� The operation of the core routers are further simplified.
Note that the fair share calculation in CSFQ requires expo-
nential averaging to estimate the input rate. In RFQ, the
core routers only need to perform threshold-based dropping.
The scheme is quite simple and amenable to hardware im-
plementation.� An application can express a preference for certain packets
to be preserved under congestion by marking them with a
lower color value, subject to constraints on the rate for each
color.

The simulation results demonstrate that the performance of RFQ
is comparable to CSFQ when the application data does not con-
tain any preferential structure. RFQ outperforms CSFQ and
DRR in goodput1 when the application takes advantage of the
coloring to encode preferences.

The remainder of the paper is structured as follows. In the
next section, we discuss related work in queue management and
layering. In Section III we describe the basic operation and
details of RFQ. In Section IV we evaluate the performance of
RFQ in comparison to other schemes, including DRR, RED and
CSFQ. In Section V, we discuss how layered applications encode
preferences in colors and study the performance improvement.
Finally, we conclude in Section VI.

1Goodput is the effective throughput, as determined by the data successfully
received and decoded at the receiver. We will discuss the goodput of video flows
in greater detail in Section V.



II. RELATED WORK

In the past ten years, Weighted Fair Queueing (WFQ) has
attracted considerable attention as a mechanism to achieve fair
bandwidth sharing and delay bounds [1], [2]. Strict WFQ is,
however, generally considered too complex to implement in
practice. Many variants of the WFQ algorithm have been pro-
posed, with different tradeoffs between complexity and accu-
racy [5], [7], [8]. Nevertheless, the WFQ computation is only
part of the task; a per-flow queueing system also requires flow
classification and per-flow state maintenance. Every incoming
packet has to be classified to its corresponding queue. The per-
flow reservation state has to be installed by a setup protocol such
as RSVP and retrieved during packet forwarding for scheduling
calculations. All of these are a considerable challenge when
operating at high speeds with a large number of flows.

Random Early Detection (RED) has been proposed as a re-
placement to the simple tail drop [6]. RED monitors the av-
erage queue size and probabilistically drops packets when the
queue exceeds certain thresholds. By dropping packets before
the buffer is full, RED provides an early signal to the end systems
to back off. However, RED cannot ensure fairness among com-
peting flows. Flow Random Early Discard (FRED) improves the
fairness of bandwidth allocation in RED by maintaining state for
any backlogged flows [3]. FRED drops packets from flows that
have had many packets dropped in the past or flows that have
queues larger than the average queue length.

An interesting research question is, therefore, whether one
can approximate the operation of WFQ without requiring the
use of per-flow state. Although such approximations may not be
able to match the fairness and accuracy of WFQ, the objective
is to achieve fair bandwidth sharing with a simpler and scalable
approach. Core-Stateless Fair Queueing (CSFQ) does exactly
this [4]; we have the same goal.

In addition to fair queueing schemes, our work also draws
upon the concept of layering. Layering has been used in the past
for congestion control of multicast video and audio streams [9],
[10], [11]. In these schemes, video or audio traffic streams are
usually divided into a small number of layers, typically through
sub-band encoding. Receivers can choose the number of layers
of traffic to receive based on the bandwidth available to them.
Closely related to our work are efforts to divide traffic of various
types into more layers. Such an approach has been considered
for video [12] and for bulk-data transfer [13], [14].

III. RAINBOW FAIR QUEUEING

In this section, we present RFQ, a packet coloring and buffer
management scheme that emulates the fair sharing of WFQ but
avoids packet classification and per-flow state operations in the
core. With RFQ, core routers still perform FIFO scheduling
but with more sophisticated buffer management. RFQ’s imple-
mentation complexity is much lower compared with a per-flow
queueing system.

The network model is the same as that used in CSFQ [4]
and in Differentiated Services: namely, a network comprised of
edge routers and core routers. (See Figure 1.) The edge routers
perform packet classification and encode certain state in packet
headers, and the core routers use the state for packet discarding.

Core Routers

Edge Routers

Network Domain

Edge Routers

A

Fig. 1. Network Architecture

In this model, a flow is a stream of packets which traverse the
same path in a network domain and require the same grade of
service at each router in the path. Next, we describe a version of
RFQ assuming that all flows have the same weight. A weighted
version of RFQ is presented at the end of this section.

A. RFQ Overview

RFQ has two main components: a packet coloring algorithm
for edge routers and a buffer management and packet discard
algorithm for core routers. When a flow arrives at the edge of
the network, its rate is estimated by an exponential average based
on the packet inter-arrival time. The edge router then divides the
flow into many thin layers. Each layer is assigned a number,
which we call a “color”. The colored layers have two purposes.
First, they reflect the rate of the flow: the larger the number of
colored layers is, the higher the rate of the flow is; flows with
the same rate have the same number of colored layers. Second,
the colored layers provide a structure for controlled discarding
in the network when congestion occurs.

Inside the network, different flows are, of course, interleaved.
Since the core routers do not perform per-flow operations, they
cannot distinguish packets on a per-flow basis. Instead, they
operate on a single packet stream with many different colored
layers. The core routers still operate in simple FIFO fashion.
When the backlogged packets exceed some threshold, the core
routers discard packets to reduce the traffic load. The discarding
starts with the packets with the highest color value. That is,
the routers “cut” layers of color from top down. Because the
coloring is done proportionally to the rate, the packet discarding
approximates that of a WFQ system.

Let us illustrate the operation of RFQ with a simple example.
Figure 2 shows three flows with rates of 10 Kbps, 6 Kbps and
8 Kbps. We assume that each color layer has a rate of 2 Kbps.
(We later discuss the issue of a “good” selection of rates for the
layers.) When the three flows arrive at the edge of the network,
they are divided into colored layers based on their rates. Thus,
flows A, B and C have five, three and four layers respectively.
Suppose that the three flows converge at a core router. Then
we have a packet stream with five layers and the composition is
given in Table I.

When congestion is detected, the core routers will discard
layer four first. Note that all packets in colored layer four come
from flow A. Thus, the rate of flow A is reduced to 8 Kbps, and
flows B and C are not affected at all. Suppose that the bottleneck
only has a capacity of 18 Kbps. Layers four and three will



Flow C

8kb/s

2kb/s }
}
}
}
}

Layer 0

Layer 1

Layer 2

Layer 3

Layer 4

4kb/s

6kb/s

10kb/s

(8Kbps)
Flow BFlow A

(10Kbps) (6Kbps)

Fig. 2. Example of RFQ Coloring

Color Rate (Kbps) Contribution

layer 4 2 flow A
layer 3 4 flow A, B
layer 2 6 flow A, B and C
layer 1 6 flow A, B and C
layer 0 6 flow A, B and C

TABLE I

COMPOSITION OF TRAFFIC IN COLORED LAYERS

then be cut, and all three flows will receive the same amount
of bandwidth (6 Kbps). As we can see from this example,
the structure provided by the colored layers allows the packet
discarding to be done in a way similar to that of WFQ.

B. RFQ Details

This basic mechanism has four important details: (1) the
estimation of the flow arrival rate at the edge routers, (2) the
selection of the rates for each color, (3) the assignment of colors
to packets, and (4) the core router algorithm. We consider each
of these details in turn.

B.1 Flow arrival rate estimation

At the edge routers, the flow arrival rate must be estimated, in
order to assign a color. To estimate the flow arrival rate, we use
the same exponential averaging formula as in CSFQ [4]. This
scheme requires an edge router to keep state for each active flow.
Specifically, let tki and lki be the arrival time and length of thekth packet of flow i. The estimated rate of flow i, is calculated
as: rnewi = (1 � e�Tki =K) lkiT ki + e(�Tki =K)roldi
where T ki = tki �tk�1i andK is a constant. Using an exponential
weight e�Tki =K gives more reliable estimation for bursty traffic,
even when the packet inter-arrival time has significant variance.

B.2 Selection of layer rates

After estimating the flow arrival rate, each packet is assigned
a color, with the constraint that the average rate of packets with
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Fig. 3. Flows are partitioned into colored layers according to their rates.

color i is at most ci. We discuss the issue of assigning colors
to packets below; we are concerned here with the choice of the
rates ci. One important fact is that colors with smaller values
are assigned before the colors with large values. That is, a flow
with arrival rate r will be assigned colors with 0::j, where j is
the smallest value satisfying

Pji=0 ci � r.
Note that the color label is carried in the packet header, thus the

number of values we can use is limited. For IPv4, for example,
the color label can be put in the Type of Service field of IP header
as it is used in Differentiated Services [15]. If the label is 8-bit
long, we have 256 color values.

There are clearly many options for how to select the ratesci. The simplest approach is to make all color layers have
equal rate. However, for low rates, the granularity can be very
coarse. For example, assume the rate of a flow’s top layer is ck.
When congestion occurs, cutting one layer will reduce the total
throughput by ck=r. When r is small, the layer cut will severely
reduce the total throughput of the flow. If there are many such
low rate flows sharing the link, a layer cut will cause the link to
become severely under-utilized. Therefore, one of the objectives
in layer rate selection is to minimize the affect to a flow and link
utilization when a layer cut takes place.

Based on simulations and analysis, we use a non-linear en-
coding in which lower layers are given smaller rates (and thus
finer granularity), while higher layers are given larger rates. We
divide the rate spectrum into “blocks” and use a combination of
equal rates (within a block) and exponentially increasing rates
(from one block to the next). We select this particular partition
method because it requires very simple computation to deter-
mine which layer a packet should belong to. Specifically, layeri has rate ci:ci = ( aINT (i=b)�N=bb P b � i � Na1�N=bb P 0 � i < b
where N is the total number of colors (layers). Parameters a andb determine the block structure, and N must be a multiple of b.P is the maximum flow rate in the network. For example, whenN = 8 and a = b = 2, the layer rates are illustrated in Figure 3.
The rate of the layer is depicted by the width of its rectangle.

B.3 Color assignment

We now turn to the issue of assigning colors to the packets.
Recall that the constraint is that the average rate of packets
with color i is at most ci. However, if the time scale over
which the average is taken is too long, significant unfairness and
performance degradation can result. A burst of packets with the
same color may cause temporary buffer overflow which can be
avoided if the traffic within a color is smoothed. Furthermore,
dropping of consecutive packets from a TCP connection will
significantly affect the throughput of a TCP flow [16], [6].
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There are a number of ways in which colors can be assigned.
The simplest is a probabilistic color assignment scheme. Each
packet is randomly assigned a color with a probability deter-
mined by the layer’s rate. Specifically, suppose the current
estimate of the flow arrival rate is r, and j is the smallest value
satisfying

Pji=0 ci � r. Then the current packet is assigned
color 0 � i � j with probability ci=Pji=0 ci. When all pack-
ets have fixed size, it is easy to see that the probabilistic color
assignment will cause the rates for each color to approach the
required rates ci. When the packet sizes are variable, it can also
be shown that the random assignment will result in average rates
for color layers that approximate the designated distribution. An
example of color assignment is shown in Figure 4.

Color assignment can also be done with multiple token buckets
in a way similar to [17]. Applications can also “pre-color” the
packets to reflect preferential treatment. Important packets can
be marked with small color values so that they are less likely
to be dropped. The packets can keep the color assigned by the
applications as long as the total traffic for each layer is within
the constraint. We will discuss this aspect in greater detail in
Section V.

B.4 Core router algorithm

The core routers monitor buffer occupancy and discard color
layers when backlogged packets exceed certain thresholds. The
objective is to achieve approximate fair queueing while main-
taining high utilization.

The complete core router algorithm is shown in Figure 5. The
main task is to update the color threshold C according to the
current congestion status. Initially, C is set to the maximum
color value.

As shown in the pseudocode, upon each packet arrival,
C max is updated to record the largest color value having been
seen. When the current queue length q len reaches a threshold
q threshold, it is likely that the link is congested and C should
be decreased. However, over-reacting may compromise the per-
formance. Our scheme decreases C when the following three
conditions are all met: (1) since the last C update, 0:1q maxsize
bytes have been accepted into the buffer; (2) the queue length
has increased since the last C update; (3) only k consecutive C
decreases are allowed, where k is set to be 0:25C every time
interval update int. Condition 1 prevents very frequent changes
to help ensure stability. Condition 2 ensures that the input traffic
does exceed the output capacity so that a layer cut is necessary.
Condition 3 prevent the system from over reacting on detected
congestion. Note that the C decrease frequency is also self-
clocked in that when C is set too high, the packet acceptance
rate is high, condition 1 is met more quickly, and C is decreased

On packet arrival:C max = MAX(C max; pkt color);
if ((q len > q threshold) and

(b rcv � q maxsize=10) and
(q last < q len) and (k > 0)) f
/* Decrease the color threshold */C = C � 1;q last = q len;t last = now;b rcv = 0;k = k � 1;g

else if (now � t last > update int) f
if (b rcv < link capacity � update int) f

/* Increase the color threshold */C = C + 1;C =MIN (C;C max);q last = q len;t last = now;b rcv = 0;
update(update int);gk = C=4;g

/*Count the traffic admitted by the color threshold C*/
if (C � pkt color) b rcv = b rcv + pkt size;
/*Determine whether to admit the packet or not */
if ((q len == q maxsize) or (C < pkt color)) f

drop packet;g
enqueue packet;

Fig. 5. Core router algorithm

faster.
After every time interval update int, if the average input rate

b rcv/update int is less than the link capacity link capacity, the
color threshold C is increased. b rcv is the traffic (in bytes) that
is allowed into the buffer by the color thresholdC. The threshold
update interval update int is adjusted every time C is increased
so that the closer the service rate is to the link capacity, the
longer the update int is and less frequently the color threshold
is updated.

C. Weighted RFQ

The RFQ algorithm can support flows with different weights.
Specifically, letwi denote the weight for flow i. Then the packets
in this flow are marked such that the average rate for packets
labeled with color j iswicj . That is, a larger weight allows more
packets to be marked with lower color values than a smaller
weight. The remainder of the algorithm is essentially the same
as the unweighted case.

IV. SIMULATIONS

In this section, we present simulation results. In our simula-
tions, we compare the performance of RFQ with the following
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Fig. 6. A single congested link simulation topology. The congested link has
capacity of 10 Mbps and 1ms propagation delay.

schemes: Deficit Round Robin (DRR), Random Early Discard
(RED) and Core-Stateless Fair Queueing (CSFQ).

DRR is a well-known variant of WFQ that has an implemen-
tation complexity of O(1) [5]. In DRR, queues are serviced
in a round-robin fashion with a quantum of service assigned to
each queue. A packet is dropped from the longest queue when
the buffer is full. DRR is the only algorithm that requires per-
flow queueing in the four schemes we used for simulation; DRR
serves as the benchmark for fair bandwidth sharing.

All simulations were performed using the simulator ns-2 [18].
The simulation code for CSFQ is obtained from [19] and is used
unchanged. DRR and RED algorithms as well as TCP and UDP
traffic generation algorithms are available with the ns-2 package.

For the sake of better comparison, we used simulation con-
figurations and parameters similar to those in [4]. In all the
simulations, unless stated otherwise, the link buffer size is set
at 64000 bytes, and the packet size (MTU) is set at 1000 bytes.
For video sources, the MTU is set at 500 bytes. The parameters
for CSFQ, DRR and RED are set as described in [4]. For RFQ,
we set P for all flows at 10Mbps, and the threshold q threshold
at 60% of the total buffer size.

A. A Single Congested Link

We first evaluated the performance of RFQ on a simple net-
work configuration as shown in Figure 6. Assume n flows share
a single bottleneck link with a capacity of 10 Mbps. We assume
that all flows have the same weight. When the link is congested,
all backlogged flows should receive the same amount of band-
width. In the first experiment, each of 32 UDP flows sends ati� 10

32 Mbps, where i (1 : : :32) is the flow number. During the 10
seconds simulation time, each UDP flow has infinite data to trans-
mit and hence the link is severely congested. Under max-min
fairness [1], each flow should achieve an average throughput of
313 Kbps. In Figure 7, we plot the average throughput achieved
by each flow when the link is configured using DRR, CSFQ,
RED and RFQ. The results show that RED cannot ensure fair
bandwidth sharing during congestion while DRR gives almost
perfect sharing among contending flows. Both CSFQ and RFQ
have similar performance to DRR and perform much better than
RED.

Figure 8 shows the comparison of queue dynamics in the all-
UDP experiment with RFQ and CSFQ. Since both RFQ and
CSFQ use dropping as a way of enforcing bandwidth allocation,
it is not surprising that the queue is quite long during the conges-
tion period. From Figure 8, we can see that the queues in RFQ
and CSFQ both fluctuate greatly, and the queue length of RFQ
is slightly shorter than that of CSFQ.
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In the UDP experiments, the sources simply send packets
at fixed rates thus the results are quite straightforward. Be-
cause TCP congestion control will back off during congestion,
TCP flows tend to suffer when sharing a bottleneck with non-
reactive UDP flows. In the second experiment, we study the
protection of one TCP connection against a set of non-reactive
over-transmitting UDP flows. Figure 9 shows the normalized
throughput achieved by the TCP connection when it competes
with n � 1 UDP flows. Each UDP flow transmits at twice its
fair share over the 10 seconds simulation time. In the figure, they-axis represents the normalized throughput, which is defined
as the throughput/fair-share ratio. Note that in the optimal sit-
uation, the normalized throughput should be equal to 1:0. The
results in Figure 9 show that CSFQ performs slightly better than
RFQ. As in [4], we also observe that DRR performs very well
when there are 22 flows or less, and its performance deteriorates
after that. This is because the TCP flow’s throughput is signifi-
cantly affected by the limited buffer share at the bottleneck when
there are more than 22 flows. Both RFQ and CSFQ significantly
outperform RED.

In the third experiment, we look at bursty traffic sources. We
use a simplified MPEG video source model, which has a group
of picture (GOP) pattern I-B-B-P-B-B-P-B-B. Each I frame is
of size 10000 bytes, each P frame is of size 1500 bytes and each
B frame has size 500 bytes2. In the simulation, each of the 20
video sources sends at 30 frames per second and the videos are
carried by UDP packets each of size 500 bytes. Figure 10 shows
the average throughput of each flow. In this case, both RFQ and
DRR perform significantly better than CSFQ. We believe that
the reason lies in the details of the fair share estimation. When
there is a sudden change from uncongested to congested, the fair
share estimation in CSFQ tends to produce large errors, To deal
with this problem, the fair estimation is turned off (setting � to
zero) when queue size is less than a threshold [19]. However,
because video sources are approximately synchronized, the I
frames from each source generate significant large bursts. The

2We use the deterministic frame sizes which have been reported as the mean
values based on a study of MPEG encoded videos [20]. The deterministic frame
sizes are unrealistic. However, it is sufficient to demonstrate the effect of video
sources on congestion control algorithms.
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Fig. 12. Average throughput achieved by UDP-0 passing n consecutive links.

bursts from video sources sometimes get through when the fair
share estimation is turned off, and cause unfair bandwidth shar-
ing. In the case of RFQ, since the queue length is monitored and
enforced around the q threshold, the reaction to traffic bursts is
quite fast.

B. Multiple Congested Links

We also evaluated the performance of RFQ with multiple
congested bottlenecks. Figure 11 shows the simulation topology,
a typical multi-link parking-lot configuration. The number of
congested links varies from 1 to 5. Each link’s capacity is set
at 10 Mbps with a propagation delay 1ms. Flow 0 traverses all
of the congested links while other flows traverse fewer links.
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Fig. 14. Eight UDP flows initially sends at 1 Mbps. At time 2 second, flow 8 increases its rate to 8 Mbps.

At each of the routers 1 to K, five UDP sources are connected
and they all terminate at the last router. In the experiments, all
flows except flow 0 carry UDP traffic at an average of 4 Mbps,
therefore, all links are congested.

In the first experiment, flow 0 is a UDP connection transmit-
ting at 4 Mbps. Figure 12 shows the normalized bandwidth,
i.e., the actual throughput divided by the fair share it should re-
ceive. DRR and CSFQ perform slightly better than RFQ. The
performance of RED is significantly worse compared with the
other three, and deteriorates as the number of congested links
increases.

In the second experiment, we change flow 0 to be a TCP
connection. Figure 13 shows the normalized bandwidth share
it receives. The results show that the performance of RFQ is
slightly better than CSFQ. In comparison, RED fails completely
in protecting the TCP flow, and the TCP flow under RED receives
very little bandwidth.

C. Control Responsiveness

In this experiment, we investigate the control responsiveness
of RFQ. At the beginning, each of the eight UDP flows sends at
1 Mbps to a single bottleneck link with capacity 10 Mbps, and
the network is uncongested. After 2 second, flow 8 suddenly
increases its rate to 8 Mbps. Under WFQ, all flows except flow
8 should still receive 1 Mbps throughput, while flow 8 consumes
the rest of the link capacity which is 3 Mbps. After another four
seconds, flow 8 reduces its transmission rate back to 1 Mbps. The
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Fig. 15. Single link configuration with buffer size ranges from 32 packets to
256 packets at the bottleneck link.

average throughput of flow 1 and flow 8 are shown in Figure 14.
The results show that both RFQ and CSFQ are able to quickly
respond to transient load variations, adjust to and stabilize at the
correct rates.

D. Performance Effects of Buffer Size

Since RFQ is an active queue management scheme, buffer
size is always an important factor affecting the performance. For
RFQ, buffer overflow essentially defeats the fair sharing of band-
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Fig. 16. TCP performance when the link delay is 1ms and 20ms.

width because all incoming packets are forced to be discarded
instead of being discarded according to the color threshold. In
this section, we evaluate the effect of the buffer size on the per-
formance of RFQ. Again, we use the single link topologyand the
link rate is set at 10 Mbps. One TCP connection competes withn� 1 UDP flows each sending at twice the fair share. Figure 15
shows the normalized throughput of the TCP connections under
different buffer sizes. The queue threshold q threshold of RFQ
is set at 60% of the buffer size in all experiments. The results in
Figure 15 show that when the buffer size increases from 32 pack-
ets to 64 packets and to 128 packets, the throughput of the TCP
connection improves. However, when the TCP flow competes
only with one UDP flow, the throughput received by the TCP
with a large buffer size (128 or 256 packets) is even lower than
the throughput with smaller buffer size. That is because the long
queue size increases the round trip delay for the TCP connection
and it becomes the primary factor that limits the throughput of
TCP. In our simulation, by decreasing the threshold, we reduce
the RTT, but the threshold has to be set a level to limit false con-
gestion signals which may cause the color threshold to fluctuate
too quickly.

E. TCP Performance Under Various Round Trip Delay

As we have mentioned in the previous section, the RTT may
affect the throughput of TCP connections. The speed at which
TCP can react to packet dropping is a function of the RTT. In
this section, we examine how different RTTs affect the fair share
for a TCP connection. We use the single link topology with the
bottleneck link rate set at 10 Mbps. A TCP connection com-
petes with n � 1 UDP flows. Each UDP flow sends at twice its
fair share. We experimented with link delays of 1ms and 20ms.
The normalized throughput is shown in Figure 16. The result
indicates that longer RTT increases the amount of bandwidth
the TCP receives. That is because the delayed acknowledg-
ment postpones TCP’s slow start when its packets are discarded.
Therefore, the extended transmission period increases the con-
nection’s throughput.

F. Weighted RFQ
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Fig. 17. Simulation of weight RFQ and CSFQ. Flows 1-8 have weight 1, flows
9-16 have weight 2, flows 17-24 have weight 3 and flows 25-32 have weight
4.

To evaluate how weighted RFQ performs, we repeat the sim-
ulation that 32 UDP flows share a single bottleneck link with 10
Mbps. We assign weight 1 to flow 1-8, weight 2 to flow 9-16,
weight 3 to flow 17-24 and weight 4 to flow 25-32. Figure 17
shows the average throughput each flow receives in comparison
with the fair share. The results show that both RFQ and CSFQ
perform well in emulating weighted fair queueing.

V. IMPROVING PERFORMANCE OF LAYERED APPLICATIONS

WITH RFQ

Resource heterogeneity and bandwidth constraints are likely
to remain characteristics of the Internet. Over the years, layered
multi-media applications have been proposed as a possible solu-
tion to these problems, as they offer great flexibility in delivering
media to end users with performance best suited to individual
characteristics. For example, in layered video delivery, the video
stream is partitioned into a number of layers. The base layer can
be played back with minimum quality, and each additional layer
adds quality to the video. In most encoding schemes, the decod-
ing of additional layers depends on the lower layers. Thus, the



lower layer data are more important than higher layer data.
This adaptation model works well in a heterogeneous Inter-

net: a customer with constrained bandwidth can subscribe to
a limited number of layers and achieve acceptable quality. If
customers have enough bandwidth, they can subscribe to all
layers to achieve the maximum quality. Hence, the quality re-
ceived by end users is optimized without explicit adaptation by
senders. The quality adaptation avoids the many round trip de-
lays usually required by close-loop adaptation mechanisms, and
it is well suited for real-time multimedia delivery and multicast
applications.

Because of the prioritized layering approach in RFQ, the lay-
ered encoding in multimedia applications fits naturally with
RFQ. With RFQ, layers in multimedia flows can be mapped
directly to the colors by the edge routers. The more important
data layers can be assigned lower color values while other data
layers are assigned high color values. When congestion occurs
inside the network, less important data packets are dropped first.
There are at least two ways to implement the mapping at edge
routers. Current Internet routers can already “look” into packets
to determine the type of packets, and then they can assign colors
based on the packet type. A more feasible solution is that the
application at the end station may label its packets with layer
information in packet headers, and the edge routers can then
retrieve this information to assign colors.

We conducted simulations to evaluate the benefit of RFQ for
layered video. Our model for video traffic is based on the MPEG
compressed video framing and transmission scheme. MPEG
uses three types of frames (I, P, and B frames) to encode data us-
ing relational and temporal compression. Intrapicture (I) frames
provide periodic updates to the complete frame. Predicted pic-
ture (P) frames are coded relative to a past picture (I or P). Inter-
polated picture (B) frames are coded relative to a past and future
picture. This encoding scheme achieves significant bit-rate re-
duction, but a loss of a frame may corrupt the frames that depend
on it. Thus the goodput instead of the simple data throughput
is a good measure of the network performance because the data
throughput measurement includes the useless data that could not
be decoded by receivers. For example, a P or B frame has to be
discarded if it depends on a dropped I frame even if the P or B
frame has been successfully received.

In our simulation, we use a simplified video source model. A
video stream is encoded in a GOP pattern I-B-B-P-B-B-P-B-B.
I frames have size of 10000 bytes, P frames have size of 1500
bytes and B frames have size of 500 bytes. The video is encoded
at 30 frames per second, with an average rate of 426Kbps. In
the network, the video is carried by packets with MTU of 500
bytes, and the loss of any single packet causes that frame to be
undecodable. With RFQ, packets belong to I frames are labeled
with lower colors than packets belong to P and B frames, and
packets belong to P frames are labeled with lower colors than
packets belong to B frames. However, the average rate of traffic
in each color still obeys the rules described in Section III. In
the simulation, we measure the goodput achieved by the video
application. We define the goodput as the successful delivery of
both the video frames and their reference frames.

In Figure 18, we show the goodput of a video source that shares
a single bottleneck link withn UDP flows. The link has a capac-
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Fig. 18. An MPEG flow shares a bottleneck link with n UDP flows, which each
sends at 1/10 of the link capacity 10Mbps.

ity of 10Mbps. Each UDP sends at 100Kbps. We compared the
performance of RFQ, CSFQ and DRR in the simulation. The
results show that RFQ consistently outperforms DRR and CSFQ
in goodput. It is interesting to note that DRR performs worse
than CSFQ. This is because the dropping in DRR tends to spread
out fairly evenly across the packets, which actually reduces the
goodput.

VI. CONCLUDING REMARKS

In this paper, we presented Rainbow Fair Queueing (RFQ), a
scheme for achieving approximate fair bandwidth sharing with-
out per-flow state. RFQ achieves fair sharing by first dividing
each flow into a set of layers at the edge of the network, and then
marking each layer with a different color. Within the core of the
network, routers maintain a color threshold C; packets with a
color label greater than C are dropped. Because of the structure
in colored layers, the discarding of packets is approximately fair.

We have evaluated RFQ together with CSFQ, DRR and RED
with several different configurations and traffic sources. The
simulation results show that RFQ is able to achieve approxi-
mately fair bandwidth sharing in all of these scenarios. The
performance of RFQ is comparable to that of CSFQ, and it
performs much better than RED. The simulations also show that
RFQ outperforms CSFQ and DRR with respect to goodput when
applications take advantage of using color layers to encode pref-
erences.

The RFQ scheme further pushes the complexity away from the
core towards the edges of the network. The core routers operate
using simple FIFO scheduling with a threshold-based packet dis-
carding mechanism. The core router algorithm only uses simple
primitive operations which makes it amenable to hardware im-
plementation. The algorithms for the rate estimation and color
assignment at the edge routers, and the adjustment of threshold
in the core routers, are still subjects for future research. How-
ever, our experiments with the current schemes have produced
very encouraging results.

Although RFQ is examined in the context of fair bandwidth
sharing for individual flows, it is possible to extend the scheme
to aggregated flows that comprise many individual flows. In fact,



changes would only be needed at the edges of the network; the
core router algorithm can remain the same. Instead of assigning
colors to an individual flow, the edge routers simply bundle or
classify packets into an aggregate flow (e.g., all packets from a
source network to a web server), and color the aggregate flow
the same way. One issue is that an aggregate flow may take
multiple paths. For example, a source network may connect
to two different ISPs and load balance between them. Thus,
packets from the same source network to the same destination
may follow two different paths. This will affect the structure of
the color layers of the packets in both paths. However, we may be
able to overcome the problem with a random color assignment.
The details of such a scheme are also left to future work.
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