
T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Beyond centrality—classifying topological
significance using backup efficiency and
alternative paths ∗

Yuval Shavitt 1 and Yaron Singer 2,3

1 School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
2 School of Computer Science, Tel Aviv University, Tel Aviv, Israel
E-mail: yaronsin@post.tau.ac.il

New Journal of Physics 9 (2007) 266
Received 27 March 2007
Published 14 August 2007
Online athttp://www.njp.org/
doi:10.1088/1367-2630/9/8/266

Abstract. In complex networks characterized by broad degree distribution,
node significance is often associated with its degree or with centrality metrics
which relate to its reachability and shortest paths passing through it. Such
measures do not consider availability of efficient backup of the node and thus
often fail to capture its contribution to the functionality and resilience of the
network operation. In this paper, we suggest the quality of backup (QoB) and
alternative path centrality (APC) measures as complementary methods which
enable analysis of node significance in a manner which considers backup. We
examine the theoretical significance of these measures and use them to classify
nodes in social interaction networks and in the Internet AS (autonomous system)
graph while applying the valley-free routing restrictions which reflect the
economic relationships between the AS nodes in the Internet. We show that both
node degree and node centrality are not necessarily evidence of its significance.
In particular, we show that social structures do not necessarily depend on highly
central nodes and that medium degree nodes with medium centrality measure
prove to be crucial for efficient routing in the Internet AS graph.
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1. Introduction

The topological study of networks appears in a wide spectrum of research areas such as
physics [1], biology [2], mathematics [3, 4], computer science [5] and the social sciences [6].
The availability of data in recent years allows exploration of structural properties of networks
which often significantly contributes to comprehension of their inherent traits. In systems
biology, for instance, the difficulties of modeling complex cellular networks leaves the
relationship between the network’s topology, and function as an open question [7]–[9].
Specifically, the unavailability of mechanistic detail and kinetic parameters imposes difficulties
on mathematical modeling of complex cellular networks. In contrast, the network topology is
known in many cases and thus enables structural analysis which sheds light on key aspects of
network properties inferred from its structure alone [10].

The topological study of networks can be conducted at three different levels of granularity:
study of global behavior and properties of the network, study of inherent structures and
patterns, and study of individual nodes and links and their function in the network. On the
global scale, examples include discovery of properties such as the degree distribution [11] and
investigation of resiliency to failures [1, 12]. Study on a global scale also includes analysis under
changing physical conditions in biological networks [13] and changing conditions over time in
various networks [14]. The study of structures within networks includes classic works which
investigate motifs [2] and communities [15] as well as recent findings of fractals patterns [16].
Finally, on the node and link scale works range from associating central nodes with key
biological functions [17], to using to topological metrics to rank web-page relevance in a web
search [5].

In this work, we focus our attention on the significance of individual nodes within
complex networks by considering their backup and quantifying their contribution to the
networks’ functionality. As network functionality is often measured by connectivity and vertex
distances in the graph used as its model, measures which credit vertices connected to a
relatively large number of vertices at relatively short distances are often used as significance
indicators [1, 17]. However, inadequate consideration of backup by such measures often
overshadows significance in context of its contribution to functionality and resilience of the
network. Existence of backup raises question regarding a node’s significance since failure of a
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Figure 1. An illustration of an instance where a vertex (v4) is central in the graph
(connected to a relatively large number of vertices at short distances) though
has a backup vertex (v5) which raises questions regarding its contribution to
functionality in the network modeled.

node with backup does not effect connectivity nor does it increase path lengths in the network
and therefore the effect of failure in such instances is minimal (see the example in figure1).
Furthermore, existence of backup denies exclusivity of the information passing through the
node in the network. Since nodes can have backups of various qualities, measures of backup
efficiency and topological significance which considers backup are crucial for analysis of
network functionality.

We suggest two complementary measures which capture a node’s contribution to the
network’s functionality: the quality of backup (QoB) and the alternative path centrality (APC).
The QoB measures backup quality of a vertex regardless of its centrality, enables comparison
of backup efficiency between vertices in the graph as well as between vertices from different
graphs, and can thus serve as a universal measure for backup. The APC considers both backup
quality and centrality of vertices in graphs and therefore enables analysis of nodes’ contribution
to centrality in a wider context in comparison to other topological measures.

We begin with examining our methods on levels of theoretical abstraction, and then use
APC and QoB to analyze social interaction networks and the Internet AS (autonomous system)
graph. In our study, we use APC to identify the most significant nodes to the networks’
functionality, and show that these are not necessarily the most connected individuals or the
Internet core. In analysis of social networks, we show that there is some correlation between
APC and the betweenness metric which was used to detect community structures in the social
interaction network studied. We also show that APC reveals structural difference between
communities centered around individual nodes. In accordance with properties of APC, it is
not surprising that the largest Internet service providers in the core, such as UUNET and Sprint,
also have very high APC values due to the large number of customers that use them as their only
connection to the Internet. However, small service providers with poor backup like the French
research network RENATER, and the GEANT and Abiline academic backbones which have
degrees as low as 51 (RENATER) and low centrality values, have very high APC values as well.
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The rest of this paper is organized as follows. The next section discusses the concept
of backup in networks and introduces the QoB as a measure of universal backup efficiency.
Section3 provides detail of the APC construction and discusses its properties. We use the APC
measure to analyze a dolphin social interaction network in section4, as well as a network which
describes friendship patterns in a karate club. In order to maintain relevance in the Internet
AS graph model we introduce modifications of our methods, and use the modified measures in
comparison to previous works done on the Internet AS graph in section5.

2. Quantifying backup efficiency in complex networks

When considering a node’s contribution to the functionality of the network in terms of its effect
on path lengths and connectivity, backup plays a fundamental role. Trivially, failure of a nodev

does not effect network functionality when a backup nodeb, connected to all ofv’s neighbors,
is available. However, such instances in the network are usually rare. A more common scenario
is one wherev has several nodes connected to a subset of its neighbors, reached at various path
distances by nodes leading tov. It is therefore clear that backup of a node may be distributed in
the network and vary in efficiency.

In our attempt to quantify backup in networks, we observed that the QoB of backup of a
given vertex in the graph is determined by the number of direct children covered by a set of
backup vertices, and the efficiency of reaching this backup set by the set of direct parents. For
a vertexv ∈ V , we define the set of childrenCv, set of parentsPv, and the backup setBv, as
follows:

Cv = {u ∈ V |(v, u) ∈ E}, Pv = {u ∈ V |(u, v) ∈ E}, Bv = {w ∈ V |∃u ∈ Cv : (w, u) ∈ E}.

Clearly, in instances of undirected graphsCv ≡ Pv, and the discussion which follows remains
relevant in these instances as well.

For u, w ∈ V , we useδ(u, w) to denote the shortest path distance betweenu andw in G.
The shortest distance,δ(u, w), can be calculated by any set of rules, e.g. based on additional
annotations on the graph edges, and is not limited to minimum hop. By convention, ifu cannot
reachw through any path inG, thenδ(u, w) = ∞ andδ(u, u) = 0. We also useδv(u, w) to
represent the distance of the shortest path which bypassesv from u to w.

To discuss the properties of the methods suggested here, we formally define the intuitive
concept of backup efficiency in a graph in the following manner.

Definition 1. Let G= (V, E) and v ∈ V be a vertex with the set of direct children Cv ⊆ V ,
and the backup set Bv ⊆ V . We say thatv has a d-distant backup set of order k, where
k = |Cv ∩ (∪b∈Bv

Cb)| and d= max{δv(u, w)|u ∈ Pv, w ∈ Cv}.

An example of the definition is shown in figure2. Note that since our definition above refers
to themaximaldistance between vertices from the setsPv andCv, ∞-distant backup of a vertex
is not necessarily a testament of ineffective backup. A vertexb can be an∞-distant backup
set of order|Cv| of v, reachable by all vertices that reachv, but one. Despite ambiguity that
may rise from instances of∞-distant backup of a vertex, this definition serves its purpose as it
provides a simple indication of backup efficiency. The methods suggested here are not effected
by this formal obstacle as they consider overall efficiency in terms of alternative shortest paths.
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Figure 2. An example of a network with a nodev which has a three-distant
backup set of order 2:v’s parentsp1, p2 reach two ofv’s children—c1, c3,
through the backup setb1, b2.

2.1. Measuring QoB

Let G = (V, E) be a directed or undirected graph whereV is the set of vertices andE is the set
of edges. The QoB ofv ∈ V , denotedρ(v) is:

ρ(v) =

∑
u∈Pv

∑
w∈Cv

(max{δv(u, w)− 1, 1})−1

|Pv| · |Cv|
.

The rational behind this measure is the following. To measure backup efficiency of a given
vertex, it is enough to examine the cost of re-routing paths from its set of parents to its set of
direct children. Note that

max{δv(u, w)− 1, 1} = δv(u, w)− δ(u, w) + 1

for all pairs〈u, w〉 such thatu ∈ Pv ∧ w ∈ Cv. In instances where a parent vertex,u, is directly
connected to a child vertex,w, we haveδv(u, w) = δ(u, w) = 1. We, therefore, choose the
maximal value betweenδv(u, w)− 1 and 1 to ensure that the sum remains finite. Note that
this is equivalent to a definition ofρ(v) in which the sets of parents and children ofv used are
not directly connected. This enables measuringv’s backup only in paths which usev. For a
vertexv ∈ V , it is easy to see that

ρ(v) = 1 ⇐⇒ ∀〈u, w〉 ∈ Pv × Cv ∃b ∈ Bv : δ(u, b)6 1∧ δ(b, w) = 1

and that

ρ(v) = 0 ⇐⇒ δv(x, u) = ∞ ∀〈x, u〉 ∈ Pv × Cv.

Thus,ρ : V− → [0, 1], and returns 1 for vertices with perfect backups and 0 for vertices with
no backup. The following theorem shows the QoB measure indeed enables local measurement
of a vertex’s backup in the graph.
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Theorem 1. For G = (V, E), for a vertexv ∈ V with Pv 6= ∅ and Cv 6= ∅, ρ(v) monotonically
increases with respect to rise in backup efficiency.

Proof. Supposev has ad-distant backup set of orderk. Let u ∈ Pv and w ∈ Cv, such that
δv(u, w) = c in G, where 1< c6∞, andc = min{δv(p, c)|p ∈ Pv, c ∈ Cv}. ConstructG′ by
adding some edgee 6∈ E, such thatδ′

v(u, w) = c′ < c, whereδ′

v(u, w) represents the distance
betweenu andw bypassingv in G′. Notice that it is enough to prove for decrement ind only,
since increase ink is equivalent in the case thatc = ∞ (by minimality ofc). By our construction
v has ad′-distant backup set of orderk′, whered′ 6 d, andk′ > k. We therefore have

(max{δ′

v(u, w)− 1, 1})−1> (max{δv(u, w)− 1, 1})−1,

where equality holds only forc = 2. It thus easily follows thatρ ′(v) > ρ(v), whereρ ′(v) is the
QoB measure ofv in G′. ut

3. APC

The above section discusses backup efficiency regardless of centrality considerations. In an
attempt to quantify significance, note that centrality of a node in the network (its ability to
reach a relatively large number of nodes efficiently) also plays a vital role in analysis: a node
which has relatively efficient backup can be crucial to the network’s functionality due to its
high centrality, while a node with poor backup and low centrality can have little effect on
functionality in the network. The APC measure presented in this section enables quantifying
topological contribution of a node to the functionality of the network as it considers both
centrality and backup efficiency.

Given a graphG = (V, E) as above andu ∈ V , the topological centrality measure used
here, denotedχ , whereχ : V− → R is:

χ(u) =

∑
w∈V\{u}

1

δ(u, w)
.

Clearly, 06 χ(u)6 |V | − 1, ∀u ∈ V .
For a vertexu ∈ V , the value ofχ(u) depends on the number of vertices connected to

u and their distances from it;χ monotonically increases with respect to both centrality and
connectivity of the vertex. Thus, in relation to other vertices in the graph, highχ values are
obtained for a vertex which is connected to a large number of vertices at short distances.
Symmetrically, a vertex connected to a small number of vertices at large distances yields low
χ values. These properties make theχ function a favorite candidate for measuring vertices’
centrality in the network. In [18], the average ofχ values in the graph was used to define the
efficiencyof the network. Similar topological measures have also been used in [1] and in [17] to
study functionality in complex networks.

For G = (V, E), the APC value ofv ∈ V , denotedϕ(v) is:

ϕ(v) =

∑
u∈V\{v}

∑
w∈V\{u,v}

1

δ(u, w)
−

1

δv(u, w)
.

That is, we calculate the difference between the centrality values of all the vertices in the
graph, exceptv, and the centrality values using shortest paths which bypassv. In calculating
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centrality, we use a slight variation ofχ as defined above, since we measure the distance from a
given vertexu to all vertices inw ∈ V\{u, v}, rather than allw ∈ V\{u}, as used in the definition
of χ above. In our discussion below, when referring toχ in the context of the APC metric, we
consider this variation.

The rational behind APC is simple. In instances where network functionality is determined
by shortest paths and connectivity, the significance of a nodev to the network’s functionality
can be measured by its effect on these criteria. Computing the difference between vertices’
topological centrality usingv, and topological centrality bypassingv, enables witnessingv’s
exclusive contribution to the network’s functionality. We conclude our discussion of the APC
properties with the following theorem which shows that APC properly considers both centrality
and backup of a vertex in the graph.

Theorem 2. For G = (V, E) and v ∈ V, Cv 6= ∅, ϕ(v), ϕ(v) monotonically increases with
respect to rise in topological centrality and decrement in backup quality.

Proof. To proveϕ(v) monotonically increases with respect to rise in centrality, letχ(v) <

|V | − 1, andw ∈ V be a vertex for which 1< δ(v, w)6∞. Lete/ ∈ E be some edge for which
δ′(v, w) < δ(v, w), whereδ′(v, w) denotes the shortest path distance inG′

= (V, E ∪ {e}), and
e does not create new alternative paths tow in G′ (otherwise backup efficiency increases).
We show thatϕ(v) < ϕ′(v), whereϕ′(v) denotes the APC value ofv in G′. For all x ∈ V ,
which reachw throughv, δ′(x, w) < δ(x, w) andδ′

v(x, w) = δv(x, w). For all such vertices,x,
we have

1

δ′(x, w)
−

1

δ′
v(x, w)

>
1

δ(x, w)
−

1

δv(x, w)

and it therefore follows thatϕ(v) < ϕ′(v).
To show monotonic increase with respect to decrement in backup quality, according to

the properties of our QoB measure, it is enough to show monotonic increase with respect to
monotonic decrement inρ(v). Assume that some edgee/ ∈ E has been added toG, such
that ρ(v) increases. We again denoteG′

= (V, E ∪ {e}), and use similar notation as above.
We therefore assumeρ ′(v) > ρ(v). Specifically, there is some pair〈u, w〉 ∈ Pv × Cv such that
δ′

v(u, w) < δv(u, w). For this pair we have

1

δ′(u, w)
−

1

δ′
v(u, w)

<
1

δ(u, w)
−

1

δv(u, w)

and it trivially follows thatϕ′(u) < ϕ(u), which concludes our proof of the theorem. ut

4. Analysis of social networks

In this section, we use the APC measure for the benefit of social network analysis. We first
analyze a social interaction network between bottlenose dolphins, and continue with analysis
of a network which describes social interactions between individuals in a karate club in a US
university.

The dolphin social interaction network has been constructed from observations of a
community of 62 bottlenose dolphins in Doubtful Sound, New Zealand, over a period of
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Figure 3. The dolphin social interaction network. Nodes in yellow are members
in the top 10 APC list.

7 years (1994–2001) [19]. The nodes represent the dolphins and the links represent their social
interactions which were observed and considered statistically significant.

We first applied the APC measure on the network, and categorized the nodes in the network
by their descending APC values. In figure3, we illustrate the network, and highlight the
top 10 highest scoring APC nodes in the network. The top three APC nodes are TRIGGER,
NUMBER1, and PATCHBACK. For further analysis, we measured the centrality of the nodes
in the network (as defined by theχ function) and their degree. In order to evaluate the APC
measure, we plotted the average APC values as a function of the nodes’ degree, and did the same
for their centrality values. The result is displayed in figure4 (top). While centrality is highly
related to the nodes’ degree, it is evident that this does not apply to the APC measure; nodes
with high degree do not necessarily have high APC values, and the nodes with the highest APC
values are medium—high degree nodes. In comparison to the centrality metric, APC considers
backup and thus can be expected to better expose a node’s contribution to functionality in the
network.

The dolphin network has also been studied in [20]. In their work, Lusseau and Newman
focused on the community structures in the network and the role of the individual nodes
in maintaining the cohesion of these structures. For this task, nodes were ranked by their
betweenness values—the number of shortest paths passing through each node. Out of the nine
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Figure 4. The connection between node degree, centrality, and APC in the
dolphin and karate networks, and the histogram of the APC values in both
networks.

nodes which Lusseau and Newman identified to be cardinal to maintaining the community
structures they discovered, five are members in our top 10 APC list (TRIGGER, WEB,
SN100, BEESCRATCH and SN4). The rest of the nodes which top the APC list (NUMBER1,
PATCHBACK, SCABS, SN63 and RIPPLEFLUKE) are considered less significant according
to the Lusseau and Newman metric. The distribution of the APC values in the network are also
presented in figure4.

The ‘karate club’ network is a famous social network which is often used to test clustering
algorithms [21]. The network models friendship patterns between 34 members in a karate club
at a US university and has been introduced by Zachary [22]. In [21] the application of the
eigenvector-based community detection algorithm has shown that the network is divided into
two communities. This finding correlates to the split of the club into two due to an internal
dispute, shortly after the network was measured.

In our analysis, we find again that high degree is not necessarily an indicator to a node’s
contribution to functionality, and the behavior of average centrality and average APC as a
function of node degree are similar to those measured on the dolphin network as shown in
figure 4. Inspection of the distribution of APC values in the network also in figure4, shows
that the karate network includes only one node with a significantly high APC value. This is
in contrast to the dolphin network where several individuals were found to have high APC
values. By inspection of the graph in figure5 one can witness the two communities which
are discussed in [21], characterized by the density around the colored nodes. Further analysis,
however, indicates that the two communities are inherently different in structure; while one
community is centralized around one node (marked in red), the second community is centralized
around two nodes (marked in yellow), which symmetrically serve as each other’s backup. The
node marked in red is the top scoring APC node, and the only one with significant APC value
as can be seen from the APC distribution in figure4.

The karate network proves to be an interesting case study when applying the APC metric.
While there are four nodes with high centrality values (values above 20) in the network, only
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Figure 5. The ‘karate club’ network. The node marked in red is the one with the
highest APC value in the network. The two nodes in yellow are both with high
centrality and low APC, due to their symmetrical backup of each other.

one of these nodes has a significantly high APC value (the second highest central node), due
to the backup of the rest of the highly central nodes. In study of the community structure, the
APC measure shows the difference between a community which revolves around highly central
nodes, that can each fail without affecting the community and the network, and a community
which depends on a single node for its structural survival.

5. Analysis of the Internet AS graph

In research of the Internet, node significance classification has received attention in past
studies [23]–[25] and was treated in two different contexts: study of the Internet resiliency
against attacks and failures [1, 12], [26]–[29] and identification of the Internet core nodes
[23, 25]. Both study threads were conducted at the level of the Internet AS graph which models
the interconnections of the Internet’s service providers.

Several attempts have been made in the past to characterize the core of the Internet AS
graph. In [23] the most connected node was used as the natural starting point for defining the
Internet’s core. Other autonomous systems (ASes) were also classified to four shells and tendrils
that hang from the shells, where ASes in shells with a small index are considered more important
than ones in higher indices. Further work has dealt with classification of nodes into few
shells with decreasing importance [30, 31]. In a recent study [25] k-shell graph decomposition
was used to classify nodes by importance to roughly 40 layers of hierarchial significance.
The k-shell classification, based on the node’s connectivity, identified over 80 ASes as the
Internet core, some of which with medium degrees. Almost exclusively, an attempt to rank
ASes by metrics other than node degree was done by CAIDA [32], where the ‘cone’ of the node
was used to determine its importance, namely the number of direct and indirect customers of
the AS. In this section, we use the APC and QoB measures to analyze the Internet AS graph.
Since failure of a node on the AS level is possible [12] though highly unlikely, applying APC
and QoB on the Internet AS graph allows a unique insight to the Internet structure as opposed
to quantifying effects of failures. On the AS level, centrality which considers backup reveals
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significance in context of potential information which exclusively passes through a node, and
its backup quantifies the dependency of its customers on its transit services. We begin with a
brief description of the AS graph model.

5.1. The Internet AS graph

The Internet today consists of tens of thousands of networks, each with its own administrative
management, called ASes. Each such AS uses an interior routing protocol (such as OSPF or
RIP) inside its managed network, and communicates with neighboring ASes using an exterior
routing protocol, called BGP. The graph which models inter-connection between ASes in the
Internet is referred to as the Internet AS graph. Since the ASes in the Internet are bound
by commercial agreements, restrictions are imposed on the paths which may be explored.
The commercial agreements between the ASes are characterized by customer–provider,
provider–customer and peer-to-peer relations. A customer pays its provider for transit services,
thus the provider transits packets to and from its customers. The customer, however, will not
transit packets for its provider. Specifically, a customer will not transit packets between two of
its providers, or between its provider and its peers. Peers are two ASes that agree to provide
transit information between their respective customers.

In a pioneering work, Gao [30] has deduced that a legal AS path may either be anup hill
path, followed by adown hillpath, or anup hill path, followed by a peering link, followed by a
down hill path. Anup hill path is a sequential set, possibly empty, of customer–provider links,
and adown hill path is a sequential set, possibly empty, of provider–customer links. Therefore
a legal route between ASes can be described as avalley freepath. A peering link can be
traversed only once in each such path, and if it exists in the path it marks the turning point for a
down hillpath.

5.2. Adaptation of QoB and APC for the directed AS graph

We have adjusted our measures to conform to the model of the AS graph and specifically to the
routing restriction which it imposes. Since transitivity is not immediate in the AS graph, the QoB
requires two cardinal adjustments to maintain relevance. Consider the AS graphG = (V, E) and
somev ∈ V , for which we wish to obtainρ(v) in G. Letu ∈ Pv andw ∈ Cv. The first adjustment
is to calculateδ(u, v) using valley free routing. Since thebfs algorithm for discovery of shortest
paths in unweighted graphs does not consider theup, downandpeer labels,valley freepaths
are not exclusively discovered, and it cannot be used to measure minimum-hop distances in the
AS graph. For this, we use theasbfs algorithm [33] which discoversvalley freeshortest paths
from a source vertex in the unweighted AS graph in linear time.

In order to provide motivation for the second adjustment required, we present the following
theoretical example. Consider the graph illustrated in figure6. In quantifying the QoB ofv ∈ V .
Suppose a vertexu ∈ Pv has reached a vertexw ∈ Cv through anup hill path throughv, though
by using the alternative path through the vertexy ∈ Bv, u now reachesw through adown hill
path. All vertices inCw which are reached through anup hill path (x in this example), are
now unreachable tou as this creates an illegal AS path. Therefore, to factor this into the QoB
measure in the AS graph, we use the following strategy. For all verticesw ∈ Cv, we scan for
verticesx ∈ Cw which are reachable fromv through legal AS paths, and consider the pairs
〈u, x〉 ∈ Pv × Cw as well. Since these instances occur when a customer AS,u, uses a provider
AS, w, which is a provider another one ofu’s providers,v, we only use these two levels in our
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Figure 6. Illustration of an instance in an AS graph where a direct child can be
reached through a backup vertex, though its paths cannot be used. Direction of an
edge implies it is anup edge, and for eachup edge adown edge in the opposite
direction exists (not portrayed). Here,y serves as a backup forv. In accordance
with thevalley freerestrictions,u can reachw, but cannot reachx throughy.

adjustment. Indeed, in such backup paths are usually limited to four hops in the Internet AS
graph [23].

After adjusted accordingly, the QoB remains faithful to the principles of measuring backup
efficiency in the AS graph. Forv ∈ V , as reachable children are scanned in two levels, we are
guaranteed thatρ(v) = 1 if and only if v has a perfect backup which does not disqualify legal
AS paths.

Substituting thebfs algorithm with its analogous for the AS graph,asbfs, applying APC
on the AS graph is immediate. The calculation of a shortest path,δ, is done while considering
thevalley freerouting and all the properties discussed in section3 hold.

5.3. Results on the Internet AS graph

We used the combined data from the DIMES [34] and RouteViews [35] projects for week 11 of
2006. The AS graph is comprised of 20 103 ASes and 57 272 AS links. We approximate the AS
relationship by comparing thek-core index [25] of two ASes and taking the one with the highest
k-core index as the provider of the other. If thek-core indices of two ASes are equal, the ASes
are treated as peers. While we are aware that our approximation involves some inaccuracies,
there is no known error free algorithm for this task. Since the majority of the interesting ASes
are within the range of AS numbers 1–22 000, we present results of these 11 407 ASes along
with the results of ASes with degree higher than 40 of the rest of AS graph.

We first show that while centrality is closely related to the node degree in the AS graph,
our APC criteria captures significance which is not necessarily associated with high degree.
Figure7 shows the centrality values of AS nodes averaged by their degree on a log–log scale.
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Figure 7. Centrality and APC in the Internet AS graph. Average centrality as
a function of its degree (left) and average APC as a function of its degree,
as measured on the Internet AS graph.

There is almost a monotonic increase in centrality for nodes of degree above 300, and the close
relationship between centrality and degree is evident. Since high degree is an excellent predictor
of the node centrality, centrality does not add new insight into the significance of a network
node. On the other hand, figure7 shows that even nodes with medium degree may have high
APC values.

To display the relationship between high centrality and high APC we plot the degree and
APC values of the nodes with the highest centrality (figure8 left) and the degree and centrality
of the nodes with the highest APC values (figure8 right). The five ASes with the highest degree,
701 (UUNET), 7018(AT&T ), 1239 (Sprint), 3356 (Level 3) and 174 (Cogent), are also the five
ASes with the highest centrality. These are the largest tier-1 providers. In contrast, only UUNET
is in the top ten APC list; Sprint and Cogent also have high APC values. These three tier-1
providers support many stub ASes but have relatively low backup measure (0.7–0.75) which
explains their high APC values. Level 3, which has high centrality, has low APC value because
it has a rather high QoB around 0.82. This means that although Level 3 (3356) plays a central
role in Internet routing, it may be replaced through alternative routes and thus is not as important
as the previous three nodes. The next nodes with high centrality are 3549 (GBLX), 2914 (Verio),
7132 (SBC), 6461 (Abovenet) and 12956 (Telefonica). These are all tier-1 providers or major
providers in Europe.

For the nodes with the highest APC values the picture is different: while UUNET (701) has
the fourth largest APC value, many of the high locations in the list are captured by medium-sized
ASes with poor (and sometimes extremely poor) backup. Through study of the QoB distribution
in the AS graph we have learned that there is a large concentration around 1, which is a testament
of perfect backup. The median QoB value is 0.9799, and a large majority of the nodes have QoB
values above 0.95. The nodes ranked first, third and eighth in the top APC list are educational
networks: GEANT (20965) in Europe, ENA (11686) in the USA, and RENATER (2200) in
France (Abiline the US research network was ranked eleventh). The other group of nodes is of
medium-size providers, France Telecom (3215), YIPES (6517), Ukraine Telecom (6849) and
ServerCentral (23352), each appears to have high APC values due to a different reason. France
Telecom, YIPES and UKR Telecom have extremely low QoB, while ServerCentral connects
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Table 1. Statistics of AS nodes with highest APC values (top) and statistics of
AS nodes with highest CAIDA significance rankings (bottom).

AS no. deg. cent. QoB APC

20965 74 1190 0.79 26628
10910 205 385 0.59 16298
11686 187 3389 0.92 16042

701 2616 7956 0.72 14276
3215 115 422 0.80 13493
6517 175 474 0.83 12851
6849 186 472 0.56 12765
2200 51 347 0.50 12549

12859 79 1017 0.94 12396
23352 71 2113 0.94 12065

3356 1784 7690 0.82 7559
209 1272 5381 0.72 6113

7018 2354 7992 0.74 11448
1239 2020 8022 0.74 10604
701 2616 7956 0.72 14276

3561 708 5762 0.79 2579
174 1483 7144 0.76 8797
703 216 1441 0.86 10539

19262 188 905 0.75 10763
702 680 5672 0.77 2101

remote locations that may not have efficient alternative paths. Statistics of nodes with highest
APC values are displayed in table1.

Figure9 (left) shows the distribution of the APC values in the AS graph (note the truncation
of the first column). The APC distribution is shown to have a long but narrow tail with only a
few nodes with very high APC values, these nodes are scattered almost over the entire degree
range, starting with nodes with degree of just above 50 (see figure8 and table1).
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ASes and was truncated. On the right is a histogram of the backup values for
nodes of degree greater than 2.

The QoB distribution shown in figure9 (right) has a large concentration around 1, which is
a testament of perfect backup. The median value is 0.9799, and as the histogram shows a large
majority of the nodes have QoB values above 0.95.

To discuss our results in comparison to other measures of node significance, we refer to
table1 (bottom) which shows the top ten nodes in the CAIDA ranking [32] based on the number
of customers a node has. The list is dominated by high degree nodes; the two medium degree
nodes in the list have also rather high APC values; in general all the nodes have relatively high
APC values and eight of them are in the top 38 APC list. All the nodes in the list have poor
QoB values, possibly due to relatively large stub ASes connecting to them. It is noticeable that
the centrality of the nodes in the CAIDA list is much larger than on our APC list. While all the
nodes identified as important in the CAIDA list have high APC values, the opposite analogy
does not apply. Several of the nodes in our top 10 list are ranked below 200 in the CAIDA list.

6. Conclusions

We have shed light on the contribution of backup efficiency for the node significance
classification problem. Given our theoretical analysis, we believe this contribution has merit
in classification of network nodes in other research areas.

In the Internet AS graph, we are aware that our results are not accurate for several reasons.
Firstly, as we stated in the main text, our AS relationship approximation is not accurate.
Secondly, although we used the most detailed Internet map available through the DIMES
project, the graph itself is still missing many links which can effect the calculation of all the
measures, as well as the AS relationship deduction.

In the future, we intend to broaden this research to study the effect of node failure on the
point of presence (PoP) level as well as study relationship of sets of nodes in complex networks
in the context of backup and functionality. On the theoretical level, we intend to study the
robustness of the APC and QoB measures to error in measurements, as well as further formal
analysis of their properties.
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