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Abstract
Allocating the right amount of resources to each service in any of the data centers in a cloud
environment is a very difficult task. This task becomes much harder due to the dynamic nature
of the workload and the fact that while long term statistics about the demand may be known,
it is impossible to predict the exact demand in each point in time. As a result, service providers
either over allocate resources and hurt the service cost efficiency, or run into situation where
the allocated local resources are insufficient to support the current demand. In these cases, the
service providers deploy overflow mechanisms such as redirecting traffic to a remote data center or
temporarily leasing additional resources (at a higher price) from the cloud infrastructure owner.
The additional cost is in many cases proportional to the amount of overflow demand.

In this paper we propose a stochastic based placement algorithm to find a solution that min-
imizes the expected total cost of ownership in case of two data centers. Stochastic combinatorial
optimization was studied in several different scenarios. In this paper we extend and generalize two
seemingly different lines of work and arrive at a general approximation algorithm for stochastic
service placement that works well for a very large family of overflow cost functions. In addition
to the theoretical study and the rigorous correctness proof, we also show using simulation based
on real data that the approximation algorithm performs very well on realistic service workloads.
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1 Introduction

The recent rapid development of cloud technology gives rise to many-and-diverse services
being deployed in datacenters across the world. The placement of services to the available
datacenters in the cloud has a critical impact on the ability to provide a ubiquitous cost-
effective high quality service. There are many challenges associated with optimal service
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placement due to the large scale of the problem, the need to obtain state information, and
the geographical spreading of the datacenters and users.

One intriguing problem is the fact that resource requirement of services changes over
time and is not fully known at the time of placement. Moreover, while the average demand
may follow a clear daily pattern, the actual demand of a service at a specific time may
vary considerably according to the stochastic nature of the demand. One way of addressing
this important problem is over-provisioning, that is, allocating resources according to the
peak demand. Clearly, this is not a cost effective approach and much of the resources are
unused most of the time. A more economical approach, relying on the stochastic nature of
the demand, is to allocate just the right amount of resources and potentially use additional
mechanisms (such as diverting the service request to a remote location or dynamically buying
additional resources) in case of overflow situations where demand exceeds the capacity.
Clearly, the cost during such (overflow) events is higher than the normal cost. Moreover,
in many cases it is proportional to the amount of unavailable resources. Obviously, the
quantitative way of modeling the cost of an overflow situation, considerably depends on
the actions taken (or not taken) in such cases. For example one may want to minimize the
probability of an overflow event, while another to minimize the expected overflow of the
demand. The challenge is therefore to find an optimal placement for a given cost function.

The problem we are dealing with falls into the framework of stochastic combinatorial
optimization, which has a large body of work in the stochastic optimization literature.
Kleinberg, Rabani and Tardos [5] were the first to suggest the stochastic load balancing,
stochastic bin packing (SBP) and stochastic knapsack problems in the context of bursty
connections. They mostly considered Bernoulli-type distributions. Goel and Indyk [3] further
studied these problems with Poisson and Exponential distributions. Later, Wang, Meng
and Zhang [12] as well as Breitgand and Epstein [1], who considered consolidation of virtual
machines in data centers, studied the stochastic bin packing with Normal distributions.

In another line of work, Nikolova, Kelner, Brand and Mitzenmacher [8] considered the
stochastic shortest path problem, where one tries to find a path between two points on a graph
maximizing the probability of reaching the destination within a given timeframe. Nikolova
[7] generalized this problem to other risk-averse stochastic problems with a quasi-concave
minimization function. The techniques used in this line of work are very different from those
used in [5, 3, 12, 1].

We concentrate on three stochastic optimization problems. The first problem is the
SP-MED problem (stochastic placement with minimum expected deviation) where our goal is
to partition the set of services into two data centers mimizing the overall expected deviation.
The other two problems are SP-MWOP (stochastic placement with minimum worst overflow
probability) and SP-MOP (stochastic placement with minimum overflow probability). The
exact version of the problems is NP-hard so our goal is to find an approximate solution. The
cost functions in these problems are not quasi-concave so these problems do not fall into the
framework developed by [8, 7].

The case of two data centers in the cloud, is quite challenging and in current work in
progress we show it is key for solving the general k > 2 data centers case [10]. Following
Breitgand and Epstein [1] we look at the variance to mean ratio. We think of the amount of
variance per one unit of expectation as a risk associated with each service and prove that the
optimal solution for two data centers is obtained by putting all the low risk services in one
data center, and all the high risk services in the other. Intuitively, this happens because it is
beneficial to give the high risk services as much spare capacity as possible, and we achieve
that by grouping all the low risk services together and giving them less spare capacity.
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The correctness proof partially falls into the framework developed by Nikolova et. al. [8].
As in [8], we start with the observation that when the input describes a stochastic behavior
of independent Normal distributions, the optimization problem can be reduced to a problem
in two dimensions only, where every possible partition corresponds to a feasible point in
the plane, and the cost function is a function of two variables only (see Section 2). This is
because a Normal distribution is captured by its mean and variance, and both the mean and
the variance are additive when applied on a sum of independent Normal distributions. Thus,
we can decouple the optimization problem into two separate and almost orthogonal problems:
the first is understanding the feasible set of discrete solutions, and the second is the behavior
of the objective cost function as a continuous function over the two-dimensional domain.

Nikolova et. al. [8, 7] study a problem where the feasible set of solutions is a two-
dimensional polygon and the cost function is quasi-concave, which implies that the optimum
lies on a vertex of the polygon. A major challenge [8, 7] face is that in their case determining
all the vertices of the polygon of feasible sets, or even just approximating the vertices, is NP-
hard. [8, 7] show that for minimization of quasi-concave cost functions one can concentrate
on a specific part of the boundary which can be determined in polynomial time.

In our case the underlying polygon is the convex hull of all possible partitions. We show
that this polygon has a very nice structure and its boundary can be determined in close to
linear time (see Section 2). Thus, the main difficulty dealt with in [8, 7] does not exist in our
case. As a result, we can deal with a much wider class of cost functions, and in particular
with cost functions that have their optimum on an arbitrary point on the boundary. For
example, all the three cost functions we consider are not quasi-concave and therefore do
not fall into the [8, 7] framework. In Section 2 we define a wide class of functions that falls
into our framework and includes many natural optimization functions. We thus extend and
benefit from the two separate lines of works described above. We believe the new framework
developed in this paper is applicable to many natural resource allocation problems.

We remark that [5, 3, 12, 1] study some nicely behaved input distributions like Normal,
Poisson, Exponential, Bernoulli and others. Our work is not limited to stochastic Normal
distributions only. We use a quantitative version of the central limit theorem to prove that
our algorithm works for arbitrary demand distributions as long as the number of services is
large and the first three moments of the services satisfy a mild condition. This is because
in such a situation the sum of many independent random variables converges to a Normal
distribution.

We complement the theoretical analysis with a simulation based performance study in
realistic scenarios. We implemented our algorithm and evaluated the performance over real
data obtained from a mid-size operational data center and emulated workloads. Our results
indicate that the new algorithm achieves a considerable gain when compared with commonly
used naive solutions.

2 The Normal Two Bin Case

Following is a general formulation of the problem, with arbitrary number of data centers (bins).
In this paper we solve the two bin case, while the more general case (of more than two bins)
is studied in [10]. The input to the problem consists of k and n, specifying the number of bins
and services, and integers {cj}kj=1, specifying the bin capacities. We are also given a partial
description of n independent random variables X = (X(1), . . . , X(n)). This partial description
includes the mean µ(i), variance V (i) = E(|X(i) − µ(i)|2) and ρ(i) = E(|X(i) − µ(i)|3) of each
variable X(i) (ρ(i) are needed only for error estimation). The output is a partition of [n] to k
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disjoint sets S1, . . . , Sk ⊆ [n], where Sj includes the indices of the services that are allocated
to bin j1. Our goal is to find a partition minimizing the SP-MED2 cost function, i.e., to find
a partition S = {S1, . . . , Sk} that obtains the minimal expected deviation. The cost function
DX is defined as:

DX(S) =
k∑
j=1

Efj(Xj)

where Xj is the sum over all services placed in bin j, i.e., Xj =
∑
i∈Sj X

(i), fj(x) is the
deviation function of bin j, i.e., fj(x) = x− cj if x > cj and 0 otherwise, and Efj(Xj) is the
expected deviation of bin j.

An important special case is when each X(i) is normally distributed with mean µ(i) and
variance V (i), and then we denote the cost by DN (S). In the normal case we have an explicit
formula for DN (S), namely,

DN (S) =
k∑
j=1

DevSj ,

where,

DevSj = 1
σj
√

2π

∫ ∞
cj

(x− cj)e
−

(x−µj)2

2σ2
j dx (1)

= σj [φ(∆j)−∆j(1− Φ(∆j))], (2)

φ is the probability density function of the standard normal distribution and Φ is its
cumulative distribution function. Also, µj =

∑
i∈Sj µ

(i), σj =
√
Vj =

√∑
i∈Sj V

(i) and

∆j = cj−µj
σj

.
In the two bin case the input is c1, c2,

{
µ(i), V (i)}n

i=1 as before. If we take a partition
S = (S1, S2) then at the j’th bin (for j = 1, 2) we get the distribution

∑
i∈Sj X

(i) which
is normally distributed with mean µj =

∑
i∈Sj µ

(i) and variance Vj =
∑
i∈Sj V

(i). The
cost function is a function of (µ1, V1), (µ2, V2). Notice that µ1 + µ2 = µ =

∑
i µ

(i) and
V1 + V2 = V =

∑
i V

(i). Therefore, the cost function depends only on (µ1, V1).
We define a function D : [0, 1]2 → R where D(a, b) is the cost function DN under a

partition where the demand to the first bin is normally distributed with mean aµ and variance
bV .

For the cost function SP-MED, D(a, b) = DevS1 + DevS2 , where as in Eq (2), Dev1
depends on σ1 =

√
bV and ∆1 = c1−aµ√

bV
, and Dev2 depends on σ2 =

√
(1− b)V and

∆2 = c2−(1−a)µ√
(1−b)V

. We shall prove (in Appendix B) that the function D(a, b) has the following
properties:

1. Symmetry: D(a, b) = D(1 − a − c2−c1
µ , 1 − b). When c1 = c2 this simply translates to

D(a, b) = D(1− a, 1− b) which means that there is no difference between allocating the
set S1 to the first bin or to the second one.

1 In this case, the goal is to find an integral solution, in which services cannot be split between bins. Later
on, we also consider fractional solutions, which allow splitting a service between several bins.

2 While we present the results only for SP-MED, we try to keep the discussion in this section as general as
possible, so that it is clear what properties are required from a cost function to fall into our framework.



G. Shabtai, D. Raz and Y. Shavitt XX:5

2. Uni-modality in a: For every fixed b ∈ [0, 1], D(a, b) has a unique minimum on a ∈ [0, 1],
at some point a = m(b), i.e. D is decreasing at a < m(b) and increasing at a > m(b). We
call the points on the curve {(m(b), b)} the valley.

3. Central saddle point: D has a unique maximum over the valley at the point (m( 1
2 ), 1

2 ). In
fact since D is symmetric this point has to be ( 1

2 −
c2−c1

2µ , 1
2 ). This means that D(m(b), b)

is decreasing for b ≤ 1
2 and increasing for b ≥ 1

2 .

We will show that these three properties are true for a very large family of cost functions,
and in particular for three cost functions that are often used in practice (see Section 3). The
remarkable fact is that there is a single algorithm that provably works well for every D that
has the above three properties.

2.1 The Sorting Algorithm

The sorting algorithm

Sort the bins by their capacity such that c1 ≤ c2.
Sort the services by their variance to mean ratio (VMR), i.e., V

(1)

µ(1) ≤ V (2)

µ(2) ≤ · · · ≤ V (n)

µ(n) .

Define P (i) = (µ
(i)

µ , V
(i)

V ), P [i] = P (1) + . . .+ P (i) and in addition define P [0] = (0, 0).
Notice that P [n] = (1, 1).
Calculate Dev(P [i]) for each 0 ≤ i ≤ n and find the index i∗ such that the point P [i∗]

achieves the minimal cost among all points P [i].
Output (S1 = {1, . . . , i∗}, S2 = [n] \ S1).

We assume that no input service is too dominant. Recall that P (1) + P (2) + . . .+ P (n) =
(1, 1). Thus,

∑
i |P (i)| ≥ |(1, 1)| =

√
2 (by the triangle inequality) and

∑
i |P (i)| ≤ 2 (because

the length of the longest increasing path from (0, 0) to (1, 1), is obtained by the path going
from (0, 0) to (1, 0) and then to (1, 1)). Hence, the average length of an input point P (i) is
somewhere between

√
2
n and 2

n . The above assumption (that no input service is too dominant)
states that no element takes more than L times its "fair" share, i.e., that for some L ≥ 0,
|P (i)| ≤ L

n for every i. We also let α denote the (normalized) total spare capacity, i.e.
α = c−µ

µ . Our working assumption is that α is some positive constant. With that we prove:

I Theorem 1. The difference between the cost found by the sorting algorithm and the optimal
integral (or fractional) cost is at most O( L

αn ).

In the next subsection we give an informal proof of the theorem. A formal proof appears
in Appendix F.1.

2.2 The correctness proof

We begin with a geometric interpretation of the space of feasible (integral or fractional)
solutions. If we split the services according to the partition S = (S1 = I, S2 = [n] \ I),
then the first bin is normally distributed with mean µ

∑
i∈I a

(i) and variance V
∑
i∈I b

(i),
where a(i) = µ(i)

µ and b(i) = V (i)

V . Thus, our cost is D(PI) where PI =
∑
i∈I P

(i) and
P (i) = (a(i), b(i)). We call each such point an integral point. Sorting the services by their
VMR, is equivalent to sorting the vectors P (i) by the angle they make with the a axis.

CVIT 2016
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I Definition 2. (The sorted paths) Sort the services by their VMR in increasing order and
calculate the P (1), P (2), . . . , P (n) vectors. For i = 1, . . . , n define

P
[i]
bottom = P (1) + P (2) + . . .+ P (i) and,
P [i]
up = P (n) + P (n−1) + . . .+ P (n−i+1),

and also define P [0]
bottom = P

[0]
up = (0, 0).

The bottom sorted path is the curve that is formed by connecting P [i]
bottom and P [i+1]

bottom with
a line, for i = 0, . . . , n− 1. The upper sorted path is the curve that is formed by connecting
P

[i]
up and P [i+1]

up with a line, for i = 0, . . . , n− 1.

The integral point P [i]
bottom on the bottom sorted path corresponds to allocating the i

services with the lowest VMR to the first bin and the rest to the second. Similary, the
integral point P [i]

up on the upper sorted path corresponds to allocating the i services with the
highest VMR to the first bin and the rest to the second. A crucial, yet simple, observation:

I Lemma 3. All the integral points lie within the polygon confined by the bottom sorted path
and the upper sorted path.

Proof. We introduce some notation. Let τ = τ1, . . . , τn be a sequence of n elements that is a
permutation of {1, . . . , n}. We associate with τ the n partial sums P [1]

τ , . . . , P
[n]
τ where P [i]

τ

is
∑i
j=1 P

(τj), i.e., P [i]
τ is the integral point that is the sum of the first i points according to

the sequence τ . We also define P [0]
τ = (0, 0) and P [n]

τ = (1, 1). The curve connecting τ is the
curve that is formed by connecting P [i]

τ and P [i+1]
τ with a line, for i = 0, . . . , n− 1.

Assume that in the sequence τ = τ1, . . . , τn there is some index i such that the VMR
of P (τi) is larger than the VMR of P (τi+1). Consider the sequence τ ′ that is the same as
τ except for switching the order of τi and τi+1. I.e., τ ′ = τ1, . . . , τi−1, τi+1, τi, τi+2, . . . , τn.
We claim that the curve connecting τ ′ lies beneath the curve connecting τ . To see that
notice that both curves are the same up to the point P [i−1]

τ . There, the two paths split. τ
adds P (τi) and then P (τi+1) while τ ′ first adds P (τi+1) and then P (τi). Then the two curves
coincide and overlap all the way to (1, 1). In the section where the two paths differ, the two
different paths form a parallelogram with P (τi) and P (τi+1) as two neighboring edges of the
parallelogram. As the angle P (τi+1) has with the a axis is smaller than the angle P (τi) has
with the a axis, the curve connecting τ ′ lies beneath that of τ .

To finish the argument, let PI be an arbitrary integral point for some I ⊆ [n]. Look at
the sequence τ that starts with the elements of I followed by the elements of [n] \ I in an
arbitrary order. Notice that PI lies on the curve connecting τ . Now run a bubble sort on
τ , each time ordering a pair of elements by their VMR. Notice that the process terminates
with the sequence that sorts the elements by their VMR and the curve connecting the final
sequence is the bottom sorted path. Thus, we see that the bottom sorted path lies beneath
the curve connecting τ , and in particular PI lies above the bottom sorted path. A similar
argument shows PI lies underneath the upper sorted path. J

We can say more. A fractional partition is one that allows splitting a service between
several bins. Geometrically, the set of fractional points is a convex set. Clearly, it contains all
the points on both the bottom sorted line and the upper sorted line, and because it defines a
convex set, also all points in their convex hull. In fact,

I Lemma 4. The set of fractional points coincides with the polygon confined by the bottom
sorted path and the upper sorted path.
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Figure 1 The figure depicts D(a, b) when µ = 160, V = 6400, c1 = c2 = 100 and the cost function
is SP −MED. The orange points are the 210 integral partition points. The dotted lines are the
bottom and upper sorted paths. Notice that all the integral partition points are confined by the
bottom and upper sorted paths.

Figure 1 demonstrates such a polygon. Having this geometric picture we prove:

I Theorem 5. The optimal fractional point lies on the bottom sorted path. The optimal
fractional solution splits at most one service between two bins.

Proof. Consider an arbitrary fractional point (a0, b0) lying strictly inside the polygon confined
by the upper and bottom sorted paths. If b0 ≤ 1

2 , then by keeping b = b0 constant and
changing a till it reaches the valley we strictly decrease cost (because D is strictly monotone
in this range). Now, when changing a we either hit the bottom sorted path or the valley. If
we hit the bottom sorted path, we found a point on the bottom sorted path with less cost
and we are done. If we hit the valley, we can go down the valley until we hit the bottom
sorted path and again we are done (as D is strictly monotone on the valley).

We now consider the case b0 ≥ 1
2 . Notice that if (α, β) is an integral point on the upper

sorted path induced by the partition I ⊆ [n], then the integral point induced by [n] \ I
is (1 − α, 1 − β) and it lies on the bottom sorted path. The same holds in the reverse
direction. In particular the mapping ϕ : [0, 1]2 → [0, 1]2 defined by ϕ(a, b) = (1− a, 1− b)
maps fractional points to fractional points and integral points to integral points, the upper
sorted path to the bottom sorted path and vice versa. An example can be seen in Figure
1. Note that the points (a, b) and ϕ(a, b) might have different costs when c1 6= c2, and the
symmetry condition only guarantees D(a, b) = D(1− a− c2−c1

µ , 1− b). Then,

The point (1− a0, 1− b0) = ϕ(a0, b0) is fractional (since (a0, b0) is fractional and ϕ maps
fractional points to fractional points), and,
By the reflection symmetry we know that D(a0, b0) = D(1 − a0 − ζ, 1 − b0) where
ζ = c2−c1

µ ≥ 0.
Now, (1− a0 − ζ, 1− b0) has b coordinate that is at most 1

2 . Also (1− a0 − ζ, 1− b0) lies to
the left of the fractional point (1− a0, 1− b0) (since ζ > 0) and therefore it lies above the
bottom sorted path. We therefore see that the point (a0, b0) has a corresponding fractional
point with the same cost and with b coordinate at most 1

2 . Applying the argument that
appears in the first paragraph of the proof we conclude that there exists some point on the
bottom sorted path with less cost, and conclude the proof. J

In the introduction we said that the optimal solution allocates low risk services to one
bin and the rest to the other. However, when c1 6= c2 it is not clear whether to allocate
the smaller risk services to the lower capacity bin or the higher capacity bin. Equivalently,

CVIT 2016
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Figure 2 We again consider D(a, b) when µ = 160, V = 6400, c1 = c2 = 100 for SP − MED.
Looking at the left figure one gets the impression the saddle point ( 1

2 ,
1
2 ) is optimal. However, the

right figure is a zoom in around the saddle point ( 1
2 ,

1
2 ) and clearly shows there are much better

solutions down the valley (marked by a black line).

offhand, it is not clear whether the optimal solution lies on the bottom sorted path or the
upper sorted path, and it might even depend on the input. Theorem 5 proves that when
c1 ≤ c2 the optimal solution lies on the bottom sorted path, meaning that it is always better
to allocate the low risk services to the smaller capacity bin and the high risk services to the
higher capacity bin.

Figure 2 depcits D(a, b) for SP-MED. From looking at the left figure one gets the
impression that the saddle point ( 1

2 ,
1
2 ) is the optimal solution. However, a close-up around

this saddle point reveals that there is a much better solution that can be obtained by going
down the "valley", and in fact the point ( 1

2 ,
1
2 ) is the highest point on that valley.

What is left now is estimating the errors made by the algorithm. The sorting algorithm
finds an integral point on the bottom sorted path, and its cost should be compared with
the value of the best fractional point on the bottom sorted path. By our assumption on L
the integral points form a dense net on the bottom sorted path. Using that and standard
tools like the mean value theorem for multi-variate functions we get our error estimate. The
proofs are technical and we omit them. The full details can be found in Appendix F.1.

3 Other Cost Functions

We present two more cost functions that fall into our framework.

SP-MWOP (Stochastic Placement with Min Worst Overflow Probability): In SP-MWOP
the cost is the minimal probability p, such that for every bin the probability that the bin
overflows is at most p. Namely, if OFj is the event that bin j overflows, then the cost of
a placement is maxkj=1 Pr[OFj ].
The SP-MWOP problem gets as input integers k and n, specifying the number of bins
and services, integers c1, . . . , ck, specifying the bin capacities and values

{
(µ(i), V (i))

}n
i=1,

specifying that the demand distribution X(i) of service i is normal with mean µ(i)

and variance V (i). A solution to the problem is a partition of [n] to k disjoint sets
S1, . . . , Sk ⊆ [n] that minimizes the worst overflow probability.
The SP-MWOP problem is a natural variant of SBP. For a given partition let OFPj
(for j = 1, . . . , k) denote the overflow probability of bin j. Let WOFP denote the worst
overflow probability, i.e., WOFP = maxkj=1 {OFPj}. In the SBP problem we are given
n normal distributions and wish to pack them into few bins such that the OFP ≤ p for
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some given parameter p. Suppose we solve the SBP problem for a given p and know
that k bins suffice. We now ask ourselves what is the minimal WOFP achieved with the
k bins (this probability is clearly at most p but can also be significantly smaller). We
also ask what is the partition that achieves this minimal worst overflow probability. The
problem SP-MWOP does exactly that.
In the normal case the overflow probability of bin j, denoted by OFPj , is:

OFPj(µj , Vj) = 1
σj
√

2π

∫ ∞
cj

e
−

(x−µj)2

2σ2
j dx

Substituting t = x−µj
σj

we get:

OFPj(µj , Vj) = 1√
2π

∫ ∞
cj−µj
σj

e−
t2
2 dt

= 1− Φ(cj − µj
σj

) = 1− Φ(∆j).

Thus,
WOFP = kmax

j=1
{1− Φ(∆j)}.

With two bins WOFP is a function from [0, 1]2 to R and,

WOFP (a, b) = max {1− Φ(∆1), 1− Φ(∆2)}

where the first bin has mean aµ and variance bV , the second bin has mean (1− a)µ and
variance (1− b)V . σj ,∆j were previously defined.
SP-MOP (Stochastic Placement with Minimum Overflow Probability): In SP-MOP
the cost is the probability that any bin overflows, i.e. Pr[

⋃k
j=1OFj ]. The SP-MOP

problem gets as input integers k and n, specifying the number of bins and services,
integers c1, . . . , ck, specifying the bin capacities and values

{
(µ(i), V (i))

}n
i=1, specifying

that the demand distribution X(i) of service i is normal with mean µ(i) and variance
V (i). A solution to the problem is a partition of [n] to k disjoint sets S1, . . . , Sk ⊆ [n]
that minimizes the overflow probability.
The total overflow probability is OFP = 1−

∏k
j=1(1−OFPj) where in the normal case,

as computed before, OFPj = 1− Φ(∆j). With two bins OFP is a function from [0, 1]2
to R and OFP (a, b) = 1− Φ(∆1)Φ(∆2) where the first bin has mean aµ and variance
bV , the second bin has mean (1− a)µ and variance (1− b)V and σj ,∆j were previously
defined.

We prove in Appendices C and D that both SP-MWOP and SP-MOP fall into our
framework:

I Theorem 6. OFP and WOFP respect the symmetry, uni-modality and the central saddle
point property.

Hence, by Theorem 5 we know that the optimal fractional solution is obtained on the
bottom sorted path. In fact, for SP-MWOP we can say a bit more, and in Appendix C we
prove:

I Theorem 7. The optimal fractional solution for SP-MWOP is the unique point that is the
intersection of the valley and the bottom sorted path and in this point ∆1 = ∆2.

CVIT 2016
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4 Non-Normal Distributions

4.1 The Berry-Esseen Theorem
The Kolmogorov distance between two cumulative distribution functions F and G is given
by ‖F −G‖∞ = supt∈R |F (t) −G(t)|. The Central Limit Theorem states that the sum of
independent arbitrary random variables converges (when the number of random variables
tends to infinity) to the Normal distribution. The convergence is in the Kolmogorov distance.
The Berry-Esseen theorem is a quantitative version of the Central Limit Theorem, giving a
quantitative bound on the rate of convergence.

I Theorem 8. (Berry-Esseen) Let X(1), . . . , X(n) be independent random variables with

µ(i) = E(X(i)),
V (i) = E(|X(i) − µ(i)|2),
ρ(i) = E(|X(i) − µ(i)|3).

Let FN denote the cumulative distribution function of N(µ, V ) for µ =
∑
µ(i) and

V =
∑
V (i). Denote σ =

√
V . Let FX denote the cumulative distribution function of∑n

i=1X
(i). Then,

‖FX − FN‖∞ ≤ C0 · ψ0,

for ψ0 =
∑n

i=1
ρ(i)

V
3
2

and C0 some constant in the range [0.4097, 0.56] (see [2, 11]).
Furthermore, for any t ∈ R:

|FX(t)− FN (t)| ≤ C1 · ψ0 ·
1

( t−µσ )2 + 1
,

where C1 is a universal constant (See [4]).

To say that ψ0 is small is to simultaneously say two things: the random variables X(i)

are all reasonable, in the sense that ρ(i) ≤ O((V (i)) 3
2 ), and none is too dominant in terms of

variance ([9]).
Note that if X(1), . . . , X(n) are i.i.d., then ψ0 = ρ(1)

√
n(V (1))

3
2
. As ρ(1) and V (1) are independ-

ent of n, we can treat ρ(1) and V (1) as constants and the error goes down to 0 asymptotically
with n as O(n− 1

2 ).

4.2 Approximating General Independent Distributions With The
Normal Distribution

Recall that in 2 we defined the cost function DX(S) for general independent random variables
X = (X(1), . . . , X(n)), and DN (S) for normally distributed random variables. We claim:

I Proposition 9. Given n independent random variables X = (X(1), . . . , X(n)) with mean µ(i),
variance V (i) = E(|X(i)−µ(i)|2) and ρ(i) = E(|X(i)−µ(i)|3) and a partition S = {S1, . . . , Sk},

|DX(S)−DN (S)| ≤ C1

k∑
j=1

σjψ
j
0(Sj)(

π

2 − arctan(∆j)),
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where C1 is the constant defined in Theorem 8,

ψj0(Sj) =
∑
i∈Sj ρ

(i)

V
3
2
j

,

µj =
∑
i∈Sj µ

(i), σj =
√
Vj =

√∑
i∈Sj V

(i) and ∆j = cj−µj
σj

.

In the proof below we use Fubini’s theorem (that in this case can also be derived directly
by integration by parts): If X is a non-negative random variable, and FX is its cumulative
distribution function, then

E(X) =
∫ ∞

0
Pr
X

(X ≥ t)dt =
∫ ∞

0
(1− FX)(t)dt

Proof. Recall that Xj =
∑
i∈Sj X

(i) and let Nj = N(
∑
i∈Sj µ

(i),
∑
i∈Sj V

(i)). Then:

Efj(Xj) =
∫ ∞

0
Pr
Xj

(fj(Xj) ≥ t)dt

=
∫ ∞

0
Pr
Xj

(Xj ≥ t+ cj)dt

=
∫ ∞
cj

Pr
Xj

(Xj ≥ t)dt

Similarly, Efj(Nj) =
∫∞
cj

PrNj (Nj ≥ t)dt. Therefore,

|Efj(Xj)− Efj(Nj)| = |
∫ ∞
cj

(FXj − FNj )(t)dt|

≤ C1ψ
j
0(Sj)

∫ ∞
cj

1
( t−µjσj

)2 + 1
dt

= C1ψ
j
0(Sj)

∫ ∞
cj−µj
σj

1
y2 + 1σjdy

= C1ψ
j
0(Sj)σj(

π

2 − arctan(∆j)).

Finally, |
∑
j Efj(Xj)−

∑
j Efj(Nj)| ≤

∑
j |Efj(Xj)− Efj(Nj)| and this completes the

proof. J

Roughly speaking, proposition 9 tells us that we do not need to have a complete knowledge
of the distribution X = (X1, . . . , Xn) but rather that under mild assumptions (namely, that
the number of services is large enough for the central limit theorem to hold) it is sufficient to
know the first two moments of X(i). Indeed,
I Proposition 10. Let X,DX , N,DN be as before. Let SX (resp. SN ) be the partition in
which the optimal solution is achieved under X (resp. N). Suppose that

|DN (SX)−DX(SX)| ≤ ε(SX)
|DN (SN )−DX(SN )| ≤ ε(SN )

for some error function ε(S) that may depend on the partition S.3 Then

|DX(SX)−DN (SN )| ≤ max {ε(SX), ε(SN )}.

3 For example, for SP-MED, ε(S) = C1
∑k

j=1 σjψ
j
0(Sj)(π2 − arctan(∆j)).
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Proof.

DN (SN ) ≤ DN (SX)
≤ DX(SX) + ε(SX), and,

DN (SN ) ≥ DX(SN )− ε(SN )
≥ DX(SX)− ε(SN ).

J

Notice that we need ε(S) to be small only at the two partitions SN and SX and we
require nothing from all other partitions. What do we expect to see in ε(SN ) and ε(Sx)?
Luckily, in these two partitions we expect that each bin is allocated many services, and we
expect ψj0(Sj) in these partition points to be on the order of about 1√

nj
, where nj is the

number of services allocated to bin j. Also Vj is the sum of nj independent bounded random
variables, and therefore σj = O(√nj). Therefore, we expect the error term ε(S) in these two
points to be bounded by a constant, independent of n. This is very strong given that in the
usual case of interest we expect the cost function (which is the expected overflow) to go to
infinity.4 Thus, using the Berry-Esseen theorem, we get under mild conditions a reduction
from the general case, where the independent X(i) are almost arbitrary, to the normal case.

5 Conclusions

We present a novel analytical scheme for stochastic placement algorithms, using the stochastic
behavior of the demand. We develop efficient, almost optimal algorithms that work for a
family of target cost functions. In particular, we solve SP-MED (that minimizes the expected
deviation), SP-MOP (that minimizes the probability of overflow) and SP-MWOP (that
guarantees that for every bin the probability it overflows is small). We believe the framework
is applicable for many other natural cost functions.

Another contribution of this work is its robustness with respect to the input. Much of
previous research in the area assumes the services have a particular well-behaved demand
distribution (like Bernoulli, [5, 3], Exponential [3], Normal [1, 12], Poisson [3], etc., to mention
a few of the distributions that were considered so far). The results in this paper hold for any
large enough collection of independent services of whatever distribution. Furthermore, the
amount of robustness can be quantified using the Berry-Esseen theorem, and given stochastic
demand one can infer in advance the utility of the methods introduced in the paper.

For every target function and input distribution that fall into the framework, our algorithm
examines a linear number of potential solutions and its error decreases fast with the number
of services in the input. Our simulation results (see Appendix A) have obtained a considerable
gain over real data from a mid-size operational data center, compared with commonly used
naive solutions.

Acknowledgements. We want to thank Liran Rotem for helping us with the proof of
Proposition 9 and useful discussion of the Berry-Esseen Theorem and Fubini’s Theorem. We
also want to thank Boaz Klartag, Ryan O’Donnell and Terry Tao for answering our questions
in email, and Ryan for referring us to relevant references.

4 A similar (simpler and easier to state) result also holds for the other two cost functions we have examined.
See Appendix E.
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A Simulation Results

In this section we present our simulation results for the two bin case. We compare the sorting
algorithm with two algorithms we call BS (Balanced Spares) and BL (Balanced Load). The
BS algorithm goes through the list, item by item, and allocates each item to the bin which
has more available space. In this way, the spare capacity is balanced. On the other hand,
the BL algorithm goes through the list, item by item, and allocates each item to the bin
which is less loaded, i.e., the bin with higher available space

bin capacity
value . In this way, the bin load is

balanced. The BL and BS algorithms are natural benchmarks and also much better than
other naive solutions like first-fit and first-fit decreasing.5 We used several values for c1

c , i.e.
first bin’s capacity divided by total capacity (recall that c = c1 + c2). Note that 0 ≤ c1

c ≤
1
2

(because the sorting algorithm first sorts c1, c2 and hence 0 ≤ c1 ≤ c2).

A.1 Results for Synthetic Normally Distributed Data
We first show simulation results on synthetic normally distributed data. We generate the
stochastic input

{
(µ̃(i), σ̃(i))

}n
i=1 for n = 500. Our sample space is a mixture of three

populations: all items have the same mean (we fixed it at µ̃(i) = 500) but 50% had
standard deviation picked uniformly from [0, 0.4 · µ̃(i)], 25% had standard deviation picked
uniformly from [0.4 · µ̃(i), 0.7 · µ̃(i)] and 25% had standard deviation picked uniformly from
[0.7 · µ̃(i), 0.9 · µ̃(i)].

We then randomly generated 800 sample values x(i)
l for each 1 ≤ i ≤ n and 1 ≤ l ≤ 800

using the normal distribution N [µ̃(i), Ṽ (i)] and from this we inferred parameters µ(i), V (i),
best explaining the sample as a normal distribution. The sorting algorithm, the BS and the
BL algorithms got as input

{
(µ(i), V (i))

}n
i=1, as well as c1, c2 and output their partition.

To check the suggested partitions, we viewed each sample x(i)
l as representing an item

instantiation at a different time slot. We then computed the cost function. For example,

for SP-MED, the deviation value for bin j at time slot l is: max
{

0, 100
∑

i∈Sj
x

(i)
l
−cj∑n

i=1
µ(i)

}
, i.e.,

the deviation is measured as a percent of the total mean value µ. We generated 10 such
lists and calculated the average cost for these 10 input lists for each algorithm. We run the
experiment for different values of c and for different values of c1

c .
Figure 3 shows the average cost of the three algorithms for SP-MED, SP-MWOP and

SP-MOP as a function of c
µ , for

c1
c ∈ {0.1, 0.5}. As expected, the average cost decreases as

the value c
µ increases, i.e. as the total spare capacity increases. We also see that the results

of the BS and the BL algorithms coincide when c1
c = 0.5, which is obvious. Moreover, the

sorting algorithm out-performs the BS and the BL algorithms for both values of c1
c . The

advantage of the sorting algorithm is especially evident when c1
c = 0.1. Figure 4 shows the

average cost of the BS algorithm divided by the average cost of the sorting algorithm for the

5 At first, we also wanted to compare our algorithm with variants of the algorithms considered in [12, 1]
for the SBP problem. In both papers, the authors consider the algorithms First Fit and First Fit
Decreasing [6] with item size equal to the effective size, which is the mean value of the item plus an
extra value that guarantees an overflow probability is at most some given value p. Their algorithm
chooses an existing bin when possible, and otherwise opens a new bin. However, when the number of
bins is fixed in advance, taking effective size rather than size does not change much. For a new item
(regardless of its size or effective size) we keep choosing the bin that is less occupied, but this time we
measure occupancy with respect to effective size rather than size. Thus, if elements come in a random
order, the net outcome of this is that the two bins are almost balanced and a new item is placed in each
bin with almost equal probability.
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Figure 3 Average cost of the sorting algorithm and the BS and BL algorithms for SP-MED,
SP-MWOP and SP-MOP with two bins for synthetic normally distributed data. The x axis measures
c
µ
.

Figure 4 Average cost of the BS algorithm divided by average cost of the sorting algorithm for
SP-MED, SP-MWOP and SP-MOP with two bins for synthetic normally distributed data. The x
axis measures c

µ
.

three cost functions, as a function of c
µ for different values of c1

c . When bin capacities are
equal (i.e. c1

c = 0.5), the BS algorithm cost is 24.4% (7.0%, 20.4%) higher than the cost of
the sorting algorithm for SP-MED (SP-MWOP, SP-MOP, resp.) with 2% spare capacity
(i.e., c

µ = 1.02), and 72.2% (57.0%, 75.2%) higher for SP-MED (SP-MWOP, SP-MOP, resp.)
with 6% spare capacity (i.e., c

µ = 1.06). The savings get larger when bin capacities are
unbalanced (i.e., when c1

c decreases). For example, when c1
c = 0.1 and the spare capacity

is 2%, the BS algorithm cost is 81.3% (47.5%, 70.3%) higher than the cost of the sorting
algorithm for SP-MED (SP-MWOP, SP-MOP, resp.). When the spare capacity is 6%, the
BS algorithm cost is about 18 (13,11) times the cost of the sorting algorithm for SP-MED
(SP-MWOP, SP-MOP, resp.). Figure 5 shows similar and better results (depends on the cost
function and the c1

c value) for the average cost of the BL algorithm divided by the average
cost of the sorting algorithm.

A.2 Results for Real Data

In this section, we consider simulation results on real data. We used the real data center
trace reported in [1]. It specifies the incoming and outgoing traffic rates for 17 thousand
VMs. The distribution of the VM samples is very far from being normal. The standard
deviation is higher than the mean value in almost all of the VMs, and it even reaches 10-20
times the mean value.
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Figure 5 Average cost of the BL algorithm divided by average cost of the sorting algorithm for
SP-MED, SP-MWOP and SP-MOP with two bins for synthetic normally distributed data. The x
axis measures c

µ
.

The number of samples in each VM varies a lot, so we considered only VMs with 800
samples and above (total of 6105 VMs) and took the first 800 receive rate samples from each
such VM. For each VM we calculated mean, variance and third moment, for its 800 sample
values and from these values we inferred ψ0, which was very high and impractical (14.11).
Therefore, we threw away 6 "problematic" VMs (those with high ρ(i)/V 1.5 value) and we
were left with 6099 VMs and a ψ0 value of 0.2183.

Next, since our model assumes independent services, we broke down the dependency
between the VMs by taking a random permutation of the 800 VM samples. Since the random
permutation only changes the order of the samples, it does not change the statistic values
of the mean, variance and third moment nor ψ0 value. We generated 10 different random
permutations for each VM samples and calculated the average cost for these 10 input data
sets for each algorithm. We run the experiment for different values of c and for different
values of c1

c .
Figure 6 shows the actual average cost of both algorithms for SP-MED, SP-MWOP

and SP-MOP as a function of c
µ , for

c1
c ∈ {0.1, 0.5}. Again, the average cost decreases as

the value c
µ increases, but not as fast as in the synthetic normal case. As before, we see

that the results of the BS and the BL algorithms coincide when c1
c = 0.5, and that for

both values of c1
c , the sorting algorithm out-performs the BS and the BL algorithms. The

advantage of the sorting algorithm is especially evident when c1
c = 0.1. Figure 7 shows the

average cost of the BS algorithm divided by the average cost of the sorting algorithm for the
three problems, again as a function of c

µ for different values of c1
c . We see that the sorting

algorithm out-performs the BS algorithm even for this non normally distributed data. When
bin capacities are equal (i.e. c1

c = 0.5), the BS algorithm cost is 17.8% (6.8%, 16.2%) higher
than the cost of the sorting algorithm for SP-MED (SP-MWOP, SP-MOP, resp.) with 5%
spare capacity (i.e., c

µ = 1.05), and 65% (88.8%, 71.4%) higher for SP-MED (SP-MWOP,
SP-MOP, resp.) with 25% spare capacity (i.e., c

µ = 1.25). The savings get larger when bin
capacities are unbalanced (i.e., when c1

c decreases). For example, when c1
c = 0.1 and the

spare capacity is 5%, the BS algorithm cost is 54.6% (35.5%, 52.8%) higher than the cost of
the sorting algorithm for SP-MED (SP-MWOP, SP-MOP, resp.). When the spare capacity
is 25%, the BS algorithm cost is about 27 (18,18) times the cost of the sorting algorithm for
SP-MED (SP-MWOP, SP-MOP, resp.). Figure 8 shows similar and better results (depends
on the cost function and the c1

c value) for the average cost of the BL algorithm divided by
the average cost of the sorting algorithm.
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Figure 6 Average cost of the sorting algorithm and the BS and BL algorithms for SP-MED,
SP-MWOP and SP-MOP with two bins for real independent data. The x axis measures c

µ
.

Figure 7 Average cost of the BS algorithm divided by average cost of the sorting algorithm for
SP-MED, SP-MWOP and SP-MOP with two bins for real independent data. The x axis measures
c
µ
.

Figure 8 Average cost of the BL algorithm divided by average cost of the sorting algorithm for
SP-MED, SP-MWOP and SP-MOP with two bins for real independent data. The x axis measures
c
µ
.
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B Proving SP-MED Falls into our framework

By definition the expected deviation of a single bin is DevSj = 1
σj
√

2π

∫∞
cj

(x− cj)e
−

(x−µj)2

2σ2
j dx.

Doing the variable change t = x−µj
σj

and then the variable change y = −t2
2 we get:

DevSj = (µj − cj)[1− Φ(cj − µj
σj

)]− σj√
2π

∫ −∞
− 1

2 (
cj−µj
σj

)2
eydy

= −σj∆j [1− Φ(∆j)] + σj√
2π
e−

1
2 ∆2

j

= σj [φ(∆j)−∆j(1− Φ(∆j))].

where φ is the probability density function (pdf) of the standard normal distribution
and Φ is its cumulative distribution function (CDF). Denoting g(∆) = φ(∆)−∆(1− Φ(∆))
we see that DevSj = σj g(∆j). With two bins Dev is a function from [0, 1]2 to R and
Dev(a, b) = σ1g(∆1) + σ2g(∆2) where the first bin has mean aµ and variance bV , the second
bin has mean (1− a)µ and variance (1− b)V and σj ,∆j are defined as above.

I Lemma 11. Dev respects the symmetry, uni-modality and central saddle point properties.

Proof.
Symmetry: Let us define σ1(b) =

√
b σ, σ2(b) =

√
1− b σ, ∆1(a, b) = c1−aµ

σ1(b) and
∆2(a, b) = c2−(1−a)µ

σ2(b) . We know that Dev(a, b) = σ1(b)g(∆1(a, b)) + σ2(b)g(∆2(a, b)). To
prove the symmetry Dev(a, b) = Dev(1 − a − c2−c1

µ , 1 − b), it is enough to show that
the following four equations hold: σ1(b) = σ2(1 − b), σ2(b) = σ1(1 − b), ∆1(a, b) =
∆2(1− a+ c1−c2

µ , 1− b) and ∆2(a, b) = ∆1(1− a+ c1−c2
µ , 1− b).

Indeed, σ1(1− b) =
√

1− b σ = σ2(b) and similarly σ2(1− b) = σ1(b). Also, ∆2(1− a−
c2−c1
µ , 1−b) = c2−(1−(1−a+ c1−c2

µ ))µ
σ2(1−b) . A similar check shows that ∆1(1−a− c2−c1

µ , 1−b) =
∆2(a, b). This proves the symmetry. We remark that for c1 = c2 this simply says we can
switch the names of the first and second bin.
Uni-modality in a: Calculations show that ∂2Dev

∂a2 = µ2 [φ(∆2)
σ2

+ φ(∆1)
σ1

] ≥ 0. It follows
that for any 0 < b < 1, Dev(a) is convex and has a unique minimum. The unique point
(m(b), b) on the valley is the one where ∆1 = ∆2.
Central saddle point: We first explicitly determine what Dev restricted to the valley is
as a function D(b) = Dev(m(b), b) of b. As Dev(a, b) = σ1g(∆1) + σ2g(∆2) and on the
valley ∆1 = ∆2 we see that on the valley Dev(a, b) = (σ1 + σ2)g(∆1). However, σ1 + σ2
also simplifies to c1−aµ

∆1
+ c2−(1−a)µ

∆2
= c−µ

∆1
. Altogether, we conclude that on the valley

Dev(a, b) = (c− µ) g(∆1)
∆1

is a function of ∆1 alone.
It is a straight forward calculation that ∂Dev(∆1)

∂∆1
= −(c − µ) φ(∆1)

∆2
1

< 0. We will also
show that ∂∆1

∂b is negative when b ≤ 1
2 and positive when b ≥ 1

2 . As
∂D
∂b = ∂Dev

∂∆1
· ∂∆1
∂b , we

see that D(b) is increasing for b ≤ 1
2 and decreasing for b ≥ 1

2 as claimed.
To analyze ∂∆1

∂b we write ∆1 = e1
σ1

and ∆2 = e2
σ2

where e1 = c1 − aµ is the spare
capacity in bin 1 and e2 = c2 − (1 − a)µ is the spare capacity in bin 2. We notice
that e = e1 + e2 = c− µ the total spare capacity in the system. Now ∆1 = ∆2 implies
e1σ2 = e2σ1 = (e−e1)σ1. Therefore, e1(σ1 +σ2) = eσ1 and ∆1 = e

σ1+σ2
= c−µ

σ ( 1√
b+
√

1−b )
and notice that ∆ = c−µ

σ is independent of b. All that remains is to differentiate the
function 1√

b+
√

1−b .
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We remark that we could simplify the proof by using Lagrange multipliers. However,
since here it is easy to explicitly find Dev restricted to the valley we prefer the explicit
solution. Later, we will not be able to explicitly find the restriction to the valley and we
use instead Lagrange multipliers that solves the problem with an implicit description of
the valley.

J

C Proving SP-MWOP Falls into our framework

Recall that
WOFP = kmax

j=1
{1− Φ(∆j)}.

With two binsWOFP is a function from [0, 1]2 to R andWOFP (a, b) = max {1− Φ(∆1), 1− Φ(∆2)}
where the first bin has mean aµ and variance bV , the second bin has mean (1 − a)µ and
variance (1− b)V . σj ,∆j were previously defined.

I Lemma 12. WOFP respects the symmetry, uni-modality and central saddle point proper-
ties.

Proof.
Symmetry: The same proof as in Appendix B shows WOFP (a, b) = WOFP (1 − a −
c2−c1
µ , 1− b).

Uni-modality in a: Fix b. Denote OFP1(a, b) = OFP1(aµ, bV ) = 1 − Φ(∆1). It is a
simple calculation that ∂OFP1

∂a (a, b) = µ√
bσ
· φ(∆1) > 0. Similarly, if OFP2(a, b) denotes

the overflow probability in the second bin when the first bin has total mean aµ and
total variance bV , then ∂OFP2

∂a = −µ√
1−bσ · φ(∆2) < 0. Thus, OFP1 is monotonically

increasing in a and OFP2 is monotonically decreasing in a, and therefore there is a
unique minimum for OFP (a, b) (when b is fixed and a is free) that is obtained when
OFP1(a, b) = OFP2(a, b), i.e., when ∆1 = ∆2.
Central saddle point: We first explicitly determine what WOFP restricted to the valley
is as a function D(b) = WOFP (m(b), b) of b. From before we know that on the valley
∆1 = ∆2. Therefore, following the same reasoning as in the SP-MED case,

∆1(b) = c− µ
σ

1√
b+
√

1− b
.

It follows that D(b) is monotonically decreasing in b for b ≤ 1
2 and increasing otherwise.

The maximal point is obtained in the saddle point that is the center of the symmetry.
J

By Theorem 5 we know that the optimal fractional solution is obtained on the bottom
sorted path. In fact, for SP-MWOP we can say a bit more:

I Lemma 13. The optimal fractional solution for SP-MWOP is the unique point that is the
intersection of the valley and the bottom sorted path, and in this point ∆1 = ∆2.

Proof. Let us assume by contradiction that the optimal point P ∗ = (a∗, b∗) is not the point
I which is the intersection point of the valley and the bottom sorted path. By Theorem
5, P ∗ is on the bottom sorted path. W.l.o.g. let us assume that P ∗ is left to the valley
(the other case is similar). Since the valley is the curve defined by ∆1 = ∆2, it is easy to
see that ∆1(a∗, b∗) > ∆2(a∗, b∗) and therefore WOFP (a∗, b∗) = 1 − Φ(∆2(a∗, b∗)). Now,
let us look at the point P ′ = I+P∗

2 = (a′, b′). P ′ is within the polygon confined by the
bottom and upper sorted paths (by convexity) and is also left to the valley. Also, a′ > a∗
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and b′ ≥ b∗ and as before, ∆1(a′, b′) > ∆2(a′, b′) and WOFP (a′, b′) = 1 − Φ(∆2(a′, b′)).
Moreover, ∆2 is monotonically increasing in a and in b (i.e., ∂∆2

∂a (a, b) > 0 and ∂∆2
∂b (a, b) > 0),

so ∆2(a′, b′) > ∆2(a∗, b∗), and therefore WOFP (a′, b′) < WOFP (a∗, b∗), in contradiction
to the optimality assumption of the point P ∗. Therefore, we must conclude that P ∗ = I.

J

D Proving SP-MOP Falls into our framework

Recall that OFP = 1−
∏k
j=1(1−OFPj) where OFPj = 1−Φ(∆j). With two bins OFP is

a function from [0, 1]2 to R and OFP (a, b) = 1− Φ(∆1)Φ(∆2) where the first bin has mean
aµ and variance bV , the second bin has mean (1 − a)µ and variance (1 − b)V and σj ,∆j

were previously defined.

I Lemma 14. OFP respects the symmetry and uni-modality properties.

Proof.
Symmetry: The same proof as in Appendix B shows OFP (a, b) = OFP (1−a− c2−c1

µ , 1−b).
Uni-modality in a: Fix b. ∂2OFP

∂2a = µ2[ ∆1
σ2

1
φ(∆1)Φ(∆2)+∆2

σ2
2
φ(∆2)Φ(∆1)+ 2

σ1σ2
φ(∆1)φ(∆2)].

In particular ∂2OFP
∂2a > 0 and for every fixed b, OFP (a, b) is convex over a ∈ [0..1] and

has a unique minimum a = m(b).
J

Proving there exists a unique maximum over the valley is more challenging. We wish to
find all extremum points of the cost function D (OFP in our case) over the valley {(m(b), b)}.
Define V (a, b) = a−m(b). Then we wish to maximize D(a, b) subject to V (a, b) = 0. Before,
we computed the restriction D(b) of the cost function over the valley and found its extremum
points. However, here we do not know how to explicitly find D(b). Instead, we use Lagrange
multipliers that allow working with the implicit form V (a, b) = 0 without explicitly finding
D(b). We prove a general result:

I Lemma 15. If a cost function D is differentiable twice over [0, 1]×[0, 1], then any extremum
point Q of D over the valley must have zero gradient at Q, i.e., ∇(D)(Q) = 0.

Proof. Using Lagrange multipliers we find that at any extremum point Q of D over the
valley,

∇(D)(Q) = λ∇V (Q). (3)

For some real value λ. However,

∇(D)(Q) = (∂D
∂a

(Q), ∂D
∂b

(Q)) = (0, ∂D
∂b

(Q)),

because Q is on the valley and ∂D
∂a (Q) = 0. As V (a, b) = a−m(b), ∂V∂a (Q) = 1. We conclude

that λ = 0. This implies that ∂D
∂b (Q) = 0. Hence, ∇(D)(Q) = 0. J

I Lemma 16. OFP respects the central saddle point property.

Proof. Let Q = (a, b) be an extremum point of OFP over the valley. We look at the range
b ∈ [0.. 12 ), b ≥ 1

2 is obtained by the symmetry. Then, by Lemma 15:
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φ(∆1)Φ(∆2)∂∆1

∂a
= −φ(∆2)Φ(∆1)∂∆2

∂a
, and

φ(∆1)Φ(∆2)∂∆1

∂b
= −φ(∆2)Φ(∆1)∂∆2

∂b
.

Dividing the two equations we get

∂∆1

∂a

∂∆2

∂b
= ∂∆2

∂a

∂∆1

∂b
.

Plugging the partial derivatives of ∆i by a and b, we get the equation

∆1

∆2
=

√
b

1− b .

As b ≤ 1
2 , b < 1−b and we conclude that at Q ∆1 < ∆2. However, using the log-concavity

of the normal c.d.f function Φ we prove that:

I Lemma 17. ∂OFP
∂a = 0 at a point Q = (a, b) with b ≤ 1

2 implies ∆1 ≥ ∆2.

Proof. The condition ∂OFP
∂a = 0 is equivalent to

φ(∆1)
Φ(∆1) = σ1

σ2
· φ(∆2)

Φ(∆2)

As b < 1
2 , b < 1− b and σ1 < σ2. Hence,

φ(∆1)
Φ(∆1) <

φ(∆2)
Φ(∆2) .

Denote h(∆) = φ(∆)
Φ(∆) . We will prove that h is monotone decreasing, and this implies that

∆1 > ∆2.
To see that h is monotone decreasing define H(∆) = ln(Φ(∆)). Then h = H ′. Therefore,

h′ = H ′′. However, Φ is log-concave, hence H ′′ < 0. We conclude that h′ < 0 and h is
monotone decreasing. J

Together, this implies that the only extremum point of OFP over the valley is at
b = 1

2 . However, at b = 0, the best is to fill the largest bin to full capacity with variance
0, and thus, OFP (m(0), 0) = 1 − Φ(∆) where ∆ = c−µ

σ . On the other hand, at b = 1
2 ,

OFP (a = m( 1
2 ), 1

2 ) = 1 − Φ( c1−aµ√
1
2σ

)Φ( c2−(1−a)µ√
1
2σ

). As (c1 − aµ) + (c2 − (1 − a)µ) = c − µ,

either c1 − aµ or c2 − (1− a)µ is at most c−µ
2 and therefore Φ(

√
2 c1−aµ

σ )Φ(
√

2 c2−(1−a)µ
σ ) ≤

Φ(
√

2 c−µ2σ ) = Φ( c−µ√2σ ) ≤ Φ( c−µσ ). We conclude that OFP (a, 1
2 ) ≥ OFP (m(0), 0) and there is

a unique maximum point on the valley and it is obtained at b = 1
2 . J
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E Error induced by the reduction to the Normal distribution

The error in our algorithm stems from two different parts:

The error induced by the reduction to the normal case, and
The error the algorithm has on the normal distribution, mainly induced because the
algorithm outputs an integral solution rather than the optimal fractional solution.

We analyze separately each kind of error and in this section we analyze the error induced
by the reduction to the normal case. For SP-MED we gave a complete analysis of the error
in Proposition 9. The analogous (and simpler) Proposition for SP-MWOP is:
I Proposition 18. (SP-MWOP) Given n independent random variables X = (X(1), . . . , X(n))
with mean µ(i), variance V (i) = E(|X(i) − µ(i)|2) and ρ(i) = E(|X(i) − µ(i)|3) and a partition
S = {S1, . . . , Sk},

|DX(S)−DN (S)| ≤ C0 · ψmax0 (S),

where C0 is the constant defined in Theorem 8,

ψj0(Sj) =
∑
i∈Sj ρ

(i)

(
∑
i∈Sj V

(i)) 3
2
,

and ψmax0 (S) = maxkj=1 ψ
j
0(Sj).

Proof. Let Xj =
∑
i∈Sj X

(i), Nj = N(
∑
i∈Sj µ

(i),
∑
i∈Sj V

(i)) and FXj , FNj be their cumu-
lative distribution functions. Then, for every j,

|Pr
X

(OFj)− Pr
N

(OFj)| = |1− FXj (cj)− (1− FNj (cj))|

= |FXj (cj)− FNj (cj)| ≤ C0 · ψj0(Sj),

where the inequality is by Theorem 8. Let j′ be the bin with maximum overflow probability
under X, and j′′ be the bin with maximum overflow probability under N . Clearly,

Pr
X

(OFj′) ≥ Pr
X

(OFj′′)

≥ Pr
N

(OFj′′)− C0 · ψj
′′

0 (Sj′′)

≥ Pr
N

(OFj′)− C0 · ψj
′′

0 (Sj′′)

≥ Pr
X

(OFj′)− C0 · ψj
′

0 (Sj′)− C0 · ψj
′′

0 (Sj′′)

Therefore,

Pr
N

(OFj′′)− Pr
X

(OFj′) ≤ C0 · ψj
′′

0 (Sj′′), and,

Pr
N

(OFj′′)− Pr
X

(OFj′) ≥ −C0 · ψj
′

0 (Sj′)

and hence,

|DX(S)−DN (S)| = |Pr
X

(OFj′)− Pr
N

(OFj′′)| ≤ C0 · ψmax0 (S)

J
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A similar argument works for SP-MOP using

DX(S) = 1−Πk
j=1(1− Pr

X
(OFj)),

DN (S) = 1−Πk
j=1(1− Pr

N
(OFj))

and,

|DX(S)−DN (S)| = |Πk
j=1(1− Pr

X
(OFj))−Πk

j=1(1− Pr
N

(OFj))|

≤
k∑
j=1
|Pr
X

(OFj)− Pr
N

(OFj)| ≤ C0 ·
k∑
j=1

ψj0.

F Error induced by outputting an integral solution

Here we need to show that rounding the fractional solution to integral in the Normal case
does not induce much error. For that we need to assume that the system has some spare
capacity and that no input service is too dominant. We define two parameters:

Spare capacity: We define a new system constant, relative spare capacity, denoted by α
where

α = c− µ
µ

,

i.e., it expresses the spare capacity as a fraction of the total mean. We assume that the
system has some constant (possibly small) relative spare capacity.
No dominant service: As before, we represent service i with the point P (i) = (a(i), b(i))
and P (1) + P (2) + . . . + P (n) = (1, 1). Thus,

∑
i |P (i)| ≥ |(1, 1)| =

√
2 (by the triangle

inequality) and
∑
i |P (i)| ≤ 2 (because the length of the longest increasing path from

(0, 0) to (1, 1), is obtained by the path going from (0, 0) to (1, 0) and then to (1, 1)).
Hence, the average length of an input point P (i) is somewhere between

√
2
n and 2

n . Our
assumption states that no element takes more than L times its "fair" share, i.e., that for
every i, |P (i)| ≤ L

n .

Also, we only consider solutions where each bin is allocated services with total mean
not exceeding its capacity. Equivalently, we only consider solutions where ∆j ≥ 0 for every
1 ≤ j ≤ k. We will later see that under these conditions the sorting algorithm solves all three
cost functions with a small error going fast to zero with n. We prove:

I Theorem 19. Let OPTf be the fractional optimal solution. If D is differentiable, the
difference between the cost on the integral point found by the sorting algorithm and the cost
on the optimal integral (or fractional) point is at most min {|∇D(ξ1)|, |∇D(ξ2)|}Ln , where
ξ1 ∈ [O1, OPTf ], ξ2 ∈ [OPTf , O2] and O1 and O2 are the two points on the bottom sorted
path between which OPTf lies.

Proof. Suppose we run the sorting algorithm on some input. Let OPTint be the integral
optimal solution, OPTf the fractional optimal solution and OPTsort the integral point
the sorting algorithm finds on the bottom sorted path. We wish to bound D(OPTsort)−
D(OPTint) and clearly it is at most D(OPTsort)−D(OPTf ). We now look at the two points
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O1 and O2 on the bottom sorted path between which OPTf lies (and notice that as far as we
know it is possible that OPTsort is none of these points). Since D(OPTf ) ≤ D(OPTsort) ≤
D(O1) and D(OPTf ) ≤ D(OPTsort) ≤ D(O2) the error the sorting algorithm makes is at
most

min {D(O1)−D(OPTf ), D(O2)−D(OPTf )}.

We now apply the mean value theorem and use our assumption that for every i, |P (i)| ≤ L
n . J

We remark that in fact the proof shows something stronger: the cost of any (not necessarily
optimal) fractional solution on the bottom sorted path, is close to the cost of the integral
point to the left or to the right of it on the bottom sorted path. We now specialize Theorem
19 for SP-MED and SP-MWOP.

F.1 SP-MED
I Lemma 20. The difference between the expected deviation in the integral point found by
the sorting algorithm and the optimal integral (or fractional) point for SP-MED is at most

1√
2πe ·

1
α ·

L
n · µ. In particular, when L = o(n) and α is a constant, the error is o(µ).

Proof. We know from Theorem 19 that the difference is at most

min {|∇D(ξ1)|, |∇D(ξ2)|}L
n
,

where ξ1 ∈ [O1, OPTf ], ξ2 ∈ [OPTf , O2] and O1 and O2 are the two points on the bottom
sorted path between which OPTf lies. Plugging the partial derivatives, we see that

|∇(σ2g)(∆2)| ≤ |µ (1− Φ(∆2))|+ | σ

2
√

1− b
φ(∆2)|

≤ µ+ σ

2
√

1− b
φ(∆2).

Moreover, σ
2
√

1−b φ(∆2) = σ
2
√

1−b
1

∆2
∆2φ(∆2) and a simple calculation shows that the

function ∆φ(∆) maximizes at ∆ = 1 with value at most 1√
2πe . By our assumption that

∆j ≥ 0 for every j, we get that

σ

2
√

1− b
φ(∆2) ≤ σ

2
√

1− b
σ
√

1− b
c2 − (1− a)µ

1√
2πe

≤ V

2
√

2πe
1

c2 − (1− a)µ.

Applying the same argument on O2 shows the error can also be bounded by V
2
√

2πe
1

c1−aµ .
However, (c1 − aµ) + (c2 − (1 − a)µ) = c − µ which is the total spare capacity, and at

least one of the bins takes spare capacity that is at least half of that, namely c−µ
2 . Since the

error is bounded by either term, we can choose the one where the spare capacity is at least
c−µ

2 and we therefore see that the error is at most V
2
√

2πe
2

c−µ . Since we assume c− µ ≥ αµ
for some constant α > 0, the error is at most V√

2πe
1
αµ . As we assume V ≤ µ2, Vµ ≤ µ which

completes the proof. J

This shows the approximation factor goes to 1 and linearly (in the number of services)
fast. Thus, from a practical point of view the theorem is very satisfying.
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F.2 SP-MWOP
I Lemma 21. The difference between minimal worst overflow probability in the integral point
found by the sorting algorithm and the optimal integral (or fractional) point for SP-MWOP
is at most O( L

αn ). In particular, when L = o(n) and α is a constant, the difference is o(1).

Proof. We know from Theorem 19 that the difference is at most

min {|∇D(ξ1)|, |∇D(ξ2)|}L
n
,

where ξ1 = (a1, b1) ∈ [O1, OPTf ], ξ2 = (a2, b2) ∈ [OPTf , O2] and O1 and O2 are the
two points on the bottom sorted path between which OPTf lies, and notice that even
though WOFP is not differentiable when ∆1 = ∆2, it is differentiable everywhere else.
We plug the partial derivatives and also replace φ(∆2)

σ2
with ∆2φ(∆2)

c2−(1−a)µ and similarly for the

other term. We get: min
{
|∆2φ(∆2)| · |( µ

c2−(1−a1)µ ,
1

2(1−b1) )|, |∆1φ(∆1)| · |( µ
c1−a2µ

, 1
2b2

)|
}
L
n .

∆φ(∆) maximizes at ∆ = 1 with value at most 1√
2πe . Also, (c1 − a2µ) + (c2 − (1− a1)µ) =

c− µ− (a2 − a1)µ ≥ c− µLn ≥
α
2µ, where α is the total space capacity, and a constant by

our assumption. Hence, at least one of the terms µ
c2−(1−a1)µ ,

µ
c1−a2µ

is at most 4
α . Also, for

that term, the spare capacity is maximal, and therefore it takes at least half of the variance.
Altogether, the difference is at most O( L

αn ) which completes the proof. J

G Unbalancing bin capacities is always better

Suppose we are given a capacity budget c and we have the freedom to choose capacities c1, c2
that sum up to c for two bins. Which choice is the best? Offhand, it is possible that for
each input there is a different choice of c1 and c2 that minimizes the cost. In contrast, we
show that for the three cost functions we consider in this paper, the minimum cost always
decreases as the difference c2 − c1 increases.

I Lemma 22. Given a capacity budget c and either SP-MED, SP-MWOP or SP-MOP cost
function, the minimum cost decreases as c2 − c1 increases. In particular the best choice is
having a single bin with capacity c and the worst choice is splitting the capacities evenly
between the two bins.

Proof. Recall that ∆1(a, b) = c1−aµ
σ
√
b

and ∆2(a, b) = c2−(1−a)µ
σ
√

1−b . Therefore, if we reduce c1
by c̃ and increase c2 by c̃, we get

∆̃1(a, b) def= c1 − c̃− aµ
σ
√
b

=
c1 − (a+ c̃

µ )µ
σ
√
b

= ∆1(a+ c̃

µ
, b).

Similarly, ∆̃2(a, b) = ∆2(a+ c̃
µ , b).

LetDevc1,c2(a, b) denote the expected deviation with bin capacities c1, c2,WOFPc1,c2(a, b)
denote the worst overflow probability with bin capacities c1, c2 and OFPc1,c2(a, b) denote
the overflow probability with bin capacities c1, c2. As Dev(a, b) = σ1(b)g(∆1(a, b)) +
σ2(b)g(∆2(a, b)),WOFP (a, b) = max {1− Φ(∆1), 1− Φ(∆2)} andOFP (a, b) = 1−Φ(∆1)Φ(∆2)
we see that

Devc1−c̃,c2+c̃(a, b) = Devc1,c2(a+ c̃

µ
, b),

WOFPc1−c̃,c2+c̃(a, b) = WOFPc1,c2(a+ c̃

µ
, b),
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Figure 9 Average two bins cost of the sorting algorithm for several values of c1
c

and synthetic
normally distributed data. Three cost functions that are considered: SP-MED, SP-MWOP and
SP-MOP. The x axis measures c

µ
.

OFPc1−c̃,c2+c̃(a, b) = OFPc1,c2(a+ c̃

µ
, b) and,

i.e., each cost graph is shifted left by c̃
µ .

Notice that the bottom sorted path does not depend on the bin capacities and is the
same for every value of c1 and c2 we choose. Let (a, b) be the optimal fractional solution for
bin capacities c1, c2. We know that (a, b) is on the bottom sorted path. Let ã = a− c̃

µ . We
saw that the cost function D ∈ {Dev,WOFP,OFP} satisfies Dc1−c̃,c2+c̃(ã, b) = Dc1,c2(a, b).
The point (ã, b) lies to the left of the bottom sorted path and therefore above it. As the
optimal solution for bin capacities c1 − c̃, c2 + c̃ is also on the bottom sorted path and is
strictly better than any internal point, we conclude that the expected deviation for bin
capacities c1 − c̃, c2 + c̃ is strictly smaller than the expected deviation for bin capacities
c1, c2. J

An immediate corollary is the trivial fact that putting all the capacity budget in one bin
is best. Obviously, this is not always possible nor desirable, but if there is tolerance in each
bin capacity, we recommend minimizing the number of bins.

Our simulation results, both on synthetic normally distributed data and on real independ-
ent data, also clearly show this phenomenon. Figure 9 shows the cost of the sorting algorithm
for the three cost functions as a function of c

µ , for
c1
c ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and synthetic

normally distributed data. We can clearly see that the cost decreases as c1
c decreases in both

data sets. The results for real independent data are very similar and we omit them due to
lack of space.
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