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Abstract—In this paper we investigate the problem of finding
minimum-delay application-layer multicast trees, such as the trees
constructed in overlay networks. It is accepted that shortest path
trees are not a good solution for the problem since such trees can
have nodes with very large degree, termed high-load nodes. The
load on these nodes makes them a bottleneck in the distribution
tree, due to computation load and access link bandwidth con-
straints. Many previous solutions limited the maximum degree of
the nodes by introducing arbitrary constraints. In this work, we
show how to directly map the node load to the delay penalty at the
application host, and create a new model that captures the trade
offs between the desire to select shortest path trees and the need to
constrain the load on the hosts. In this model the problem is shown
to be NP-hard. We therefore present an approximation algorithm
and an alternative heuristic algorithm. Our heuristic algorithm
is shown by simulations to be scalable for large group sizes, and
produces results that are very close to optimal.

Index Terms—Approximation algorithms, overlay networks,
peer-to-peer communications.

I. INTRODUCTION

MULTICAST is a key component in the design of group
communication applications which require efficient

data delivery to multiple destinations. However, IP multicast
which implements multicast functionality at the network layer
is still not widely deployed in current IP networks. To alleviate
this problem, several recent proposals [1] have advocated an
alternative approach, termed application-layer multicast or
end-host multicast, which implements multicast functionality
at the application layer using unicast network-level services
only, forming an overlay network between end-hosts.

The goal of application-layer multicast [2] is to construct and
maintain efficient distribution trees between the multicast ses-
sion participants, minimizing the performance penalty involved
with application-layer processing. Many proposals attempt to
optimize the cost of the multicast delivery tree using applica-
tion-level performance measures such as delay or throughput.
The systems, which aim at reducing the overall delay [2]–[7],
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construct a minimum-height (or minimum-diameter) tree with
constrained degrees. The degree constraints are used to con-
trol the network resource usage, i.e., available bandwidth or
stress on the physical links. However, this solution stipulates the
usage of a dual-cost optimization objective which mixes net-
work-level and application-level costs to characterize applica-
tions performance.

In this paper we advocate an application-centric approach
which quantifies system performance using application-level
costs only. We claim that the conventional overlay network
model and its corresponding delay measure are designed to
characterize multicast systems which assume network-level
data distribution capabilities. Unfortunately, message pro-
cessing by end-hosts involves an additional delay penalty
which is not captured by such models and is related to applica-
tion-layer implementations of packet duplication and routing.
In particular, the shift of multicast functionality to the upper
level influences the simultaneous distribution capabilities of
end-hosts, implying a communication model with sequential
message distribution. This constraint stems from the funda-
mental change in the characteristics of the routing infrastructure
assumed by the overlay network, attributed to the difference
between message distribution speeds of routing nodes (i.e.,
end-hosts) in overlay networks and packet distribution speeds
of routers in conventional physical networks.

For example, consider the simple network of Fig. 1(A),
composed of three hosts , and and two routers
and connected using a high-speed backbone, where host

uses a low-bandwidth access link for network connectivity,
e.g., modem access, and use high-bandwidth LAN
access connectivity. Assume that the goal of the overlay system
is to devise a multicast tree that provides minimum distribution
delay from to and . Clearly, a multicast system must
be careful to avoid delegating large degree to the low-band-
width host in order to eliminate unnecessary bottleneck due
to its low-speed data distribution capabilities. Fig. 1(B) depicts
the corresponding optimal multicast tree. Now, consider the
conventional routing algorithm used by many application-layer
multicast architectures that optimize tree delay, namely the
shortest path tree algorithm. In this case the shortest path mul-
ticast tree reduces to a star topology [Fig. 1(C)], which ignores
the performance penalty at the star center. Hence, serialized
message distribution which is irrelevant to IP multicast schemes
must be accounted for in the evaluation of overlay multicast
architectures. Surprisingly, however, many application-layer
architectures which optimize tree delay have neglected these
implications on the overall performance of group communica-
tion applications.

1063-6692/$25.00 © 2007 IEEE
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Fig. 1. Comparison between application-layer multicast and network-layer
multicast in a simple heterogeneous overlay network.

Another factor which constrains parallel message distribu-
tions in overlay networks is the processing capacity of end-host
machines. For instance, consider a server which implements
router like functionality at the application layer, and therefore
may not have enough CPU power to handle message processing
at the full speed of its network interfaces. Hence, the effective
message distribution rate of an end-host is shaped by two fac-
tors, the bandwidth of the access link connecting the host or its
local area network to the physical network, and the processing
power and the computational load on the host machine. A re-
cent study [8] that measured the actual end-host heterogeneity
of popular peer-2-peer (p2p) overlay systems showed that the
bandwidth and latency parameters can vary by several orders of
magnitude across different hosts in the system.

In this paper, we present an overlay network model which
captures the realistic costs involved with application-layer mul-
ticast. The model is a mathematical generalization of a com-
munication model developed by Cidon et al. [9] for high-speed
networks, and similarly it incorporates two separate delay mea-
sures. The processing delay measure, which is a reciprocal of
the effective message distribution speed of an end-host applica-
tion, and the communication delay measure, which represents
the delay of traversing an overlay link. This framework enables
us to characterize the performance of multicast trees using a
single cost, the overall delay of message distribution.

We use the proposed framework to develop heuristic and ap-
proximation algorithms for the basic problem of optimal multi-
cast tree construction. Both the heuristic and the approximation
generate minimum-delay trees that intrinsically balance short
latency with small degree, and thus avoid an external trial-and-
error type of balancing between the two, i.e., we do not impose
a maximum degree on our trees. Our heuristic algorithm con-
structs such trees efficiently and thus can scale to large multicast
groups, which is a known problem [2]. Our algorithms supports
fully connected topologies as well as structured topologies, used
in some p2p overlay networks [10]. We thus address the issue of

optimal multicast in partially connected networks and provide
performance bounds for tree and grid graph structures.

The presented algorithmic solutions can be effectively used to
implement centralized overlay systems, such as p2p- and server-
based systems. The heuristic algorithm is particularly useful
in the context of two-tier server-based architectures [5], [11],
[3] which construct a virtual tree among the servers to pro-
vide an efficient content and data delivery services to end-users.
Each end-user registers to a server in order to receive multicast
services, and the server handles the dissemination of the ag-
gregated traffic. Such semi-static architectures employ reliable
servers to provide high-availability service, stipulating a simple
implementation with low computational overhead due to minor
topology changes. Furthermore, a centralized approach is ca-
pable of providing quick and efficient session management ser-
vices by sharing the computational load among several overlay
servers [4].

The main applicability of our algorithms is in the context
of delay-sensitive multicast applications, which require tight
bounds on the end-to-end delays due to jitter and timing con-
strains. Applications which belong to this category include
audio conferencing, real-time media streaming, content distri-
bution services, and multiplayer distributed games.

The rest of this paper is organized as follows. The next section
formulates the overlay communication model. In Section III we
discuss the problem of optimal multicast tree construction and
show that this problem is NP-complete. In Sections V and VI
we develop approximation and heuristic algorithms for solving
this problem. Section VII deals with performance analysis of
the heuristic algorithm for several overlay topologies. An exper-
imental evaluation of our solutions is presented at Section VIII.
Finally, Section IX concludes the paper.

II. OVERLAY COMMUNICATION NETWORK MODEL

An overlay network is a fully connected virtual network
formed by hosts which communicate with each other using a
physical network, such as the Internet. The overlay network
utilizes the regular unicast services of the physical network to
provide communication among hosts, and do not require any
special support at the network level. The delay experienced
by a message that travels between hosts is composed of two
elements: (a) Communication delay—which represents the
delay of traversing the unicast path between the hosts. This
component includes the accumulated propagation and queuing
delays of the physical links on the unicast path, and the mes-
sage reception overhead at the receiver host. (b) Processing
delay—which represents the delay of processing a message
at the sender host. This element includes the overhead of
preparing a message for transmission and the transmission
delay through the physical access link.

Although current implementations of operating systems en-
able applications to perform concurrent message transmissions,
the concurrent transmissions would be serialized when passing
through a physical access link. Typically, this serialization is
performed at the hardware level by the access equipment. Thus,
sequential distribution of messages should be accounted for in
order to avoid unrealistic application design schemes which rely
on simultaneous message dissemination capabilities.
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We define an overlay network model based on a generaliza-
tion of a communication model developed by Cidon et al. [9].
The overlay network is modeled by a directed complete graph

, where is a set of vertices representing hosts, and
is a set of edges representing unicast paths. We use the terms

“host” and “link” to refer to the vertices and edges in the overlay
graph. Each overlay edge is associated with a com-
munication delay cost , and each host is associated
with a bounded and finite processing delay cost . Note that
the original model of Cidon et al. [9] assumes homogenous pro-
cessing and communication costs, i.e., , and

.
The direct communication between hosts can be character-

ized as follows. Assume that at time host initiates processing
of a message designated for host . Then, host is busy pro-
cessing this message during the time interval and
the message arrives at host at time . There-
fore, the processing delay measure represents the shortest time
interval between consecutive message transmissions.

It is important to note that in our model, the delay costs
between pairs of hosts do not necessarily satisfy the triangle
inequality. This is a known phenomena in the Internet, stem-
ming in part from policy routing. For example, Jamin et al.
[12, Figs. 2 and 3] show that about 30–50% of the triangles in
the Internet do not obey the triangle inequality.

III. OPTIMAL MULTICAST TREE PROBLEM

In this section we state our design objective formally and
show that the optimal multicast tree problem is NP-complete.

We use the term multicast scheme to refer to the task of dis-
tributing a message from a source host to a subset of hosts in
the overlay network. Since one cannot relay on the cooperation
of nonparticipating hosts (i.e., hosts which do not belong to the
multicast group ), we assume that only the hosts in are al-
lowed to participate in the distribution. Thus, a multicast scheme
in the graph can be viewed as a broadcast scheme,
i.e., the task of distributing a message to the entire network, in
the subgraph induced by the host set .

We formulate the optimal multicast tree problem, also de-
noted as minimum-delay multicast (MDM) problem, as follows.

Definition 1: The optimal multicast tree problem (MDM):
Given a directed complete graph , a multicast group

, a source host , a nonnegative real processing
delay for each vertex , and a nonnegative real com-
munication cost for each edge , find a multi-
cast scheme which minimizes the delay by which all the hosts
in receive a message from .

Our objective is to devise a multicast scheme which mini-
mizes the arrival time of the message to the last host. We there-
fore restrict this study to nonlazy multicast schemes (this term
was introduced in [13]), where a host that has already received a
message does not delay message distribution by becoming idle.
Such schemes correspond to an ordered directed tree , rooted
at , and spanning . In this tree the outgoing edges of a nonleaf
node are ordered according to the message distribution order
of host in the corresponding multicast scheme. That is, the th
outgoing edge corresponds to the th transmission. The recep-
tion delay of host , denoted by , is defined as the time at

which receives a message from . By definition, the reception
delay of is zero. The cost of a multicast tree is defined as
the earliest time at which all the hosts have been notified, i.e.,

. Note that it is also possible to look for a tree
that minimizes the average message arrival time. However, the
average may not be an appropriate metric because improving the
delay of nodes with small reception time has no real impact on
the application performance while actually decreasing the tree
cost.

Given a multicast tree we can easily calculate the optimal or-
dering using a recursive computation working bottom-up. This
recursion is presented in the Appendix. Thus, in the rest of the
paper we neglect the ordering and concentrate on finding the op-
timal tree.

We show that the MDM problem is NP-hard using a simple
reduction from the telephone broadcast (TB) problem. In the
Telephone model communication is synchronous and each node
can either send or receive a single message per communica-
tion round. The TB problem seeks an optimal broadcast scheme
which distributes a message from a root node, , to all the nodes
in a graph in a minimum number of rounds. The TB problem is
known to be NP-hard for arbitrary graphs [14].

Theorem 1: The MDM problem is NP-hard.
Proof: We will show that given a delay bound , deciding

if there is a multicast scheme with a distribution delay of at most
is NP-complete. The proof is by a reduction from . Given

an instance to and , we construct
an instance to MDM as follows: a complete overlay network

with unit processing costs , and
communication delay defined as
and . We let and .
In the resulting MDM instance, there is a multicast scheme with
a distribution delay at most if and only if there is a telephone
broadcast with at most rounds.

IV. MULTICAST ALGORITHMS

A. Related Work

Broadcast and multicast are important communication prim-
itives for distributed computing. They have been extensively
studied in the context of several communication models which
consider sequential message distribution. One model which was
widely investigated is the basic telephone model, described in
the previous section. Some telephone model studies have fo-
cused on the problem of designing optimal broadcast schemes
for specific classes of graphs (see [15] for a comprehensive
survey), while others have suggested approximation algorithms
for optimal broadcasting in general graphs [13], [16]–[19].

Cidon et al. [9] presented a communication model for high-
speed networks which captures communication costs using two
parameters—transmission delay and computation delay. In this
model the network is represented by a graph . Each
node is associated with a processing delay cost and each
edge is associated with a communication delay cost . The time
needed for a node to handle the transmission of messages is

. For complete communication graphs the authors presented
an optimal tree-based broadcast algorithm (see [9]) and showed
that the broadcast delay using such trees is logarithmic in the



476 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 2, APRIL 2007

size of . This implies that any nonlazy broadcast (such as our
proposed heuristic algorithm scheme) would lead to a broadcast
tree with a logarithmic delay. Raz and Shavitt [20] presented a
general version of this model which supports IP-like routing and
considered efficient multicasting algorithm (based on balanced
trees) for line topologies.

The postal model [13] is a related model which incorporates
nonuniform communications and switching delays and thus
captures networks which may have different link delays and
different switching times between messages. Optimal algo-
rithm for broadcasting in complete homogenous-cost postal
networks is given in [21]. Several approximation algorithms
with polylogarithmic ratios were suggested for minimum time
broadcasting in general graphs [13], [18], [19]. For the undi-
rected broadcast problem the best known approximation ratio
is [18], where is the size of the broadcast
group. For the directed broadcast problem the upper bound on
the approximation ratio is higher and currently stands on
[19].

B. Comparison of Postal and Overlay Models

Although both models (the postal and overlay) incorporate
similar measures for characterizing heterogenous networks, to
the best of our knowledge postal-based approximation algo-
rithms cannot be directly used to solve the MDM problem. This
results from a timing difference between the two models. Before
moving on to describe this discrepancy let us first give a formal
description of the postal model.

Similarly to the overlay model the postal model represents the
communication network using a complete graph .
Each node is associated with a delay parameter such that
is considered busy (engaged only with the current transmission)
in the first time units following the previous transmission
time. Each link is associated with a delay parameter

which represents the delay of delivering a message from
to .

The difference between the models can be categorized as
follows.

• In the postal model the communication latency
incorporates the sending time of node , whereas the
overlay model incorporates the sending time in the pro-
cessing delay of . Thus, the delay of delivering the th
message from to is for the
postal model and for the overlay model
(assuming all costs are represented by postal notations

).
• The postal model enforces node delay constraints by as-

suming that .
To approximate the directed MDM problem one can use

an existing postal-based approximation algorithm. Consider
an overlay configuration , where is
a directed graph and and are associated communication
and processing delay functions, respectively. We construct
a cost-preserving postal configuration , such that

. The key property
of this construction is that it guaranties timing equivalency
between the models. Thus, using the transformation on the

edge costs, any postal-based -approximation1 algorithm for
the directed broadcast problem would lead to -approximation
algorithm for the directed MDM problem.

The latter approach can be used to solve the undirected
MDM problem as well (by replacing each undirected edge with
two antiparallel directed edges with equal length). However, as
noted in Section IV-A the current best known approximation
ratio for the undirected broadcast problem is lower than the
one for the directed problem. This motivated us to develop a
postal-based approximation for the undirected MDM problem.
In the following section we present a more sophisticated
transformation technique, which given a postal-based -ap-
proximation algorithm for the undirected broadcast problem
constructs an -approximation algorithm for the undirected
MDM problem.

In Section VI we use an alternative heuristic approach to de-
velop a greedy algorithm for the MDM problem which admits
a simple implementation. We also show that the suggested ap-
proximation and heuristic algorithms can be easily extended
to generate shared trees without suffering from significant per-
formance degradation. The shared-tree approach implies that a
single tree is constructed for the purpose of multisource multi-
cast (see [22]). Of course, using multiple single source multicast
trees always achieve lower delay, but at the expense of the man-
agement and resource usage overhead.

V. APPROXIMATION ALGORITHM

Given a postal-based -approximation algorithm for the
undirected broadcast problem, our goal is to design an

-approximation algorithm for the undirected MDM
problem. We consider a two step design. First, we develop a
basic approximation algorithm which guarantees the desired
approximation ratio up to an additive factor. In the second
step we use the basic algorithm as a building block to derive
an improved approximation algorithm, and get the desired

-approximation ratio.

A. Basic MDM Approximation Algorithm

We now describe a polynomial-time algorithm for approxi-
mating the minimum multicast delay in an overlay network. The
input is composed of an overlay network configuration
and a source host , where is an undirected
graph and and are the associated processing and communi-
cation cost functions, respectively. Recall from Section III that

is the subgraph induced by the multicast group .
The basic approximation algorithm is given below.
Algorithm Approx-MDM

1. Construct a Postal configuration instance
that consists of the graph , switching time function

, and communication latency function
.

2. Use a postal-based approximation algorithm to compute a
multicast tree in rooted at .

3. Return the computed multicast tree.
Let OPT be the minimum multicast delay in for

source host and multicast group . Let and be

1An �-approximation algorithm is an algorithm that guarantee to achieve a
result which is at most � times worse than the optimal.
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the maximum and minimum processing delays of the hosts in
, respectively.
Theorem 2: The multicast delay of the solution that Approx-

MDM algorithm returns, is at most OPT .
Proof: Consider an arbitrary multicast tree which spans

. Let denote the reception delay of a node
assuming postal model delays defined by the configuration .
By substituting the computed costs of with the corresponding
overlay input costs we get the following relationship between
the reception delay costs:

(1)

The latter equality follows from the delay gap between the
models which consists of a single processing round per each
traversed host (see Section IV-B).

Consider the following quantities computed assuming postal
model delays defined by . Let OPT be the multicast delay
of an optimal tree (in the postal model), and let be a
node with a maximum reception delay in . Therefore

OPT OPT OPT

(2)

where the first inequality follows from (1). Substituting OPT
according to inequality (2), and using the fact that the postal
delay of the resulting solution is at most OPT (since we
use an -approximation algorithm), gives the requested upper
bound.

When the processing delays are all equal the approximation
ratio reduces to . Note that we do not restrict the communica-
tion costs to be homogeneous.

Theorem 3: Consider an overlay model with homogenous
processing costs, i.e., . In this configuration
the multicast delay of Approx-MDM is at most OPT .

Theorem 3 can be obtained by substituting
in Theorem 2.

Moreover, when the processing delays are all at most OPT,
our approximation algorithm for the MDM problem is an

-approximation. This fact follows by Theorem 2.
Theorem 4: Consider an overlay model with

OPT . In this configuration the multicast delay of
Approx-MDM is at most .

Recall from Section IV-B that the postal model enforces node
delay constraints . Observe that we can
premultiply in Approx-MDM by 2 for all so the re-
sulting instance satisfies this condition of the postal model.
In this case we lose a factor of 2 in the approximation ratio.
Thus, in the rest of the paper we can ignore these constraints
and assume general mode delays.

Given an undirected network configuration we can modify the
(rooted tree) solution to support multisource multicast. Let be
such a multicast tree rooted at . To multicast from an arbitrary
host we simply reverse the direction of the edges on the
path from to , i.e., the undirected version of is the shared
tree. The multicast delay of an arbitrary host is at most

where denotes the optimal
multicast delay from .

B. Improved Approximation Algorithm for the MDM Problem

We now show how to improve our approximation algorithm,
and get an -approximation. We first assume that we know

in advance. Our improvement is based on the following
insight.

Observation 5: Let be an optimal solution to the MDM
problem, then each vertex such that OPT, is a leaf in

.
Proof: A vertex with OPT does not transmit to

other vertices during the reception delay of .
We identify the subset of vertices such that for every

OPT. induces a connected subtree over .
Observation 6: The optimal solution delay of the instance of

MDM defined by the induced subgraph of over , with the
restriction of and on has a reception delay of at most OPT.

Proof: The subtree of induced over is a feasible so-
lution with a reception delay of at most OPT.

We approximate the MDM using the Approx-MDM algo-
rithm where the input graph is the induced subgraph of over .
This approximate solution has a delay of at most OPT.
This is so by Theorem 4 since OPT . Now, we
are left with the problem that the vertices in needs to send the
message to . Note that the vertices in do not par-
ticipate in broadcasting.

We identify a bipartite graph (of
allowed transmissions) such that its sides are and , and
there is an edge in if and only if OPT. Next,
we identify a degree bound for each vertex as follows:

OPT for all and for
all .

We find a maximum sized -matching in with degree
bounds . This can be computed using a maximum flow com-
putation in a bipartite graph. If the -matching does not span
all the vertices in then our guess of OPT is too small.
Whereas, if we use a value of OPT that is at least as large as the
real one, then induces a feasible -matching that spans all
the vertices in . In the last case we add the set of edges
that belong to the -matching to our constructed tree, and we
obtain a spanning tree that spans .

Lemma 7: If we know the actual value of OPT, then the above
algorithm is an -approximation.

Proof: Denote by the solution returned by the algo-
rithm. For each the reception delay of in is at most

OPT. At time OPT the vertices in have al-
ready received the message from the source .

For a vertex , by construction the reception delay
of is at most the reception delay of its father in (where

) plus the length of time from the time OPT until
starts transmitting to plus . The reception delay of

in is at most OPT because at time OPT the
vertices in have already received the message. The edge
belongs to the -matching, and therefore the number of edges in

that are adjacent to is at most . Therefore, since the time
OPT transmits to at most vertices, and therefore

it starts to transmit to at time at most OPT
OPT. Since OPT, and

therefore the reception delay of is at most
OPT.
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Fig. 2. Greedy tree construction for the MDM problem.

In order to obtain an -approximation algorithm we note
that if we know the set , the edge set , and the set of
degree bounds for all the vertices in that corresponds to the
value of OPT, then our algorithm is an -approximation.
Note that all together there are critical values
in which these information is changing, where and denote
the number of edges and nodes in , respectively. Thus, we
define a set of critical values, and if the execution
of the algorithm for OPT and OPT differ
for all . Moreover, can be identified in time.
We sort and apply a binary search over it. In each iteration
we pick a value OPT of OPT that is between a pair of adjacent
critical values, and we apply our algorithm with this guess. If
we get a feasible solution such that its reception delay is at most

OPT then OPT OPT, otherwise OPT OPT.
This binary search uses iterations. Each iteration is
polynomial, and therefore the resulting algorithm is polynomial.

Picking the best feasible tree that we obtain during the binary
search gives an -approximation algorithm. We summarize
this by the following theorem.

Theorem 8: There is a polynomial-time -approximation
algorithm for MDM.

Note that if the -approximation algorithm for the postal
model is strongly polynomial time algorithm, then our ap-
proximation algorithm for the MDM problem is also strongly
polynomial.

VI. HEURISTIC ALGORITHM

We introduce a heuristic tree construction algorithm, named
largest ready time first (LRF), which solves the directed variant
of the MDM problem. The proposed algorithm computes the
multicast tree incrementally using a greedy approach; for each
host not yet included in the tree, the algorithm computes its
minimum reception delay, and the host with the maximal delay
quantity is selected. The tree is extended with the hosts on a
minimum-delay path between the selected host and a notified
host. Fig. 2 shows the steps of the algorithm.

The input to this algorithm is the same as the input to the
Approx-MDM, except for the source host which is denoted by

. The algorithm maintains a ready time attribute for each
host which records the minimum time at which the host
is free to initiate processing of a new message. The ready time
is set to infinity to indicate nonnotified host. The constructed
tree is denoted by and the corresponding set of notified hosts
by . In each iteration, the algorithm determines for each
host its mate host by selecting
a path which minimizes the ready time attribute of , setting
to indicate the host with the maximal reception delay. Then, it
updates the ready time of the hosts on the path from to to
reflect the processing time involved with delivering a message
to the newly notified host , and it adds the path hosts to the
constructed tree . The variable indicates the current updated
host. The algorithm terminates when all the hosts are notified.

To be able to calculate the connection cost between a nonnoti-
fied host and a notified host, a preprocessing phase of computing
all pairs shortest path using the Floyd–Warshall algorithm [23]
is implemented. Given a pair of hosts and connected by
a path of length , the cost of this path is de-
fined as , where de-
notes the th host on this path, i.e., this cost represent the min-
imum distribution delay (along the specified path) from to

. A shortest path from host to host is defined as any path
between these hosts with minimum cost. Therefore, the input
to the Floyd–Warshall computation is an weight matrix

defined as

if
otherwise.

where denotes the size of . The output of the all pairs
shortest path computation is composed of two matrices;
all pairs distance matrix and predecessor matrix

(see [23]). Observe that the shortest path from the
source to any host is a lower bound on the cost of the optimal
tree.

This algorithm can be extended to support a shared-tree solu-
tion using the following modification. At the initialization phase
the longest path in the graph is computed using the weight
matrix , and the hosts on this path are used as the initial set
of notified hosts in . The shared-tree variant uses this initial
selection instead of the original one and proceeds with normal
tree construction as in the original algorithm.

The complexity analysis of this algorithm is straightforward.
The all pairs shortest path computation requires time.
Each iteration requires time to find a single mate host,
and time to extend the tree. The total time per iteration is
therefore , and the total running time of the LRF heuristic
is .

We show using an example [see Fig. 3(A)] a lower bound
on the approximation ratio of the heuristic tree. Consider the
following complete undirected graph with
hosts denoted by , with processing costs defined as

, and communication costs defined
as

if
if
otherwise

where . For the simplicity of presentation Fig. 3(A) omits
the edges with cost . Assume that the source host is and
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Fig. 3. Example that provides
p
n approximation ratio for the heuristic

tree. (A) The input graph (B) The heuristic tree. (C) An optimal tree for
n = (k � (k + 1))=2.

that . Therefore, the LRF scheme would have dis-
tribute the message to the rest of the hosts using processing
rounds, such that the tree cost is [see Fig. 3(B)]. On the other
hand, consider an improved scheme in which distributes the
message to hosts, and the last host in the graph receives the
message in time units, where is some positive integer.
Let denote the length (i.e., the number of edges) of path

. Such a scheme can be obtained by a tree composed of
paths which share only single host, (i.e., only

has an out-degree larger than two), and the lengths of these
paths form the following nonincreasing sequence:

, , whereas for a single index in this set
we may have . Fig. 3(C) depicts such a tree when

. Assume that distributes the message
to these paths, i.e., to its children in the tree, according to a
decreasing path length order. Therefore, the cost of the optimal
tree is less than . Note that in this particular scheme

. Since the set of paths span all the hosts in we have that
, and therefore we get approximation ratio

for the multicast delay. We conjecture that this example repre-
sents the worst case, namely that our LRF heuristic algorithm is
an -approximation.

VII. TOPOLOGIES

In this section we analyze the performance of broadcast in
partially connected overlay networks (e.g., structured graph
topologies) which are widely used in various contexts.

Partial connectivity is implemented by many data distribution
services, such as content distribution networks and multimedia
streaming systems, which utilize a dedicated network of leased
lines and virtual connections to provide connectivity among
application servers. These systems optimize resource usage
and thus enforce connectivity constrains to achieve efficient
resource utilization. Structured p2p systems [10] are another
class of applications which utilize partial connectivity overlays.
Despite the fact that many of these systems employ distributed
architectures, our centralized application-centric approach can
still be used to provide theoretical performance bounds on the
multicast delay in such systems.

Partial connectivity may also arise in cases where due to
anonymity requirements not all the hosts are aware of each other

and thus connectivity is sparse. That is, hosts use local policies
to override universal connectivity. For example, consider se-
curity policies in the Internet, which limit the connectivity of
hosts located behind firewalls and NAT facilities.

Performance analysis of arbitrary topologies is relevant also
for active networks [20]. Active networks use programmable
routers to add new functionality and services to the network,
and thus may be viewed as a network-level implementation of
overlay networks. For example, Raz and Shavitt [20] have used
a framework that considers the processing and communication
delays in active networks to develop and analyze the time
complexity of several basic algorithms, including multicasting.
Their framework uses the processing delay measure to capture
the delay imposed by a software router implementing copy and
forward of packets.

To support networks with partial connectivity an extended
overlay model is assumed where the communication cost of
an overlay link is set to infinity, i.e., , to
indicate the absence of direct communication from to . In
the following section we develop performance bounds for the
minimum-delay multicast problem in several common graph
topologies. The good performance on the examined topologies
may indicate that our heuristic can perform well in other
configurations.

A. Trees

We consider broadcasting in tree graphs. In these graphs each
node has a single path from the root, implying that any broadcast
scheme is characterized only by the message distribution order
of nonleaf hosts. Recall that such instances can be solved by
dynamic programming procedure in polynomial time.

Lemma 9: Any (nonlazy) broadcast scheme provides a factor
approximation for the minimum broadcast delay for a tree

graph with a maximal degree of .
Proof: Denote by the source host. We use the path cost

notation defined in Section VI, i.e., the cost of a path repre-
sents the minimum distribution delay along it. In any (nonlazy)
broadcast scheme the delay by which the last notified host, de-
noted by , receives a message is composed of two quantities,
the cost of the path from to , and the sum of the additional
processing delays invoked by the hosts on this path (the addi-
tional delay of is assumed to be zero). By definition, the former
quantity is no more than OPT, where OPT denotes the optimal
broadcast delay. We denote by the path of length

which connects between and , such that and
. Due to the bound on the degree of the tree, each node

may delay the processing by at most processing rounds,
and therefore the sum of the additional processing delays is at
most , where denotes the th
host on the path from to . It is easy to see that this quantity
is at most OPT, and the lemma follows.

This result implies that multicasting in a degree-bounded
tree at an arbitrary order, such as the delivery schemes used by
overlay multicast systems which ignore sequential distribution
of messages (see for example [24]), produces a delay which is
up to a multiplicative constant factor higher than the optimal
result.
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B. Grids

This section investigates broadcasting in the context of ho-
mogeneous rectangular grid graphs. Let denote
an grid graph. Each host in this graph is uniquely identi-
fied by a row and column indexes , where and

. The broadcast analysis is conducted assuming a ho-
mogeneous cost model where

. This particular selection reduces the model
to the well-known telephone model, and enables the usage of
known results in grid broadcasting.

The problem of finding an optimal broadcast scheme in 2-D
grid graphs have been previously investigated by Farley et al.
[25]. They have shown that given a grid graph with a node

at position , then

if
if or
otherwise.

where denotes the optimal broadcast time (i.e., delay) from
, and denotes the maximal distance from to a corner node

in . The distance between a pair of nodes and in posi-
tions and , respectively, is defined as the number
of edges on the shortest path between them.

Next, we provide a new result on broadcasting in grid graphs
using shortest path trees. Let OPT denote the cost of an optimal
solution.

Theorem 10: The broadcast delay of a shortest path tree for
homogenous cost grid graph is at most OPT

Proof: Let denote the source host, and let denote a di-
rected shortest path tree (SPT) rooted at . The SPT structure
implies the following degree delegation in . If is a corner
host then its degree is 2 and the rest of the hosts have maximal
out-degree of 2. If is a side host or interior host, then the max-
imal out-degree of the interior hosts which share a common co-
ordinate with is 3 and the maximal out-degree of the rest of
the hosts is 2. The degree of is 3 when is a side host, and
4 when it is an interior host. Let denote the set of hosts in

such that the out-degree of these hosts in is 3, i.e.,
where denotes the

out-degree of in .
Let be a binary subtree of rooted at , such that is

either a child of or a side host which is a child of .
The grid topology implies that a subtree of height , rooted at
an internal node of , has a single leaf at depth . Therefore,
by using a bottom-up recursive computation (see Section III)
we get that the optimal broadcast delay from the root of a
tree with height is . If is a corner host then has two
subtrees linked to it (that is, the root of each subtree is a child of
). Since only one of these trees has a height of while the

height of the other is at most , the broadcast delay from a
corner host is . This delay achieves the optimal value (devised
by Farley et al. in [25]), and the lemma follows for this case.

The other cases are analyzed using a compressed version of
. A tree with height can be “compressed” to a path with

edges which preserve the broadcast delay of the tree. The com-
pressed version of , denoted as , is produced by replacing all
the subtrees with their corresponding paths. This compres-
sion does not modify the broadcast delay of .

Let denote a subtree in rooted at a child of . By defini-
tion, the maximal out-degree of this tree is 3. Next, we consider
the case of trees which include at least a single node with
an out-degree of 3. The grid topology implies that a subtree of
height rooted at an internal node of , may have at
most two leaves at depth . Each host has three children
in , and , ordered according to the height of the sub-
trees rooted at these hosts, such that
where , denotes the subtree rooted at , and

denotes the height of . Given a subtree of height
rooted at with a single leaf at depth , the grid topology im-
plies that . If the subtree has
two leaves at depth , then . By
using a bottom-up recursive computation we get that the broad-
cast delay from the root of a tree with height is at most

when there is a single leaf at depth , and at most
when there are two leaves at depth .

If is a side host, the root of is linked with three subtrees.
If is a middle side host (i.e., a host with coordinate such
that or ) there are two hosts at
distance from . If these two hosts reside in the same tree,
then the maximal height of the remaining trees is and
we have that the broadcast delay from a corner host is at most

. If these two hosts reside in different subtrees, then the
maximal height of the third subtree is and the broadcast
delay is again at most . In the case of a non-middle side
host, the single host at distance is located at one of the
trees and the maximal height of the remaining trees is ,
and therefore the broadcast delay is at most . Therefore,
the lemma follows for this case.

If is a interior host then has four subtrees linked to it.
By checking all the possible combinations of tree heights and
the location of the hosts at distances and , it can be
easily shown that the broadcast delay from an interior host is at
most OPT .

The latter result implies that any SPT-based broadcast (e.g.,
flooding with a sense of direction) leads to a nearly optimal
result.

VIII. SIMULATION STUDY

In this section we analyze the average performance of the pro-
posed algorithms on random networks assuming various group
sizes and wide range of network costs.

The simulations assume two undirected network topologies,
fully connected and partially connected overlay graphs. The
topologies of the physical networks and the partially connected
overlays are constructed using a power-law graph generator.
This generator is based on the Notre Dame model [26] which
constructs undirected graphs with power-law node degree fre-
quency distribution using an input parameter set .
This parameter set defines the properties of the resulting graph:

is the initial node set, is the probability to add new
links, and is the probability to rewire links. A common pa-
rameter set was used to derive
all the topologies. This set results in graphs with an average de-
gree of approximately 4.38. In addition, in all the simulations
we have selected the multicast group to include all the hosts in
the network.
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In our simulations we compare the performance of our
heuristic algorithm (labelled as H-MDM in the shown graphs)
with the following schemes.

• Approx-MDM. The underlying postal-based approxima-
tion was selected to be Bar-Noy’s logarithmic approx-
imation algorithm [13]. This algorithm needs to solve
multiple linear programs and therefore it requires high
polynomial order running time. In our simulation envi-
ronment which includes 1.5-GHz PCs with 512M RAM,
the Approx-MDM algorithm was able to effectively solve
problems with up to 25 hosts.

• Shortest Path Tree. This tree is evaluated to assess the per-
formance penalty involved with SPT routing, a common
routing scheme employed by many overlay multicast
systems. The SPT is computed using Dijkstra’s algorithm
[23], where the edge weights are defined using the formu-
lation of Section VI.

• Degree Bounded Tree. We compare against a scheme
which limits the degree of the tree nodes, MDDBST,
developed in [11] for application-level multicast systems.
This algorithm is a heuristic for computing minimum-di-
ameter, degree bounded tree (an NP-hard problem) and
is structured similarly to Prim’s algorithm for minimum
spanning tree [23]. Unlike many other application-layer
tree construction suggestions this scheme allows the user
to enforce a degree bound on each node. In the simulations
we set the degree bound of a node that has a processing
delay (where is uniformly selected from the range

) to be , i.e., the degree bound is a linear
function of the processing delay.

• Delay bound. Since the MDM problem is NP-hard (see
Section III) the optimal solution could not be computed.
Instead, we select the maximum cost of the shortest path
(as defined in Section VI) from the source to any other host
in the graph. The selected value is a nontight lower bound
on the performance of any multicast scheme. In the graphs
shown this delay bound is labelled as M-SPATH.

A. Simulation Results

First we describe the format of the plotted graphs. In all the
presented results we apply 40 independent simulation experi-
ments per each data point, plotting the mean value with error
bars representing a 95% confidence interval. In the case of fully
connected overlay networks, we present the simulation results
using two plots, one that covers small group sizes up to 25 mem-
bers and another which shows larger group sizes up to 400 mem-
bers. Thus, the performance of the heuristic and approximation
trees is compared in the context of small group sizes, while large
group sizes are used to demonstrate the scaling properties of the
heuristic tree versus the SPT and MDDBST.

Next, we present the results for the case of a fully con-
nected overlay network. Figs. 4–6 plot the costs, i.e., the
multicast delays, of the LRF, Approx-MDM, MDDBST,
and shortest-path trees as a function of the multicast group
size. In each simulation the network costs are randomly se-
lected using a discrete uniform distribution on the intervals

, respectively.

Fig. 4. Multicast delay for a clique topology with random network costs from
[1; 10].

Fig. 5. Multicast delay for a clique topology with random processing costs
from [1; 10] and unit communication costs.

Fig. 6. Multicast delay for a clique topology with random communication costs
from [1; 10] and unit processing costs.

The left range in each pair is the communication cost range,
and the right range is the processing cost range.

According to Fig. 4, the cost of the heuristic tree is up to
30% smaller than the cost of the approximation tree. Fig. 5 in-
dicates that the trees achieve similar cost when the processing
costs dominate the communication costs. Fig. 6 shows that in
the alternative case of network with dominating communication
costs, the heuristic tree cost can be up to three times smaller
than the approximation cost. The latter case captures Internet-
like scenarios. We note that the performance gap between the
heuristic and the approximation, stems from the fact that the
approximation scheme inherently constructs trees with loga-
rithmic height. Such trees are more likely to include high-cost
communication delays, which increase their inefficiency com-
pared to heuristic trees.

The plots indicate that the cost of the degree bounded tree is
significantly higher then the cost of our heuristic tree, and that
the performance difference is highest in Internet-like scenarios.
Note that the performance of MDDBST can most likely be im-
proved by trial-and-error exploration of the possible node de-
gree bound space, which grows exponentially with the number
of nodes. As expected, SPT which does not attempt to minimize
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Fig. 7. Multicast delay for a power-law topology with random network costs
from [1; 10].

the tree degrees has low performance. Its cost function is almost
linearly proportional to the tested group size (the delay curves
exhibit logarithmic-like growth rate since they are shown using
a logarithmic scale). The quality of the SPT is determined by the
dominance of the communication costs, i.e., the applicability of
SPT is limited to small multicast groups in overlay networks
with dominating communication costs (Fig. 6).

The previous experiments were repeated using other cost in-
tervals, , preserving the methodology of network
cost selection. The obtained results were consistent with the pre-
vious outcomes. We also simulated near homogeneous costs and
verified the logarithmic convergence rate (see [9]) of LRF.

We used a 400-node physical network, based on a power-law
graph, to simulate fully connected overlay structures over the
Internet. In each simulation the multicast group hosts were at-
tached to a randomly selected uniformly distributed set of edge
nodes in the power-law topology. The communication costs
were derived according to the minimum hop count, yielding an
average overlay link cost of 4.8 hops with a maximal value of
9 hops. The processing costs were randomly selected from the
discrete intervals and . Unsurprisingly, the
obtained results were similar to the previous results which use
random cost selection, and therefore the corresponding graphs
are omitted.

Next, we consider the case of partially connected overlay net-
works derived using the power-law topology generator. In this
case, we were not able to apply the approximation scheme due
to the implicit full-connectivity assumption of the algorithm.
Therefore, we compare the performance of the heuristic tree
with SPT and MDDBST, using the same network costs as in
the fully connected case. The results indicate that the heuristic
tree scales well, such that its maximal cost is up to 80% higher
than the lower bound, which is not tight. Fig. 7 shows a typ-
ical large scale result with processing and communication costs
randomly selected from the discrete intervals .
The large-scale results for a clique topology are similar. For ex-
ample, see Fig. 4 in which the maximal cost of the heuristic tree
is up to three times higher than the nontight lower bound.

The main conclusion drawn from the simulations is that the
heuristic algorithm produces results which are very close to
the optimal for almost any group size, showing a logarithmic-
like growth rate. Furthermore, the average performance of the
heuristic algorithm is similar or better than the performance of

Fig. 8. Sensitivity of LRF (labelled H), SPT (labelled S), and MDDBST (la-
belled M) to (left plot) 3%, 5%, and 10% edge or (right plot) node modifications.

the approximation algorithm, whereas the SPT and MDDBST
provide lower performance and produce nonscalable results.

B. Sensitivity Analysis

We study the sensitivity of our heuristic solution to small
changes in the network and compare it to the sensitivity of the
the shortest path tree and MDDBST algorithms. For this purpose
we generate a 100-node click network with randomly assigned
processing and communication costs drawn from a uniform dis-
crete distribution in the interval . We then randomly select
3%, 5%, and 10% of either the nodes or edges, reassign their
costs with randomly generated discrete values uniformly dis-
tributed in an interval , and recompute the delay of the
examined algorithms. We repeat the last step 20 times.

Fig. 8 shows the distribution of the multicast delays under
the examined algorithms as a function of the portion of edges or
nodes being modified. The highlighted marker is the baseline,
i.e., the cost of the unmodified network.

The graphs indicate that our heuristic algorithm is insensitive
to either small edge cost changes or small node cost changes,
unlike SPT. It is interesting to note that MDDBST is also very
insensitive to small changes. However, the cost of MDDBST
trees is significantly higher then the cost of our heuristics trees.

IX. CONCLUDING REMARKS

In this work we looked at building efficient application-layer
multicast trees. We have presented two solutions to the min-
imum-delay multicast problem: an approximation algorithm
and a heuristic algorithm. It is interesting to see that in practice
the heuristic achieves much shorter delays than the approxima-
tion for the cases that represents the Internet, i.e., networks with
communication delays larger than processing delays; and both
are better than the previously advocated shortest path trees.

APPENDIX

OPTIMAL RECURSIVE COMPUTATION

Consider a tree rooted at with associated pro-
cessing and communication costs and , respectively. Our goal
is to compute the optimal cost and ordering for . To this end
we employ a bottom-up recursive computation approach.

For each node we compute the quantity which
represents the optimal cost of the subtree rooted at , i.e., the
minimum time for delivering a message from to all the nodes
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in the subtree. In addition, we compute an auxiliary quantity
which represents the optimal multicast delay from ’s

parent, , to the subtree rooted at assuming zero processing
overhead at

(3)

Consider a nonleaf node with children . Let
be a rank function that returns a child node of with the

th largest quantity. The optimal cost of a subtree rooted at
can be expressed by the recursion

(4)

and the optimal cost of a subtree rooted at a leaf node is defined
to be zero.

The optimal multicast delay for tree is simply , where
the optimal ordering follows the rank function, i.e., node de-
livers its message to . The time complexity of this com-
putation is .

Lemma 11: The recursive computation provides an optimal
solution for the MDM problem in a tree graph.

Proof: The proof is by induction on the height of the tree.
The basis is trivial. Inductive step: consider a tree of height
and assume that the lemma holds for the subtrees (of height at
most ) linked to the tree root, . Let be the number of such
subtrees. Assume that distributes the message to its children
in an arbitrary order and let be the child that received the th
transmission. Due to the induction assumption the cost of the
subtree rooted at is . This cost
is minimized when orders its transmission according to the
quantity of the its children, from highest to lowest.
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