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This paper suggests a novel algorithm for mobile object tracking using wireless sensor net-
works (WSNs). The paper assumes a future model of WSNs, where a large number of low to
medium range inexpensive and noisy sensors are distributed randomly over an area. The
distributed algorithm is based on short range communication between neighboring sen-
sors, and is designed to work with very basic low cost binary sensors, that can report only
a sensing, not sensing value.

Neighboring sensors that sense the object form a cloud around the object which is
dynamically updated as the object moves. To save energy on reporting a subset of the
cloud, the cloud core, is elected. A trade-off between the accuracy and the core size (namely
transmission power) is presented, as well as an extensive simulation study. Our algorithm
works well with false negative sensing and up to 10% false positive sensing.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Sensor networks are formed by the distribution of small
sensing devices over an area. These sensing devices have
transmission capabilities, and are distributed randomly to
create a multi-hop wireless communication system, re-
ferred to as Wireless Sensor Network (WSN). WSN-based
object locating and tracking is an interesting and live re-
search area, and the tracked objects vary from animals to
vehicles. In this paper, we target the tracking of people
over a large area for rescue purposes, for example in risky
hiking areas, as well as for home security and law enforce-
ment purposes (e.g., tracking suspects infiltrating an area).
We assume that the target carries elements that can be
sensed by magnetic sensors (like tent poles, hiking equip-
ment, weapons, etc.). Alternatively, a target can be sensed
using acoustic, chemical or other types of sensors.
For these tracking scenarios, a new WSN setting is con-
sidered lately [1]. According to the new model, a very large
number of tiny noisy sensors is distributed over an area,
probably through aviation distribution. The large deploy-
ment requires that the sensors are of very low cost and
limited battery resources and thus low transmission range
is used to maximize the sensors lifetime. Popular types of
sensors [2] assume equal sensing and transmitting range,
gaining up to a few years lifetime. However, the Pearl of
Wisdom tiny sensors [1] were designed for a very long life
span. In addition, due to the operational requirements of
the tracking scenarios, for both homeland security and hik-
ing areas, a large sensitive range is important. Thus, in their
model, the main power savings were gained by lowering
the sensor transmission range. Hence, these tiny sensors
are characterized by a regular sensing range and a very
small transmission range, and thus call for a new set of
algorithms.

Cost considerations require that the sensors have very
basic capabilities, and we assume here that this type of
sensors does not measure the strength of the sensed signal,
but that its sensing capability simply yield a sense, not

http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2013.05.014&domain=pdf
http://dx.doi.org/10.1016/j.adhoc.2013.05.014
mailto:tal.marian@gmail.com
mailto:ossi@mta.ac.il
mailto:shavitt@eng.tau.ac.il
http://dx.doi.org/10.1016/j.adhoc.2013.05.014
http://www.sciencedirect.com/science/journal/15708705
http://www.elsevier.com/locate/adhoc


T. Marian et al. / Ad Hoc Networks 11 (2013) 2356–2366 2357
sense reading. We refer to this type of sensors, with a com-
munication range that is several fold lower than the sens-
ing range, and a binary type of report as simple binary
sensors. Having low cost sensors may also result in false
readings, either negative or positive. Thus the challenge
to track an object with such sensors is substantial.

We suggest here a novel algorithm for the continuous
tracking of a moving object over large areas using a WSN
that consists of such inexpensive noisy sensors. To mini-
mize system requirements and cost we develop the algo-
rithm to work with basic sensors that report either sense,
not sense readings. Our novel distributive algorithmic ap-
proach, named sensing clouds, is based on a simple local
interaction between sensors. The sensors form a self-con-
structed sensing cloud, that consists of (at least) all sensing
sensors around the object. The cloud is updated continu-
ously, to enable accurate and fast tracking of the object.
As the object moves, new sensors start sensing it, while
other sensors are no longer within a sensing range. As a re-
sult, the group of sensors forming the cloud dynamically
changes and the sensing cloud moves with the target, keep-
ing the target at the cloud’s core. We term this algorithm
the tracking algorithm.

The algorithm is comprised of two sub algorithms
working simultaneously, the first, Cloud Formation Algo-
rithm, described in Section 4, builds and maintains the
sensing cloud. The second, Core Election Algorithm, de-
scribed in Section 5, deals with the core election process.
Given that the sensors do not give a signal strength read-
ing, there is no direct way to identify the set of sensors that
form the cloud core and therefore are closest to the target.
This challenging task is accomplished by the core election
algorithm, and is key for a fast and accurate tracking.

The elected core is then responsible to inform the re-
mote home station outside of the WSN what is the current
target location. Many works have been done on the subject
of relaying the information to the home station (HS), either
by routing it back along the WSN towards the HS or to
other sinks [3,4], by routing to a few well powered com-
munication devises that transmit to the HS, or by using
low cost optical communication [5]. This paper does not
discuss the HS informing method, but rather relies on
existing solutions. We do, however, take this extra cost
into account, and evaluate the resulted core size. Thus,
the core election algorithms, described in Section 5, trade
off between the inter-sensor short-range communication
and the core size (The sensors who need to inform the HS).

Our simulations of the cloud formation and core elec-
tion algorithms, under a variety of changing parameters,
show an accurate continuous tracking of a moving target.
We further introduce false readings, e.g., due to noise and
environmental blocking, into the system:

� False positive reading: Sensors may falsely report the
sensing of an object, even when not within its influence
field. This false sensing is the result of noise and may
occur, e.g., due to difficult weather conditions.
� False negative reading: A sensor within the target’s

influence field reports a non-sensing reading. False neg-
atives are more probable as one moves away from the
target, where the signal to noise ratio is lower.
Our simulation results show that the algorithm is ro-
bust to false readings of up to 10% of the sensors in the
field.
2. Related work

Tracking objects is an important application of WSNs
[6–13].

There is an interesting line of research [14,15] that
investigates what is termed binary sensors. The sensors
in question have a ternary feedback: they can report if a
target is moving towards or away from the sensor, or that
the sensor does not sense the target. Aslam et al. [14] also
use simple binary sensors, which they term proximity sen-
sors, in addition to the ternary sensors. They suggest a cen-
tralized tracking algorithm using these sensors, where
upon sensing an object the sensor reports to a base station
whether it is approaching or moving away from it. The
base station summarizes the information and tracks the
object. In their work, they found that additional informa-
tion is needed to disambiguate between different trajecto-
ries and to identify the exact location of the object. For this
purpose, they suggest to attach to each ternary sensor a
lower range proximity sensing binary sensor. Thus, when
the two sensors report back to the base station, the infor-
mation obtained is more accurate. Mechitov et al. [16]
use location aware binary sensors to locally track the
target; their algorithm has a large message complexity
due to the need of many sensors to exchange location
information to locally track the target using a distributed
algorithm.

A distributed ternary sensing approaches were later
developed by Wang et al. [17,18], where sensors communi-
cate with close-by sensors, reporting whether they sense
an approaching or moving away objects. Each node then
calculates the target path over time according to locally
gathered information, and places the target on an arc,
which is created from its own sensing radius and the radii
of two sensing neighboring sensors. The algorithm calcula-
tion becomes bothersome when the number of sensing
sensors increases.

Liu et al. [19] also suggest a distributed group target
tracking. The sensing sensors in their approach flood their
SNR value to a radius which is twice the sensing distance,
and the sensor with the highest SNR is elected as the group
leader.

Lee et al. [20] propose a distributed algorithm for target
tracking which aims to reduce the number of messages and
the number of message collisions. The key element of their
solution is a localization algorithm which is based on esti-
mates of the ratio between the sensing sensors’ distance to
the target, rather than absolute distance to target esti-
mates. By iteratively updating the estimated location using
the distance to target ratio, the algorithm localizes the tar-
get with only a small number of sensors participation, thus
reducing message collision and minimizing communica-
tion overhead. After localization, Lee et al. propose to
dynamically adjust the reporting frequency according to
the target’s movement to reduce the number of report
messages. Xiangqian et al. [21] analyze the localization
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error probability and tracking miss probability in the pres-
ence of prediction errors in this model.

Zhang and Cao [7] suggest a different approach with a
similar model, namely they also assume that the sensors
have a distance measure to the target. Like in our solution
they build a tree rooted at the node closest to the target
and dynamically move the tree as a new node becomes
the closest to the target and hence take the role of the tree
root. Our approach is similar to the latter, as we also build
trees to efficiently track the target. However, since we use
binary sensors, which are simpler and less expensive but
cannot provide us distance estimation, our algorithms re-
quire more sophisticated mechanisms to identify tree
roots. Nevertheless our algorithm is using less messages
than the one suggested by Liu et al.

Arora et al. [22] present a system approach for the de-
sign of sensor networks for tracking objects. The work
examines three possible object types and compares multi-
ple sensor types. Sensors send binary reports to a central-
ized classifier, which uses time slots and known influence
fields to distinguish true readings from false detections
and to track the objects.
1 The probability to stay in the same state is 0.8 while the probability to
change state is 0.2.
3. Model

For the purpose of detecting the intrusion of a target
into an area and track its movement, we explore here a
simple and practical sensing model, where sensors are
truly binary, namely they can report either sensing or no
sensing of the object. Thus, these sensors are low cost de-
vices, with very-low transmission capabilities and rather
limited battery lifetime. For these reasons, we require that
inter-sensor communication is distributed and short-dis-
tanced, and require only sensing sensors and their close
vicinity to participate in the algorithm. A subset of these
sensors then decide on a result and send it back to the HS.

Formally, we model a rectangular Field in the xy-plane,
the field area (AF) can be calculated using the x,y dimen-
sions. Sensors are scattered uniformly at random over the
field. Each sensor is capable of communicating with other
sensors within its local or inter-sensor communication
range, dc. We refer to two sensors whose distance from
one another is less than dc as neighbors.

3.1. Modeling sensing and sensing errors

Since sensors detect targets by measuring emitted en-
ergy signals, we modeled the sensing of targets according
to a widely adopted signal model [23,19]. Suppose the dis-
tance between a sensor and the target is d and the maximal
target’s influence field is ds, the sensor is said to sense the
target with probability:

Psense ¼
0 if d > ds

1� ðd=dsÞ2 otherwise

�
ð1Þ

1 � Psense is the false negative sensing error probability,
which decreases as d2 away from the target, namely
quadratically.

Sensor measurements may also be corrupted by noise
which causes sensors to enter a FP state. In order to
account for FP sensing, we initially set each sensor outside
of the target influence field to falsely sense the target with
a desired probability. Next, we let each sensor outside the
target influence field to change periodically its sensing
mode according to a two state Markov chain that favors
keeping the sensor’s previous sensing state.1 This way, FP
readings are both random and continuous in time.

In our model all sensors have the same sensing and
communication capabilities. Clearly, from our initial
requirements, a target’s influence field, ds, should be larger
than the sensor’s local communication range (with its
neighboring sensors), namely ds > dc. To obtain connectiv-
ity we require that, on average, sensors have at least N
neighbors. Given AF, dc and N the number of sensors
needed in the field, S, is defined by:

S ¼ AF � ðN þ 1Þ
pd2

c

ð2Þ
4. Cloud formation algorithm

4.1. General

We first present the cloud formation algorithm, which
identifies a core of sensors that are closest to the target.
The algorithm does so without any distance, SNR or prox-
imity readings, for either a static or a moving target, in the
presence of false readings. When the target is moving, the
cloud is continuously updated and repeatedly identifies a
core. Later, in Section 5 we show how the algorithm selects
only a subset of the cloud core nodes.

The algorithm is activated when the sensing status of a
sensor changes, either from sensing to not sensing or vice
versa. Each sensor then notifies its neighbors of the change,
and the process of defining a cloud is activated. The algo-
rithm starts by identifying the cloud edge and assigning
the sensors along the edge a level of one. This can be easily
done locally by the sensors that sense the target but have
non-sensing neighbors. The algorithm progresses towards
the cloud’s core by assigning each additional sensor a level
which is higher by one from the level of its own lowest lev-
eled neighbor. This can be done again with only local status
exchange among neighboring sensors. At the end of this
process the center of the cloud, the cloud’s core, has the
highest level assignment. An example of the algorithm le-
vel assignment can be seen in Fig. 3.

As the target moves, new sensors enter the influence
field while others stop sensing the target. This creates a
change in the cloud’s edge that is propagated within the
cloud, forming an updated core on-the-fly, and enabling
real time tracking of the target.

Fig. 1 gives a detailed description of the algorithm. In
the network initialization phase (not described), sensors
initialize their state (setting level to zero, active to false,
and core to false), and find their neighbors by broadcasting
a hello message. Once a sensor has at least 10–30% neigh-
bors that sense the target, denoted in the algorithm by



Fig. 1. Cloud formation algorithm.

T. Marian et al. / Ad Hoc Networks 11 (2013) 2356–2366 2359
Tha, the sensor becomes active and is part of the cloud (Sec-
tion 4.2 describes the trade-offs in choosing Tha value).
Sensors in the active state set their level to the minimum
level of their neighbors plus one. When an active sensor
updates its level it becomes a clouds core candidate, the
core election algorithm will determine whether the core
candidate will elect itself as a core member.

The core sensors are responsible to convey their position
to the HS; this task is out of the scope of this paper. The
algorithm is highly efficient in local messages, as each sen-
sor sends one local message each time it updates its level.

When the target moves, sensors change (increase or de-
crease) their levels and some edge sensors no longer have
enough sensing neighbors according to Tha, and become
not active. These sensors then reset their level to zero,
and broadcast the change. New sensors become active
and start updating their level when part of their neighbors
enter the influence field. This constant change causes a
constant level updating process in the cloud, resulting in
a highly dynamic tracking.

If the target is still and there are no sensing changes
then once the core is formed no messages are sent. The
algorithm is reactivated when at least one of the sensors
detects a change in its sensing and informs its neighbors.

When active, a sensor reacts to every level update. How-
ever, it changes its own level and therefore sends a mes-
sage only when its minimal neighbor changes its own
level. Hence, while the algorithm has high sensitivity to
movements, it reacts only to movements that are approx.
of the order of the low transmission range. For example,
for a sensing range of 50 m and a transmission range of
8 m, a sensor will change its level on average for every
8 m of a target movement.

4.2. Dealing with sensing noise

When considering real life conditions, sensing errors
must be taken into account. For example, in acoustic sen-
sors, weather conditions often create sensing problems,
due to heavy rain and lightnings. These may confuse
sensors and create a false positive (FP) detection, in which
sensors falsely report that they are sensing a target. On
the other hand, even in perfect conditions, sensors within
the target’s influence field may not sense it, causing false
negative (FN) readings. Specifically, for many types of sen-
sors, the sensing probability quadratically decreases with
the distance, so the furthest the sensor is from the target,
the higher is the probability that although it is within the
target’s influence field, it would not sense the target. Our
algorithm minimizes the effect of both false positive read-
ings and false negative readings on the tracking accuracy.

To deal with the FN detection problem and make the
algorithm robust to possible fluctuations in a single sen-
sor’s readings, sensors determine whether they are part
of the sensing cloud (and hence active) based on the neigh-
borhood sensing information, rather than their own. Under
this condition, a single sensor or a small group of sensors
within a sensing range but which fail to sense the target
will still take part in the level negotiating process and
hence will contribute to the target’s tracking effort.

The FP detection problem derives from ambient condi-
tions and therefor is uniformly distributed across the sens-
ing field. It results in scattered clouds of low core level
across the entire sensing field, as a result of the definition
of a cloud. Clearly, the more sensors participates in a cloud,
the better the core is defined. Hence, to become active a
sensor needs only a few neighbors that sense the target
(regardless of its own reading). To reduce the sensitivity
of the algorithm to falsely sensing sensors, a sensor may
become active and participate in the sensing cloud only if
a certain percentage (determined by the parameter Tha)
of its neighbors are sensing. In a perfect conditions
scenario, no sensors falsely detect a target, and therefore
setting Tha to the percentage representing a single neigh-
bor results in a rather large cloud with a rather small core
that converges very close to the target, due to symmetry.
Using high Tha values, the sensing cloud may become
unsymmetrical and too small to converge, and the tracking
becomes less accurate. Taking false detection into account,
we found that Tha should be set to at least 20% of a sensors’
neighbors, thus reducing the algorithm sensitivity to
momentary mistakes.

Fig. 2 presents the relative part of falsely activated sen-
sors in the field as a function of the FP detection percent-
age, for three different Tha values. In all these scenarios
the target was tracked with a negligible tracking error as
can be seen in Fig. 2b. Fig. 2 shows that for Tha = 30%,
namely, a sensor becomes active if at least 30% of its neigh-
bors sense the target, and FP readings of up to 10% of the
sensors, less than 10% of the field is active, in this scenario
almost no low core clouds are created. On the other hand, if
we set Tha to a small value of 10% we can see the increase
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Fig. 2. Algorithm performance as a function of false positive readings for different Tha values.
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2 As described before, in this paper we do not deal with this transmission
and rely on previous solutions.
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in non-cloud active sensors and according to Fig. 2c, get an
increase in falsely elected core members. Since Tha is cho-
sen as a percentage of each sensor’s neighbors, the field’s
density has no influence on Tha calibration.

To help avoid the remaining low core clouds, we take a
realistic approach, based on known algorithm parameters.
Given the target’s influence field, ds, and the sensors local
communication range, dc, the resulted cloud has on the
average L = ds/dc different levels. Sensors are aware of both
their communication range, dc, and average sensing range
for the desired target, ds, since it is part of their design.
Hence, when a sensor changes its level and becomes a core
candidate but finds that its level is considerably lower than
the ratio L, it can safely assume that it belongs to a cloud that
is a result of some false readings or is leveled low in a target
cloud, and avoid considering itself as a core member by not
running core_election algorithm. Thus, small clouds, which
are the result of FP sensing, do not elect a core and hence,
do not report location to the HS. We set the Lth level, which
determines the minimal level for a sensor to be a valid core
candidate, to L/2. Clouds which do not have at least L/2 lev-
els are then ignored. To summarize, a sensor determines
that it is a core candidate and runes core_election only if
its level is higher than the predetermined threshold, Lth.

Fig. 3 is a Voronoi diagram depicting a snapshot of the
sensor’s levels of a sensing cloud around a target during
tracking. The cloud was formed under rather rough condi-
tions with 10% of false positive (FP) reports at any given
time (FP) and with the statistical FN errors described ear-
lier. The core consists of the few sensors at level five, all
closest to the target, which is denoted by a small circle,
with the cloud formed around it.

Fig. 4 shows the tracking of a target under the same
conditions as in Fig. 3. The target trajectory is denoted with
the solid line, its speed is 60 km/h (about 17 m/s). The
tracked target location, as determined by the algorithm,
is denoted by the red ‘+’ marks. In Figs. 3 and 4 the target’s
influence field is 50 m and the inter-sensor communication
range is 10 m.

5. Core election algorithm

5.1. General

We present here the core election mechanisms that
enable only a small subset of the sensors in the cloud,
preferably the closest to the target, to inform the distant
home station (HS) of the target’s current position.2 The
added mechanisms will choose a group of nodes, termed



Fig. 5. Pivot core election algorithm.
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Pivots, that will be the reduced core. The additional mes-
sages used in these mechanisms enable a more educated
core election resulting in a smaller group of sensors (Pivots)
which are the closest to the target, thereby reducing dramat-
ically the amount of high cost transmissions to the HS.

A simple approach for core selection is to find sensors
with local maximum of their level parameter and select
them as the core, i.e., a sensor is elected to the cloud’s core
if it does not hear of a direct neighbor with a higher level.
Hence, right after it broadcasts its level (see Fig. 1), it com-
pares its level to its neighbors levels, as registered in its lo-
cal data, and if there is no higher leveled neighbor it sets
itself as a core node and transmits to the HS. This solution
does not require additional message exchange. However,
the amount of transmissions to the HS (i.e., number of core
node) can be rather high, deriving from a large number of
sensors falsely declaring themselves as core. A false elec-
tion happens when a sensor does not have immediate
neighbors of a higher level, but higher leveled sensors exist
in the cloud. This happens, for example, when their imme-
diate neighbors are all of the same level, but higher level
sensing sensors exist outside of their receiving range. To
prevent this false self election, some means of propagating
the highest level within the cloud is needed.

We compared our algorithms to the PIF flooding algo-
rithm [24], where each node that has no neighbors of a
higher level starts a flooding of its level and ID to the entire
cloud. A flooding is terminated if it reached a node with a
higher level. In addition to a core selection, at the end of
the process the entire cloud is aware of the current highest
level. However, we found that not only that this method
results in a very expensive inter-sensor message exchange,
it also caused a noticeable delay in the core election and
update process, and many times did not manage to
converge.

In our core election rule, called Pivot core election or P,
the core is elected based on a global information flooding
of candidates for Pivot. Like before, a sensor that does not
have a neighbor with a higher level declares itself a candi-
date for the core, and begins a flooding process of Pivot
messages, carrying its level across the cloud. Cloud sensors
can choose a Pivot, a reference sensor that represents a
better candidate to serve as part of the cloud’s core (i.e.,
A higher leveled sensor) and avoid falsely electing them-
selves as core members, following these rules: If the max-
imal Pivot level a sensor can find is the same level as its
own, the sensor will elect itself as a Pivot and inform its
neighbors with a Pivot message. Sensors that do not up-
grade their Pivot variable due to a Pivot message, stop
propagating the message and thereby reduce the total
number of messages needed to keep the cloud informed
of its maximal level. Fig. 5 describes the algorithm.

In the network initialization phase (not in the figure),
the sensors reset their own and their neighbors database
Pivot status (setting Pivot.id to self or neighbor’s id, Pivot.ccl
to zero, Pivot.dis to zero). Upon receiving a level or Pivot
message from a neighbor and only while in active state, a
sensor will first execute the cloud formation algorithm
(see Fig. 1) and then try to update its Pivot selection (line
4 in Fig. 5). The discussion of the full details of the Pivot
selection algorithm is delayed to Section 5.2). If a sensor
chooses itself as the new upgraded Pivot the sensor is
elected as a core member.
5.2. Pivot ghost information

One of the challenges of the algorithm is the constant
changes in the current highest cloud level. As the target
moves and the cloud evolves continuously, the number of
levels in the cloud changes, e.g., the cloud’s highest level
can be seven at one point in time and then decrease to
six. Let us now consider the Pivot election mechanism. In
our algorithm, each sensor attempts to learn the highest
Pivot level in the cloud to assess whether its level is the
same and hence it is a Pivot. When the cloud highest level
increase, it is propagated and the Pivots are updated. How-
ever, when the cloud’s level decreases, we are haunted by
what is termed ghost information, i.e., old information of
higher level Pivot that is kept in a the cloud and prevents
the new core to be set as Pivot. We term this ghost infor-
mation, i.e., Pivots that no longer exist, Phantom Pivots.
Let us examine the example in Fig. 6, where an arrow indi-
cates the next hop towards the sensor’s Pivot. The target is
in the middle, and nodes A–H are the elected Pivots at level
l, pointed by nodes 1–8, correspondingly. After electing the
Pivot, each of the nodes 1–8 tells its neighbors about its
Pivot. Now suppose, nodes A–H decrease their level to
l � 1 and thus initiate a Pivot election process and notify
their neighbor that they are no longer Pivots. Nodes 1–8
will now look for other Pivots of level l, and as indicated



Fig. 6. Phantom Pivots in the sensing cloud.
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in the figure by the dashed arrow, can form a loop that sig-
nifies the Phantom Pivot phenomenon.

To enable sensors to differentiate between real Pivots
and Phantom Pivots, we add constrains to the Pivot
upgrading process. A Pivot message now carries also a dis-
tance value that is updated at each hop. When a sensor re-
ceives a Pivot message, it increases the Pivot distance
number by one, and propagates the maximal Pivot value
it knows of with the new distance value. In this way, each
sensor can determine its distance from the Pivot. If a loop
is formed this distance can grow to infinity. To prevents
such loops, we limit the allowed distance to the selected
Pivot by D⁄. Namely, a sensor cannot choose a Pivot too dis-
tant, regardless of its level.

To set D⁄ we use a method we term PThp that sets it to
the difference between the sensor’s and the Pivot’s levels
plus Thp, a predefined threshold value.

Alternately, in algorithm PHIS, we propose a method to
avoid Phantom Pivots completely by keeping track of the
minimal distance a sensor heard of a specific Pivot. Accord-
ing to the ‘‘Source Node Condition’’ [25] while maintaining
shortest path in a graph, if we refrain from selecting a path
(or a Pivot offered by the next hop neighbor), which we
know was at distance D1in the past but is now available
with distance D2 while D2 > D1, no loop can be formed
and hence no Phantom Pivot can keep circulating in our
cloud.

Fig. 7b show a typical core election (elected core mem-
bers are marked with a square) performed by the basic
core election algorithm. A large group of sensors whose le-
vel is only locally maximal can be seen elected as core
members due to the absence of a higher level neighbor.
Fig. 7 shows a core election performed by the Pivot core
election algorithm, only maximum level core members
can be seen. Fig. 7 shows the Pivot selection of each sensor
in the form of trees pointing to the trees Pivot.3 Each low
leveled sensor is supported by a Pivot, the target is marked
3 The tracking using trees here has very little in common with the
algorithm in [7] since here we do not have the distance information that
enables an easy selection of a tree root.
with a green circle. On the cloud’s edge we can notice some
sensors which have not yet found their supporting Pivot but
present no performance degression risk since there level is
lower than L/2.
6. Simulation results

We simulated a 500 m � 500 m field with S sensors (see
Eq. (2)), uniformly distributed with an average of N neigh-
bors per sensor. Each simulation result is the average of
five random sensor placements in order to minimize sen-
sor deployment biasing. Since the standard deviation was
negligible in all runs it is omitted from the graphs. Layer
2 inter-sensor communication is not implemented in our
simulations, we assume a reliable communication protocol
supporting the communications and a bounded messages
hop delay. We assume each sensor will wait no more than
HD msec to send its pending messages due to capture [26].

Table 1 summarizes the simulation parameters we var-
ied in the simulation. For each parameter, we selected a
default value (The fixed column in Table 1) to be used



Table 1
Parameters used in the simulations.

Simulation parameter Symbol Value range Fixed

Target’s influence field ds 32 m . . . 64 m 48 m
Inter-sensor comm. range dc 6 m . . . 14 m 8 m
False positive readings FP 0% . . . 10% 5%
Target speed (km/h) Sp 15, 30, 45, 60 15
Average number of neighbors N 6 . . . 14 10
Sensor activation threshold Tha 10% . . . 30% 20%
Hop comm. delay (ms) HD 20 . . . 100 40
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when it is not varied for a certain graph. In Section 6.1 we
concentrate on simulating the Pivot history algorithm, PHIS,
in the following section we compare several core election
algorithms.

6.1. Field parameters influence on performance

We examine the performance of the Pivot history algo-
rithm (of course, in combination with the cloud formation)
using several important metrics: The tracking error, the
core size (a measure of the reporting cost to the HS), in-
ter-sensor communication cost, and the algorithm success
ratio.

Fig. 8 shows the tracking error (in meters) in a
500 m � 500 m field. We used influence fields of 32–64 m
thus an error of five meters corresponds to 15%-8%.

Fig. 8 shows that the denser the sensor field, the lower
is the tracking error. On the other hand, the larger the tar-
get’s influence field, the larger is the cloud and its tracking
error. Additionally, our simulations show that the algo-
rithm tracks accurately even when up to 10% of the sensors
falsely sense the target, and for high speeds of up to
60 kmh.

In some cases, the algorithm may fail to elect even a sin-
gle core node. As FN and FP readings are changed (or the
target moves) the algorithm should be able to elect a core.
Our simulations show that for a connectivity level of
N P 10 a location estimation is available (a core is elected)
in more than 90% of the simulation time. However, when
the average number of neighbors per sensor, N, is below
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Fig. 8. Target tracking error as a function of the sensors’ density for
different influence fields.
nine the core election algorithm may succeed in as low
as 65% of the time. We can still have good performance
in this range if we keep the inter-sensor communication
range low (dc 6 9) and thus enlarge sensor density in the
field.

The core size is a good indicator for the number of
nodes transmitting their location to the HS. We assume
that if the HS accepts messages from core nodes with sev-
eral level values, only the ones with the highest value are
used for the location estimation.

In the simulations, we saw an increase in the number of
core members with an increase in the target’s influence
field. The increase is due to the growth of the cloud’s size,
its number of level rings and hence the number of wrongly
elected core member. However, our algorithm is robust, in
respect to the core size and hence, the number of location
report messages, to the false positive readings. No signifi-
cant difference observed in the core members group size
for the simulated change in the FP detection probability.

In Fig. 9 we notice an increase in core size for a denser
field and, to a lesser degree, a higher number of neighbors
per sensor. As the field become denser, the number of sen-
sors residing in the highest ring in the cloud grows, and
thus more core nodes are elected. The effect of the target
speed on the core size is minimal up to a threshold. Moving
from 45 kmh to 60 kmh we see a noticeable increase in the
core size (for non-dense fields) which is due to the failure
of the Pivot messages to propagate fast enough. As a result,
more sensors elect themselves as core members, temporar-
ily unaware of Pivots with a higher level.

Fig. 10 shows the average amount of local messages
sent by each active sensor per second. The measurements
include all active sensors in the field during an entire sim-
ulated target trajectory.

We see in Fig. 10 the decrease in the average number of
messages sent per sensor with the rise in FP levels, con-
trary to our expectations. We noticed that the increase in
the field’s FP level results in an increase in the total
number of messages in the field. However, the amount of
sensors sharing this total number is much bigger, since
FP detection causes the formation of low leveled clouds,
the sensors participating in such clouds have a small
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Fig. 10. Inter-sensor messages per active sensors per second as a function
of the target’s influence field for different false positive readings.
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Fig. 12. Inter-sensor messages per active sensors per second as a function
of the target’s influence field for the different election algorithms.
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Fig. 13. Target tracking error as a function of the target’s influence field
for the different election algorithms.
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contribution to the messages count average because small
clouds need a small number of messages to maintain
themselves, thereby, reducing the total average of mes-
sages sent.

6.2. Core election algorithm influence on performance

To compare the different types of the core election algo-
rithms, we simulated them over the same fields and com-
pared their performance. We noticed that false positive
detection level, inter-sensor message delay, and target
speed had little effect on the differences in performance
between the different algorithms. Thus, we concentrate
here on the fields density and the target influence. Interest-
ingly, both parameter produced showed similar influence
on the algorithm performance and as a result produced
similar figures, thus, we show here figures controlled only
by the target’s influence field.

Fig. 11 depicts the core size as a function of the influ-
ence field for the different algorithms. The Phis algorithm
shows a great improvement over Bsc, and produce an al-
most fixed core size, regardless of the cloud size. All other
algorithms show an increase in the core size when the
cloud size increases. Using algorithms PTh0 ; PTh2 and PTh4 is
a compromise between using a memory based algorithm,
(Phis) with a very small core, and using the basic algorithm,
(Bsc), without the dependency on expensive memory but
with a very large core size. We can see that both algo-
rithms PTh4 and PTh2 give core size values which are very
close to the values of Phis.

Although algorithms Bsc and Phis produce a converged
location estimation on more than 90% of the readings, algo-
rithm PTh4 is only around 65% reliable to produce a reading
during the simulation. Algorithm PTh0 is as reliable as Bsc
but comes up with almost as large core size as does Bsc
(figure omitted).

Fig. 12 shows the cost of this reduction in core size, the
high increase in local messages between cloud members.
The Bsc algorithm uses a minimal number of local mes-
sages, such that less than 30 messages per second are sent
to maintain the core by each active sensor in the field on
average. The advanced algorithms, on the other hand,
forces the entire cloud to engage in the Pivots circulation
process, and hence the amount of local messages is much
higher, and depends heavily on the influence field (the
cloud’s size). As expected Phis produce the greatest average
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number of messages per sensor per second as it is obli-
gated to update, keep track of, and circulate each Pivot de-
clared in the cloud.

In Fig. 13 we can see that the tracking error is the small-
est for algorithms Bsc, Phis and PTh0 although PTh2 and PTh4

have only a slightly larger tracking error. An interesting
advantage of the advanced election algorithms is their abil-
ity to mitigate even further the tracking sensitivity to FP
readings of sensors. Fig. 14 shows that the core size re-
mains steady (and small) for false readings of up to 10%
while the core size for the Bsc algorithm increases by 15%
for 10% of false positive detection.
7. Conclusions

We presented, for the first time, an algorithm that en-
ables true inexpensive binary sensors to track a target in
a scenario where they are densely scattered in a field with
no location knowledge. The sensors can be very noisy and
use only very-low energy local communication. This paper
is only a first step in this direction. We plan to further use
history for tracking multiple targets whose clouds may be
joint at times.
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