
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

J. Parallel Distrib. Comput. 68 (2008) 137– 149
www.elsevier.com/locate/jpdc

SoMR: A scalable distributed QoS multicast routing protocol�

Shigang Chena,∗, Yuval Shavittb

aDepartment of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA
bDepartment of Electrical Engineering-Systems, Tel-Aviv University, Tel-Aviv 69978, Israel

Received 2 November 2005; received in revised form 18 September 2007; accepted 30 October 2007
Available online 12 November 2007

Abstract

Many Internet multicast applications such as teleconferencing and remote diagnosis have Quality-of-Service (QoS) requirements. The
requirements can be additive (end-to-end delay), multiplicative (loss rate), or of a bottleneck nature (bandwidth). Given such diverse requirements,
it is a challenging task to build QoS-constrained multicast trees in a large network where no global network state is available. This paper
proposes a scalable QoS multicast routing protocol (SoMR) that supports all three QoS requirement types. SoMR is scalable due to small
communication overhead. It achieves favorable tradeoff between routing performance and routing overhead by carefully selecting the network
sub-graph in which it searches for a path that can support the QoS requirements. The scope of search is automatically tuned based on the
current network conditions. An early-warning mechanism helps detect and route around the long-delay paths in the network. The operations
of SoMR are completely decentralized. They rely only on the local state stored at each router.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Multicast routing; Quality of service; Delay constraint

1. Introduction

Multicast is an efficient way of delivering content to a large
group of receivers by using a tree structure embedded in the
network. Building a multicast tree, called multicast routing, has
been studied extensively. Finding a minimum-cost multicast
tree, e.g., one that uses a minimal number of links, is known to
be NP-hard [19]. Heuristics are deployed to find trees that are
practically “good enough”. The simplest heuristic is to form a
tree based on unicast routing paths between the sender and the
receivers [1,13]. This approach was adopted by IETF standards:
DVMRP [12], PIM [14], MOSPF [26]. The unicast-path trees
work well for delivering information that is not Quality-of-
Service (QoS) sensitive. However, when applications have non-
trivial QoS constraints, the unicast-path trees may not have
adequate characteristics to meet the constraints [8].

QoS-constrained multicast routing has many important appli-
cations such as teleconferencing, IPTV, and on-demand video
distribution. Today, these applications are mostly implemented
through unicast connections, which have lower quality and

� The preliminary version of the paper is published in [9].
∗ Corresponding author. Fax: +352 392 1220.

E-mail address: sgchen@cise.ufl.edu (S. Chen).

0743-7315/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2007.10.004

higher cost. Protocols for QoS-constrained multicast routing,
if implemented, will improve the quality and reduce the cost
of these applications. However, the legacy design of the Inter-
net is not compatible with QoS provision. Designed 30 years
ago, the current Internet has fundamental problems in QoS sup-
port, security and manageability. The networking community
has been building consensus that we should take a “clean-slate”
approach to design the next-generation Internet, which is em-
bodied in the FIND initiative from NSF. The research on QoS
multicast routing has a potential to enable various multimedia
applications on the future Internet.

A feasible tree is a multicast tree that satisfies the QoS
requirements. A feasible tree branch (path) is a path that con-
nects a new group member to a multicast tree without breaking
any QoS constraint. The task of QoS multicast routing is to
find feasible tree branches for new group members. A survey
of this research area can be found in [33]. Finding feasible
tree branches is difficult in a large network such as the Inter-
net. Many centralized algorithms [38,37,10] can be used for
constructing multicast trees, but it is impossible to maintain
global QoS state at any single node. A brute-force flooding
algorithm that searches all possible paths in the network guar-
antees to find a feasible branch if one exists. However, the
excessive overhead of flooding deems to be impractical for all

Author's personal copy

138 S. Chen, Y. Shavitt / J. Parallel Distrib. Comput. 68 (2008) 137–149

but small networks. Consequently, for applications that require
QoS guarantees, recent research focuses on distributed mul-
ticast routing algorithms that search a selected subset of the
network to find feasible tree branches for new group members
[3,7,8,11,15,25,27].

A good QoS routing protocol should achieve favorable trade-
off between routing overhead and routing performance (the
ability of finding a feasible branch when one exists). In addi-
tion, it should minimize the extra state information kept at the
routers, decentralize the routing operations, adapt the routing
activity based on the current network conditions, and avoid the
congested network areas. QMRP [8] has many of the good mer-
its mentioned above. However, it suffers from two problems.
First, it deposits per-join state at routers. When there are many
concurrent joins for a multicast group, a router has to keep sep-
arate state information for each join that it assists. It is highly
desirable for the routers to not keep any per-join information
but only maintain per-group information. Second, QMRP is de-
signed for applications with bottleneck QoS requirements such
as bandwidth and buffer space. It lacks effective mechanisms to
handle additive/multiplicative QoS requirements such as delay
or packet loss. QoS routing for additive/multiplicative require-
ments is a more difficult problem. How to extend QMRP for
all kinds of requirements is a challenge by itself.

Spanning join [3] and QoSMIC [15] do not have the above
problems. However, they have much higher overhead and
lower success probability [8]. The spanning-join protocol relies
on expanding-ring flooding to find an on-tree node for a new
member to join. QoSMIC combines a local search and a tree
search to avoid large-scale flooding, but its overhead can still
be high for large multicast trees. There are some recent publica-
tions on QoS multicast routing, including simulated-annealing
solution, tabu-search-based solution, genetic-algorithm-based
solution, which are all proposed in [34], and minimum cost
maximum flows routing algorithm in [2]. However, these are
centralized algorithms, and they do not ensure any additive
constraint (such as delay) to be met. Efficient ε-approximation
solutions for QoS unicast and multicast routing are proposed
in [24], but distributed implementation will have prohibitively
high message overhead. Gradual migration of core-based trees
(CBTs) for QoS multicasting is studied under the concept
of tree evolution [4]. However, it only considers the unicast
paths from group members to the cores when constructing
trees.

One may argue that any distance-vector protocol will work
well for constructing multicast trees with an additive delay
constraint. However, if there is an additional bandwidth con-
straint and different multicast groups have different bandwidth
requirements, then the protocol has no way to determine which
links should be excluded from the shortest-path computation,
because a link that has sufficient bandwidth for one group
may not be qualified for another group. Note that we can-
not run the distance-vector protocol separately for each mul-
ticast group, which does not scale in a large network with
many groups. OSPF-like protocols are not a viable option ei-
ther because maintaining global QoS state at each node is too
costly for a large network. Hence, further study for a scalable,

efficient QoS multicast routing protocol that can handle all
types of QoS requirements is under call.

In this paper, we propose a scalable QoS multicast routing
protocol, called SoMR, that eliminates the use of per-join rout-
ing state. In QMRP, each new member initiates a search tree,
which grows towards the multicast tree. The search tree is per-
join state information. A router involved in multiple search
trees has to keep state information for each tree. SoMR does
not use search trees. Instead it grows the multicast tree towards
new members. The maximum memory space a router uses for
a multicast group is fixed, which is one multicast routing en-
try. SoMR not only gets rid of per-join state but also allows
dynamic aggregation of multiple join requests, where a single
tree branch may grow toward multiple new members. To im-
prove the chance of finding a feasible path, SoMR may branch
out to grow multiple branches in the multicast tree towards the
new member. The key problem is to select the optimal loca-
tions at which branching should occur. Such locations are called
branching points. For delay or other additive/multiplicative re-
quirements, the optimal branching points are not at the loca-
tions where the requirements are violated. It is often because
an early link has too large delay. The branching should oc-
cur there. SoMR uses a novel early-warning (EW) mechanism
which finds the real problematic locations in the network and
makes branches to detour around those locations. By doing this,
SoMR increases the success ratio in finding feasible branches
for new members.

We also propose several optimization techniques to control
the worst-case overhead. We prove the correctness of SoMR
and analyze its performance. We perform extensive simulations
to demonstrate that SoMR is able to achieve high success ratio
at low overhead.

The rest of the paper is organized as follows. Section 2 dis-
cusses the related work. Section 3 defines our network model.
Section 4 describes the routing protocol. Sections 5 and 6
present analytical and simulation results, respectively. Section
7 draws the conclusion.

2. Related work

A multicast tree is incrementally constructed as members
leave and join a multicast group. When an existing member
leaves the group, it sends a control message up the tree to prune
the branch which has no members attached any more. When a
new member joins the group, the tree must be extended to cover
the new member. Based on how the new member is connected
onto the tree, the multicast routing protocols can be classified
into two broad categories: single-path routing protocols (SPR)
and multiple-path routing protocols (MPR). An SPR protocol
provides a single path connecting the new member to the tree,
whereas an MPR algorithm provides multiple candidate paths
to choose from.

2.1. Single-path routing

Most SPR protocols were originally designed for the
best-effort data traffic. We briefly discuss two representative

Author's personal copy

S. Chen, Y. Shavitt / J. Parallel Distrib. Comput. 68 (2008) 137–149 139

protocols and point out why they are not suitable for QoS
traffic. CBT [1,32] and PIM (protocol independent multicast)
[13] connect a new member i to the multicast tree along the
unicast routing path from i to the root (core) of the tree. The
unicast path is typically the shortest path in term of hops.
The resulting shortest-path trees are good for best-effort traf-
fic. However, when QoS is considered, such shortest-path trees
may not have the resources to support the quality requirement.

2.2. Multiple-path routing

In order to increase the chance of finding a feasible tree,
the MPR protocols provide multiple candidate paths for a new
member to be connected to the tree. Among the candidates the
new member selects the best one.

Spanning joins [3]: In the spanning-joins protocol proposed
by Carlberg and Crowcroft, a new member broadcasts join-
request messages in its neighborhood to find on-tree nodes.
Whenever an on-tree node receives the message, it sends a re-
ply message back to the new member. The path of the reply
message, determined by the unicast routing algorithm, is a can-
didate path. The new member may receive multiple reply mes-
sages corresponding to multiple candidate paths. Each reply
message collects the QoS properties of the path it traverses.
The new member selects the best candidate path based on the
information received in the reply messages. Consecutive broad-
casts are necessary to search increasingly larger neighborhood
until on-tree nodes are found, and this process can increase the
overhead significantly.

QoSMIC [15]: In the QoSMIC protocol proposed by Falout-
sos et al., the search for candidate paths consists of two paral-
lel procedures: local search and tree search. The local search
is equivalent to the spanning-joins protocol, except that only
a small neighborhood is searched. The tree search handles the
case when there is no on-tree node in the neighborhood checked
by the local search. In the tree search, a new member sends
an M-JOIN message to a designated Manager node for the
group. Upon receipt of the message, the Manager multicasts a
BID-ORDER message in the tree to select a subset of on-tree
nodes. The selected nodes send BID messages to the new mem-
ber. The paths of the BID messages, determined by the under-
lying unicast routing protocols, are candidate paths. The tree
search allows QoSMIC to restrict its flooding local search in
a small neighborhood. Both spanning-joins protocol and QoS-
MIC are not QoS-aware in selecting candidate paths. The se-
lection of on-tree nodes, to which the new member may join,
is based on the connectivity. 1 The candidate paths are simply
the unicast routing paths from the selected on-tree nodes to the
new member. These paths are typically the shortest paths in
terms of number of hops, and may not be the best choice for
the QoS requirements specified in other terms such as delay
or bandwidth. Hence, the information about the specific QoS

1 After candidate paths are selected, the protocol becomes QoS-aware
because the QoS properties of the candidate paths are collected and checked
to see if any of them meet the requirement.

requirement and the availability of relevant resources should be
used to make more effective selection of candidate paths.

QMRP [8]: QMRP grows a search tree from each new mem-
ber to the root of the multicast tree. The branches growing in
the search tree must satisfy a bandwidth requirement. When
a branch in the search tree touches a branch in the multicast
tree, a feasible path that connects the new member to the mul-
ticast tree is discovered. QMRP only considers bandwidth con-
straints. Its search tree is per-group-per-join state.

2.3. Other related work

There are other related works that study the QoS multi-
casting problem from different aspects. Rong et al. integrate
active admission control into traditional QoS multicast routing
algorithms to prevent bandwidth fragmentation in multicast
networks [28]. Striegel and Manimaran present a multicast
“life-cycle” model, identifying various issues that are involved
in a typical multicast session [31]. Pradhan et al. propose
a hierarchical multicast routing protocol that achieves scal-
ability by organizing a network as a hierarchy of domains
using the full-mesh aggregation technique [27]. Li investigates
the constrained multicast routing problem in networks with
imprecise state information [22]. Lui et al. propose a receiver-
initiated QoS multicast protocol that aims at reducing the
bandwidth used in building a multicast tree for heterogeneous
receivers [25]. Charikar et al. study several NP-hard resource
optimization problems in multicast routing and propose heuris-
tic solutions with provable performance bounds [5]. Sai Sudhir
et al. address the problems of static and dynamic heteroge-
neous QoS multicasting in DiffServ networks [30]. Recently,
research on QoS multicast has moved to cover mobile ad hoc
networks [23,36].

3. Network model

We make the following assumptions about the network.
1. There exists an underlying unicast routing protocol which

can deliver a message between any two connected nodes
in the network. A node knows the length (number of hops)
of the unicast routing path to any destination. Many widely
used unicast routing protocols such as RIP and OSPF provide
this information.

2. Every node maintains its up-to-date local state, such as the
delay of each outgoing link, which includes the processing
time, buffering delay, and link propagation delay. Assume
that once resources are committed, such delay can be as-
sured during the lifetime of data communication. How to
make resource reservation [17,42] and what packet schedul-
ing algorithms should be used [41,40] are beyond the scope
of this paper.

A node is not required to maintain any global state information
or the local state of any other node. This distinguishes our work
from many other works that need to acquire the global state
[21,29] or a partial map [39] of the network.

With the above assumptions, we study how to construct
QoS-constrained multicast trees. We use the delay constraint as

Author's personal copy

140 S. Chen, Y. Shavitt / J. Parallel Distrib. Comput. 68 (2008) 137–149

example to illustrate the protocol, while other additive metrics
such as cost can be supported similarly. Multiplicative metrics
such as loss rate can also be supported by using logarithm func-
tions to convert them into additive metrics. Bottleneck metrics
such as bandwidth are easier to handle: the links having the re-
sources have zero weights; the links not having the resources
have infinite weights; feasible paths are those whose weights
are zero.

There are two types of multicast trees: sender-based trees
and CBTs. For a delay-constrained sender-based tree, the delay
from the sender to any other node in the tree has to be bounded
by a delay requirement D. A delay-constrained CBT can be
modeled as two subtrees. One is from the core to all receivers,
and the other is from all senders to the core. Given a delay re-
quirement D, if both subtrees are bounded by D/2, then the
delay requirement is met. Constructing the first subtree is the
same problem as constructing a sender-based tree, while con-
structing the second subtree is a reverse problem. To simplify
the presentation, we will use sender-based trees to illustrate the
protocol in the rest of the paper.

We assume that any new member is able to map a multicast
group address to the root node of the tree on demand possibly
by a query/response Session Directory [18].

Each on-tree node has a multicast routing entry, specifying
which node is its parent and which nodes are its children. We
define notations in the following. Let k and i be two on-tree
nodes. The path in the multicast tree connecting them is called
the in-tree path, denoted by Pk,i . The guaranteed delay bound
of this path is called the in-tree delay, denoted by delay(Pk,i).
Let T be the set of on-tree nodes and r be the root of the tree.
A delay-constrained multicast tree requires that

∀i ∈ T , delay(Pr,i)�D

We require each on-tree node i to know delay(Pr,i). In fact, as
we will see later in the protocol description, our protocol makes
sure that any node joining the tree will have this value.

We assume that each link (i, j) can ensure a certain delay
bound for the Class of Service (CoS) which the multicast group
is associated with. We denote this delay bound as delay(i, j).

4. A new QoS multicast routing protocol

In this section, we discuss our design objectives, describe
the new routing protocol, and present the pseudo code of the
protocol.

4.1. Design objectives

We design our QoS multicast routing protocol based on the
following objectives.

Favorable tradeoff : Like many other network functions, QoS
routing has multiple performance metrics, including success
ratio and overhead, which represent the average probability of
finding a feasible path and the average consumption of network
resources (e.g., bandwidth, memory, and CPU), respectively.
These performance metrics often conflict with each other—it

normally takes more overhead to achieve better success ratio.
There are two extremes in designing a QoS routing protocol:
(1) searching only one path to minimize the overhead while
sacrificing the success ratio, and (2) searching all paths to op-
timize the success ratio at the cost of heavy overhead. Many
existing protocols [3,15,8] chose a tradeoff between the two
extremes: searching multiple but not all paths. The rational be-
hind these protocols is that sub-optimal success ratio can be
achieved by searching a set of carefully selected paths. The
key is how to make the path selection. A good path-selection
strategy achieves favorable tradeoff—improving success prob-
ability significantly at an insignificant overhead increase.

Adaptivity: The design of many QoS routing protocols is
geared towards congestion conditions where the total demand
of all QoS traffic exceeds the resource supply. These protocols
employ extra operations (and overhead) in order to find a good
way to lay out the routing paths so that more connections can
be accommodated. The problem is that, for spanning join and
QoSMIC, the same operations are performed for any network
conditions. The extra overhead for congestion condition be-
comes a waste under normal traffic condition, where networks
are designed to operate for most of the time. 2

Therefore, an adaptive routing algorithm is desired. It should
be able to detect the network congestion condition and in-
troduce extra overhead only when necessary. In addition, the
amount of extra overhead should also be adaptive according to
the traffic condition in the area where the routing takes place.

4.2. Protocol overview

SoMR consists of two phases. Let r be the root node of the
tree. The first phase is similar to shortest path routing (SPR),
in which a JOIN message is sent from a new member t to
the root r along the unicast routing path. The JOIN message
accumulates the path it traverses. It also accumulates the delay
of the path in the reverse direction. When the JOIN message
reaches an on-tree node k, if the accumulated delay plus the in-
tree delay from r to k does not violate the delay requirement, a
feasible tree branch is detected, which is the traversed unicast
path. 3 A CONSTRUCTION message is then sent back along
the path (using IP source routing) to construct a tree branch
connecting the new member. Since the new member joins the
tree successfully, the second phase will not be activated.

On the other hand, if the delay requirement is violated at
k, the JOIN message continues traveling to the root r. When
the root receives the message, it starts the second phase, which
employs multi-path routing. The root sends GROW messages
to its neighbors. These GROW messages will then travel along

2 Even when QoS traffic is light, best-effort traffic may be heavy [6]. In
order to improve the performance of best-effort traffic, the excess overhead
by the QoS routing protocol is always undesirable.

3 In addition to delay, if there are additional additive constraints (such as
cost), they will be handled in the same way. A feasible branch is detected
when none of the additive constraints is violated. If there are additional
bottleneck constraints (such as bandwidth), then we can simply set the delay
of any link that violates a bottleneck constraint to be infinite, and the rest of
the protocol remains the same.

Author's personal copy

S. Chen, Y. Shavitt / J. Parallel Distrib. Comput. 68 (2008) 137–149 141

the unicast routing paths towards the new member. As they
travel, they try to construct new tree branches hop by hop along
the way. It should be emphasized that, even though multiple
temporary tree branches may grow to a new member, all but
one will withdraw. Moreover, any router in the network will
keep at most one multicast routing entry no matter how many
concurrent joins there are. No per-join information is kept. In
Sections 4.3 and 4.4, we will show that, when two growing
branches (either for the same join or for different joins) meet at
a common node, one branch will withdraw and the other branch
will continue growing towards one or multiple new downstream
members.

Each GROW message carries the delay requirement D. It also
accumulates the delay of the constructed tree branch. Hence,
when an intermediate node i receives GROW, it knows the in-
tree delay from r to i, delay(Pr,i). Now, let us describe the
actions that i will take after receiving GROW. First, i performs
an EW test to see how likely the unicast path to the new member
t will satisfy the delay requirement D. If the EW test is passed,
GROW will continue traveling along the unicast path towards
t; otherwise, i attempts multi-path routing which may result
in multiple downstream tree branches to be constructed. Let j
be the next hop on the unicast path. The EW test takes four
input parameters, D, delay(Pr,i), delay(i, j), and l, which is
the length of the unicast path from i to t. The test is defined as
follows:

if delay(i, j) > (D − delay(Pr,i))/ l then warning else pass.

D − delay(Pr,i) is the remaining slack of the delay require-
ment that further tree construction is allowed to have. (D −
delay(Pr,i))/ l is the “fair share” of this slack for each link on
the path from i to t. The above EW test states that if the delay
of the link is larger than the fair share, a warning should be
triggered; otherwise, the test is passed. More sophisticated EW
tests are possible, but are not considered in this paper since the
above simple test already works well in our simulations.

If the EW test is passed, which means that the current unicast
path is likely to satisfy the QoS requirement, i adds link (i, j)

into the multicast tree and forwards the GROW message to the
next hop j. If every intermediate node passes the EW test, a
feasible branch is established for the new member.

However, if the EW test warns that the unicast path may
violate the QoS requirement, extra effort needs to be taken.
Searching multiple downstream paths will increase the chance
of success. Namely, the tree construction needs to branch out.
We call i a branching point. GROW messages are sent to a
subset of adjacent nodes x that satisfy the following QoS test:

if delay(i, x) > D − delay(Pr,i) then fail else pass.

Apparently, x can be the node j that just failed the EW test, but
x should not be the adjacent node from which the GROW was
previously sent to i. For the purpose of overhead reduction, we
may select only some of the nodes that pass the QoS test (see
Section 4.6).

If the QoS test is failed for every adjacent node, a BREAK
message is sent back to trim the partially constructed tree

BREAK

r r

GROW

a

i

j

t

b

GROW

t

a

i

j

t

b

Fig. 1. GROW and BREAK.

branch. When a node k receives a BREAK message from a node
i, it first deletes link (k, i) from the multicast tree, and then if
k becomes a leaf node and is not a member of the multicast
group, it will delete itself from the multicast tree and propagate
the BREAK message to its parent node. As BREAK travels
back to r, the new tree branch is deleted.

There is a difference between the EW test and the QoS test.
The EW test tries to make early guess on whether the path
ahead is likely to satisfy the delay constraint. If it sees signs of
trouble, it triggers branching to improve the chance of success.
The QoS test is to check if the delay constraint has already been
violated. If it is, no further construction will be done towards
this direction.

At the beginning of the second routing phase, our protocol
requires the root to be a mandatory branching point (an EW
test is not necessary). Our simulations consistently show that
SoMR performs better this way. The reason is that an early
branching widens the search range and gives the subsequent
tree construction more flexibility. It should be noted that the
second phase commences only if the first phase fails, i.e., the
SPR path fails.

Whenever a GROW message reaches t, a feasible tree branch
is found. However, t may receive multiple GROW messages
from different branches. Fig. 1 gives an example. The multicast
tree is shown by bold lines. i is a branching point, from which
two branches reach t. In this case, t needs to send back BREAK
messages to tear down all but the best branch. t can use the
information (delay, bottleneck bandwidth, etc.) collected by
the received GROW messages to select the best branch, and
it will send a resource reservation message back up to reserve
resources along this branch. It is rare but possible that, due
to concurrent joins in other multicast groups, the selected tree
branch becomes infeasible during the short period after GROW
passes through the branch and before the resource reservation
message comes back. When this happens, the new member will
have to perform the join again.

4.3. Breaking loops

As tree branches are constructed towards new member(s),
loops may form in the multicast tree. Fig. 1 gives one example.

Author's personal copy

142 S. Chen, Y. Shavitt / J. Parallel Distrib. Comput. 68 (2008) 137–149

c

r

t

r

t

BREAK

green-GROW

green-GROW

r

t

blue-GROW

i
i

i

a

c

a a

bbb
c

Fig. 2. Break loops.

r

t

i

a

b
c

green-GROW

r

t

BREAK

i

a

b c

blue-GROW

r

t

i

a

b
c

green-GROW

r

t

i

c
b

a
green-GROWgreen-GROW

Fig. 3. Two growing tree branches meet.

A loop forms when two growing tree branches reach the same
node. This is not a classical loop in which a message will travel
forever. It is a loop formed by two tree branches joining at a
common node. The node would receive two copies of the same
message if the loop was not broken.

Before we provide a general solution to the looping problem,
we need to study GROW messages more closely. Consider a
GROW message that constructs a tree branch along a unicast
path P to the new member. Some of the links on P may be
already in the multicast tree while the others are not. When a
GROW message travels along a link that is already in the mul-
ticast tree, we assign a color of blue to the GROW message.
When a GROW message travels along a link that is not in the
multicast tree, we assign green to the message. 4 Only green-
GROW messages may form loops, because green-GROW mes-
sages join new links to the tree while blue-GROW messages
follow existing tree links.

The sender of a GROW message can determine the color of
the message as follows. When a node i sends a GROW to an
adjacent node j, if j is the parent or a child of i in the multicast
tree, i marks the GROW to be blue; otherwise, it marks the
GROW to be green.

Using the coloring scheme, loop detection is easy. When
an on-tree node receives a green-GROW message, a loop is

4 The green-GROW message will join this link to the multicast tree.

formed. Fig. 2 gives an example, where the existing tree is
shown in the left plot. The GROW message is blue when it
traverses an on-tree link r → a, and then it turns green when
traversing links outside of the tree, a → b → i, which are con-
sequently included in the tree. When the on-tree node i receives
a green-GROW message, a loop is detected. A BREAK mes-
sage is sent back to break the loop, while the GROW message
continue constructing a tree branch towards the new member.

Arriving at i, the GROW message has the in-tree delay of
the new tree branch (r → a → b → i). i knows the in-tree
delay of the old tree branch (r → a → c → i). The BREAK
message can be sent to tear down the new branch, in which case
the in-tree delay in the GROW message needs to be updated to
equal that of the old tree branch. Or the BREAK message can
be sent to break the old branch based on certain optimization
criteria (e.g., the in-tree delay of the new branch is smaller), and
in this case the in-tree delay stored at i needs to be updated.

Two growing branches may meet at a common node to form
a loop, which will be broken similarly. In Fig. 3(a), two green-
GROW messages grow two tree branches simultaneously. Sup-
pose the green-GROW message from c arrives at i first in Fig.
3(b). The message adds i to the tree and continues to travel to-
wards the destination along unicast path. Then in Fig. 3(c) the
second green-GROW message arrives at i. This message trig-
gers a BREAK message to break the loop and a blue-GROW
message follows the same unicast path to the destination in

Author's personal copy

S. Chen, Y. Shavitt / J. Parallel Distrib. Comput. 68 (2008) 137–149 143

(2)

r

ty

GROW(G, t)

r

i

j
ty

GROW(G, y)

JOIN(G, y) JOIN(G, t)
BREAK(G) blue-GROW(G, t)

(1)

Fig. 4. Concurrent joins.

Fig. 3(d). The blue-GROW message is necessary because i does
not keep per-join routing state to indicate that a previous green-
GROW for the same destination has been sent downstream.

No blue-GROW messages but only green-GROW messages
will cause BREAK messages.

4.4. Concurrent joins

SoMR can efficiently support concurrent join requests.
Fig. 4(1) gives an example, in which each GROW message is
identified by the group address G and the new member ad-
dress. Two concurrent new members, t and y, join the tree at
the same time. Two GROW messages independently construct
two new branches, which are partially overlapped. The mes-
sages contain different new member addresses, and thus the
branches grow towards different directions.

Fig. 4(2) gives an abnormal case. Suppose the green-GROW
message for y arrives at j first. It finds that link (j, y) will vi-
olate the delay requirement. It sends a BREAK message back
to i to tear down the partially constructed tree branch. While
the BREAK message is on the way to i, i sends a blue-GROW
message for t down the same link. When j receives the blue-
GROW, link (i, j) no longer belongs to the multicast tree and
thus j should not construct a tree branch further towards t.
Therefore, when a node (j) receives a blue-GROW message
and finds that it is no longer an on-tree node, it should dis-
card the blue-GROW message without further constructing tree
branch.

4.5. Pseudo code

The first phase of SoMR is quite straightforward thus we
present only the pseudo code of the second phase. Two types
of routing messages are of concern.
1. A GROW message grows a new tree branch to connect the

new member.
2. A BREAK message tears down a tree branch in order to

break a loop in the multicast tree.
Both messages carry the multicast group address. GROW mes-
sages also carry the new member address, the delay bound D,

the in-tree delay from the root to the current node, and the
message color.

Each node in the multicast tree keeps a multicast routing
entry, which is denoted as M{G, in, out}, where M.G is the
address of the multicast group, M.in is the parent node in the
multicast tree, and M.out is the set of child nodes. The next
hop on the unicast routing path from node i to node t is denoted
as Ni→t . Given any node i, our protocol is implemented by the
following pseudo code. Suppose i received a control message
from k.

Node i:
switch (the received message)
case GROW(G, t, ...):

if (it is a green-GROW)
if (i is an on-tree node)

/* break loop in the tree */
send BREAK(G) back to k

else
/* add i into the tree */
create a multicast entry M(G, out, in)

M.in = k

M.out = ∅
if (i = t)

routing is successful
else

/* further grow tree branch to next hop */
if (Ni→t ∈ M.out or Ni→t = M.in)

send blue-GROW(G, t, ...) to Ni→t

else if (the EW test is passed)
M.out := M.out + {Ni→t }
send green-GROW(G, t, ...) to Ni→t

else
for every adjacent node j, j �= k

if (j ∈ M.out or j = M.in)
send blue-GROW(G, t, ...) to j

else if (j passes the QoS test)
M.out := M.out + {j}
send green-GROW(G, t, ...) to j

if (no GROW was sent by the for loop,
M.out = ∅, and i is not a group member)

/* tear down partially constructed branch */
remove the multicast entry M(G, out, in)

send BREAK(G) to k
case BREAK(G):

M.out := M.out − {k}
if (M.out = ∅ and i is not a group member)

/* remove i from the multicast tree */
remove the multicast entry M(G, out, in)

send BREAK(G) to M.in

4.6. Optimization

Whenever the EW test generates a warning at an interme-
diate node, the node becomes a branching point and multiple
tree branches may grow out from this node towards the new
member. 5 The number of branching points, if not restricted,

5 The BREAK messages will cut all but one branch. Hence, there will
be only one tree branch connecting the new member eventually. The key
difference from QMRP is not about less number of temporary tree branches
per join but about removing temporary per-join state information from routers.
SoMR does not require any information other than one multicast entry to be
stored at a router for a group.

Author's personal copy

144 S. Chen, Y. Shavitt / J. Parallel Distrib. Comput. 68 (2008) 137–149

BREAK

t

iBREAK

t

i

GROW

GROW

r r

j

GROW
GROW

BREAK

Fig. 5. An example of SoMR-3.

can potentially be large, which will result in large routing
overhead. We define two protocol parameters that are used to
restrict the number of constructed tree branches.

Maximum branching level (MBL): An easy way to control
the number of branching points is to maintain an assertion:
when a GROW message travels from the root and a new mem-
ber, it may pass at most m branching points, where m is a
system parameter called MBL. Since the root is a mandatory
branching point, each GROW message from the root carries
a counter whose initial value is m − 1, specifying the maxi-
mum number of downstream branching points that it can pass.
When a GROW message reaches a node that fails the EW test,
if the counter in the message is above zero, the node becomes a
branching point, which forwards GROW to multiple neighbor
nodes with the counter value decreased by one; however, if the
counter is already zero, the node will not become a branching
point and the GROW is forwarded only on the unicast path to
the new member.

It is easy to see that the maximum number of branching
points is bounded by

∑m−1
i=0 (d − 1)i , where d is the maximum

degree of a node. When d = 2,
∑m−1

i=0 (d − 1)i = m; when

d > 2,
∑m−1

i=0 (d − 1)i = (d−1)m−1
d−2 . Such a restricted version

of SoMR is denoted as SoMR-m. An illustration of SoMR-
3 is given in Fig. 5. SoMR-m can be easily implemented by
augmenting the GROW messages with a counter.

Directivity can be implemented to discourage tree branches
growing away from the new member t. When a GROW is sent
from i to j, if the distance from j to t is not shorter than the
distance from i to t, the counter for MBL is set to zero, indi-
cating that there is no branching point allowed for this GROW
message.

Maximum branching degree (MBD): A branching point may
have a large number of adjacent links, which can also cause
excessive overhead. SoMR-m can be further augmented with
an additional parameter, MBD, which specifies the maximum
number of GROW messages that are allowed to be sent by a
branching point. If the MBD x is smaller than the node de-
gree minus one, 6 the node selects x outgoing links (based on

6 The node should not send GROW to a link from which a GROW message
has been received previously.

distance to the new member or randomly) from which GROW
has not been received, and sends GROW messages out along
these links.

We suggest both MBL and MBD to be implemented. With
MBL = m and MBD = x, the maximum number of branching
points is �m−1

i=0 xi = xm−1
x−1 . Therefore, the overhead can be

controlled by these two parameters.

5. Analysis

5.1. Correctness analysis

We show that SoMR does not form any persistent loop, does
not partition the multicast tree, and terminates in finite time.

Theorem 1. SoMR never forms a persistent loop in the multi-
cast tree.

Proof. Only green-GROW messages add new links to the tree
and can form loops. Suppose j sends a green-GROW message
to i, adds link (j, i), and forms a loop. Let k be the parent
node of i in the tree. By the structure of trees, both link (j, i)

and link (k, i) belong to the loop. According to Section 4.3, a
BREAK message will be sent to either j or k to tear down (j, i)

or (k, i), which breaks the loop immediately. Hence, any loop
cannot persist. �

SoMR grows new tree branches from the tree towards
new members. In many other protocols, new branches are
constructed from new members towards the tree. PIM is an
example. Before new branches actually reach the tree, the
tree can be viewed as being partitioned. This is fine without
QoS constraints because those growing branches will eventu-
ally reach the tree by following the unicast paths. However,
with QoS constraints, it can cause a problem. When a grow-
ing branch reaches an on-tree node, the node may belong to
another growing branch, which may be torn down later due
to the violation of QoS constraints. This case never arises
in SoMR.

Theorem 2. SoMR never causes the multicast tree to be par-
titioned into more than one disconnected pieces.

Author's personal copy

S. Chen, Y. Shavitt / J. Parallel Distrib. Comput. 68 (2008) 137–149 145

Proof. New tree branches always grow from the multicast
tree. 7 Hence, any new on-tree nodes must be connected with
the tree. BREAK messages only remove leaf nodes from the
tree and thus have no chance to partition the tree. �

The above two theorems can also be applied to SoMR-m for
any m.

The routing process terminates when no control message of
a join request is still in transit.

Theorem 3. SoMR-m terminates in finite time.

Proof. Consider an arbitrary join request. SoMR-m has at most∑m−1
i=0 (d − 1)i branching points, where d is the maximum de-

gree of a node (Section 4.6). Each branching point generates at
most d GROW messages. Hence, the total number of GROW
messages is finite. Every GROW message follows the unicast
path to the destination and thus terminates in finite time. Each
GROW message may or may not generate one BREAK mes-
sage. Hence, there are finite BREAK messages. Every BREAK
message follows a multicast tree branch backward to prune the
branch and terminates when reaching a non-leaf node. There
are one JOIN message and one CONSTRUCTION message.
Both of them follow the unicast path and terminate in finite
time. Because there are finite control messages that all termi-
nate in finite time, SoMR-m terminates in finite time. �

5.2. Performance analysis

We analyze the length of the tree branch established by
SoMR-m and the overhead of SoMR-m.

SoMR-m prefers the shortest path provided by the underlying
unicast routing protocol. However, when the shortest path does
not satisfy the QoS requirement, the GROW messages are sent
along other paths. Though it increases the chance of success,
too long paths are often undesired due to larger consumption
of resources. The following theorem shows that SoMR-m can
make sure that the increase in path length is bounded.

Theorem 4. Suppose the unicast routing paths are the shortest
paths in terms of hops. For SoMR-m, a tree branch from the
root to a member is at most 2m hops longer than the shortest
path. If the directivity is implemented, a tree branch is at most
two hops longer than the shortest path.

Proof. When a tree branch is constructed, SoMR-m allows at
most m branching points on the branch. A GROW message
always travels along the shortest path unless at the branching
points. At each branching point, GROW may travel one hop
backward away from the new member, which increases two
hops over the shortest path. There are at most m branching
points, which can increase at most 2m hops over the shortest
path. Hence, any constructed tree branch to a new member is
no more than 2m hops longer than the shortest path.

7 This is different from PIM [14], which grows branches from new members
to the tree.

When the directivity is implemented, according to Section 4.6,
if a GROW message does not follow a shortest path after a
branching point, its MBL is set to be zero and no more branch-
ing is allowed. Therefore, a GROW message can travel back-
ward only once. Hence, any constructed tree branch is at most
two hops longer than the shortest path. �

In the following, we compare the worst-case overhead of
three protocols: spanning join, QoSMIC, and SoMR. To sim-
plify the problem, we consider a network of n uniformly con-
nected nodes. Let the diameter of the network be 2� hops.
Assume the number of nodes in the k-neighborhood of a node,
Nk , grows quadratically with k, i.e., Nk = �k2. Thus, the di-
ameter is given by ��2 = n. When the spanning-join protocol
broadcasts in a neighborhood with a radius of k hops, the num-
ber of messages sent is �k2. Hence, in the worst case the total
number of messages sent in consecutive broadcasts is

�∑

k=1

(�k2) = �
�(� + 1)(2� + 1)

6
≈ n(2� + 1)

6
∈ O(n�).

The local search of QoSMIC broadcasts in a small neighbor-
hood with a constant radius. The message overhead of this part
can be considered as a constant. Let T be the size of the multicast
tree. The worst-case overhead of the tree search is O(T). For
a dense tree that populates the entire network, O(T) = O(n).

Consider SoMR-m with MBD = x. The maximum number
of branching points is xm−1

x−1 (Section 4.6). The maximum num-

ber of branches is x xm−1
x−1 . Note that x and m are both small

constants. The length of any branch is bounded by O(2�).
Therefore, the total number of messages sent is bounded by
O(x xm−1

x−1 2�) = O(�) in the worst case. We shall do a more
detailed study on overhead in Section 6 by simulation. What the
above analysis tells us is that, as the network size increases, the
worst-case overhead of spanning join, QoSMIC, and SoMR in-
creases in the order of n�, n, and �, respectively. For a perfect
uniformly connected network with every node degree being d,
� = O(d/2

√
n). Among the three, SoMR is the least sensitive

to the size of the network, which means better scalability.

6. Simulation

Extensive simulations were conducted to study the perfor-
mance of SoMR. Two performance metrics, success ratio and
average message overhead, are defined as follows:

success ratio = number of successful joins

total number of join requests
,

avg. msg. overhead = total number of messages sent

total number of join requests
.

When the message overhead is calculated, sending a message
over a path of l hops is counted as l messages.

Four multicast routing protocols were simulated: SPR,
SoMR-3, QoSMIC [15], and spanning joins [3]. SPR stands for
single-path routing, which is the traditional way of connect-
ing a new member to the multicast tree by using the unicast

Author's personal copy

146 S. Chen, Y. Shavitt / J. Parallel Distrib. Comput. 68 (2008) 137–149

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500 600 700 800 900 1000

su
cc

es
s

ra
tio

 (
%

)

delay requirement (unit of time)

SPR
SoMR-3
QoSMIC

spanning joins
0

50

100

150

200

100 200 300 400 500 600 700 800 900 1000

m
es

sa
ge

 o
ve

rh
ea

d
(#

 o
f

m
es

sa
ge

s)

delay requirement (unit of time)

SPR
SoMR-3
QoSMIC

spanning joins

Fig. 6. Power-Law topology, 600 nodes, 5% links saturated.

path from the member to the sender (or core). Under a de-
lay constraint, the join fails if the path has too large delay.
The MBD of SoMR-3 is 5, i.e., a branching point can send at
most 5 GROW messages to its neighbors. For QoSMIC, the
local search and the tree search are implemented as sequen-
tial procedures; the tree search is executed only when the lo-
cal search fails. Comparing with the parallel implementation
of these two search procedures, the sequential implementation
minimizes the overhead, but may introduce additional delay.
Directivity, local minima, and fractional choice [15] were also
implemented. For spanning joins, we implemented its directed
flooding version, called directed spanning joins [3]. We assume
a unicast routing protocol providing the shortest path in term
of hops between each pair of nodes.

Our simulations were conducted on Power-Law network
topologies [16] and Waxman network topologies [35]. The
Power-Law topologies are based on the results reported in
[16], which showed that the node degrees in the Internet obey
a power-law distribution. We used a topology generator de-
scribed in [20]. For the Waxman-based topologies we used the
Waxman method [35] that spreads nodes randomly on a grid
and adds links randomly, such that the probability of a link to
be included decreases exponentially with its length.

In the simulation, a small percentage of links in the topology
are randomly selected as saturated links, which refuse to accept
more QoS traffic due to the lack of resources. The delays of
these links are thus considered to be infinite. 8 When the unicast
path has a link that is saturated for QoS traffic, SPR will fail
but the other protocols may still succeed because they explore
more paths than the unicast one. The delays of the remaining
links are uniformly distributed in the range of [0, 200] units of
time.

8 Each link typically has a “quota” on the maximum amount of resources
allowed to be reserved for QoS traffic in order not to starve the best-effort
traffic. Once this quota is reached, the link refuses to accept more QoS traffic.
It is then a saturated link. Note that the delay of a saturated link is infinite
for new QoS traffic but is not infinite for the best-effort traffic. While the
underlying unicast routing algorithm works on the best-effort traffic, it may
select saturated links on its routing paths.

In each simulation run, the link delays are first randomly
generated, the root of the tree is randomly selected, and a de-
lay requirement for the multicast tree is set. Then, the nodes
in the network start to join the tree in a random order; each
node attempts once. Upon completion, the next simulation run
starts. Two hundred simulation runs are conducted on each of
six randomly generated topologies. The average result (success
ratio/message overhead) of all simulation runs yields one data
point in the figure. The standard deviation is less than 4% of
the value of the data point.

Fig. 6 compare the success ratio and the message over-
head of the four routing protocols. The horizontal axis repre-
sents different delay requirements of the multicast trees. Power-
Law topologies with 600 nodes are used. Five percent of links
are saturated links. The figure shows that the success ratio of
SoMR-3 is better than those of QoSMIC and spanning joins.
Remarkably, SoMR-3 achieves better success ratio at much
lower message overhead, as shown in the right plot. When
the delay requirement is small (i.e., 100), the spanning-joins
protocol has very large overhead (more than 600 messages
per join request). That is because the multicast tree is al-
ways small and most join requests result in large-scale flood-
ing. Although the overhead of SoMR-3 is higher than that
of SPR, it is worth mentioning that for join requests SPR is
able to find feasible paths, SoMR-3 behaves just like SPR
and thus has the same overhead. Only for join requests SPR
is unable to find feasible paths, SoMR-3 sends more control
messages.

The reasons for SoMR-3 achieving low overhead and high
success ratio are as follows: (1) it becomes SPR if the shortest
path succeeds, (2) it branches out to search more paths only
when needed, (3) it branches at the “right” places where the EW
test fails, and (4) it allows only limited number of branching
points.

We repeated the above simulation with different percentage
of saturated links (Fig. 7) and different type of topology (Fig. 8).
Similar results were always observed. In Fig. 7, 600-nodes
Power-Law topologies are used with 15% of saturated links.
In Fig. 8, 600-nodes Waxman topologies are used with an

Author's personal copy

S. Chen, Y. Shavitt / J. Parallel Distrib. Comput. 68 (2008) 137–149 147

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500 600 700 800 900 1000

su
cc

es
s

ra
tio

 (
%

)

delay requirement (unit of time)

SPR
SoMR-3
QoSMIC

spanning joins
0

50

100

150

200

100 200 300 400 500 600 700 800 900 1000

m
es

sa
ge

 o
ve

rh
ea

d
(#

 o
f

m
es

sa
ge

s)

delay requirement (unit of time)

SPR
SoMR-3
QoSMIC

spanning joins

Fig. 7. Power-Law topology, 600 nodes, 15% links saturated.

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500 600 700 800 900 1000

su
cc

es
s

ra
tio

 (
%

)

delay requirement (unit of time)

SPR
SoMR-3
QoSMIC

spanning joins
0

50

100

150

200

100 200 300 400 500 600 700 800 900 1000

m
es

sa
ge

 o
ve

rh
ea

d
(#

 o
f

m
es

sa
ge

s)

delay requirement (unit of time)

SPR
SoMR-3
QoSMIC

spanning joins

Fig. 8. Waxman topology, 600 nodes, 5% links saturated.

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500 600 700 800 900 1000

su
cc

es
s

ra
tio

 (
%

)

delay requirement (unit of time)

MBD = 2
MBD = 3
MBD = 5

MBD = infinity
0

50

100

150

200

100 200 300 400 500 600 700 800 900 1000

m
es

sa
ge

 o
ve

rh
ea

d
(#

 o
f

m
es

sa
ge

s)

delay requirement (unit of time)

MBD = 2
MBD = 3
MBD = 5

MBD = infinity

Fig. 9. Power-Law topology, 600 nodes, 5% links saturated, SoMR-3, different maximum branching degrees.

average node degree of 3.5. In all our simulations, the suc-
cess ratio of SoMR-3 is better than or comparable to those of
QoSMIC and spanning joins, and the overhead of SoMR-3 is

lower. For small or medium delay requirements, the overhead
of SoMR-3 is often significantly lower than those of QoSMIC
and spanning joins.

Author's personal copy

148 S. Chen, Y. Shavitt / J. Parallel Distrib. Comput. 68 (2008) 137–149

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500 600 700 800 900 1000

su
cc

es
s

ra
tio

 (
%

)

delay requirement (unit of time)

SoMR-1
SoMR-2
SoMR-3

SoMR
0

50

100

150

200

100 200 300 400 500 600 700 800 900 1000

m
es

sa
ge

 o
ve

rh
ea

d
(#

 o
f

m
es

sa
ge

s)

delay requirement (unit of time)

SoMR-1
SoMR-2
SoMR-3

SoMR

Fig. 10. Power-Law topology, 600 nodes, 5% links saturated, MBD = 5, different maximum branching levels.

In Section 4.6, we propose optimization techniques, partic-
ularly, MBL and MBD, to control the worse-case overhead.
Here we perform simulations to evaluate their impact on the
performance/overhead tradeoff for the average case. First, we
let MBL = 3 (i.e., SoMR-3) and vary MBD from 2 to infin-
ity. When MBD is infinity, the technique of MBD is effectively
turned off. Fig. 9 shows that a larger MBD will lead to increase
in both success ratio and message overhead. However, the over-
head is not very large even when MBD is infinity, but a modest
value for MBD (such as 5) achieves a better balance between
performance and overhead. Second, we let MBD = 5 and vary
MBL from 1 to infinity. When MBL is infinity, the technique
of MBL is effectively turned off. Fig. 10 shows that a larger
MBL will also lead to increase in both success ratio and mes-
sage overhead. There is not much performance/overhead dif-
ference between SoMR-3 and SoMR (with MBL = infinity).
However, to guard against large worse-case overhead, SoMR-3
is preferred.

7. Conclusion

We presented SoMR, a new QoS multicast routing protocol
that has a favorable tradeoff between the communication over-
head and the success probability. It was shown that the protocol
overhead is lower than previously suggested protocols, span-
ning join and QoSMIC, while its success probability is higher
in most cases than other protocols. (In some cases QoSMIC
has comparable success probability but with higher overhead.)
The protocol maintains no state in the network and works with
both additive and non-additive QoS requirements.

References

[1] T. Ballardie, P. Francis, J. Crowcroft, Core Based Trees (CBT)—An
architecture for scalable inter-domain multicast routing, ACM
SIGCOMM Computer Communication Review, October 1993, pp. 85–95.

[2] R. Beghdad, A flows-based QoS routing protocol for multicast
communication networks, Internat. J. Comput. Appl. 28 (2006) 59–64.

[3] K. Carlberg, J. Crowcroft, Building shared trees using a one-to-many
joining mechanism, ACM SIGCOMM Comput. Comm. Rev. (1997)
5–11.

[4] A. Chakrabarti, A. Striegel, G. Manimaran, A case for tree evolution in
QoS multicasting, Comput. Comm. 29 (2006).

[5] M. Charikar, J. Naor, B. Schieber, Resource optimization in QoS
multicast routing of real-time multimedia, IEEE ACM Trans. Networking
12 (2) (2004).

[6] S. Chen, K. Nahrstedt, An overview of quality-of-service routing for
the next generation high-speed networks: problems and solutions, IEEE
Network November/December (1998) (special issue on Transmission and
Distribution of Digital Video).

[7] S. Chen, K. Nahrstedt, Distributed QoS routing in ad-hoc networks,
IEEE J. Selected Areas Comm. (1999), pp. 1–18 (special issue on Ad-
Hoc Networks).

[8] S. Chen, K. Nahrstedt, Y. Shavitt, A QoS-aware multicast routing
protocol, IEEE J. Selected Areas Comm. 18 (12) (2000) 2580–2592.

[9] S. Chen, Y. Shavitt, A scalable distributed QoS multicast routing protocol,
in: IEEE International Conference on Communications, June 2004.

[10] S. Chen, M. Song, S. Sahni, Two techniques for fast computation of
constrained shortest paths, IEEE Trans. Networking, to appear.

[11] I. Cidon, R. Rom, Y. Shavitt, Multi-path routing combined with resource
reservation, in: IEEE INFOCOM’97, April 1997, pp. 92–100.

[12] S. Deering, Host extensions for IP multicasting, Internet RFC 1112,
August 1989.

[13] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C.-G. Liu, L. Wei,
An architecture for wide-area multicast routing, in: ACM SIGCOMM,
August 1994, pp. 126–135.

[14] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley,
V. Jacobson, C. Liu, P. Sharma, L. Wei, Protocol independent multicast-
sparse mode (PIM-SM), Internet RFC 2362, June 1998.

[15] M. Faloutsos, A. Banerjea, R. Pankaj, QoSMIC: quality of service
sensitive multicast internet protocol, in: SIGCOMM’98, September 1998.

[16] M. Faloutsos, P. Faloutsos, C. Faloutsos, On power-law relationships of
the internet topology, in: ACM SIGCOMM 1999, August 1999.

[17] D. Ferrari, D.C. Verma, A scheme for real-time channel establishment
in wide-area networks, IEEE J. Selected Areas Comm. 8 (3) (1990)
368–379.

[18] M. Handley, V. Jacobson, SDP: session directory protocol (draft 2.1),
Internet Draft—Work in Progress, February 1996.

[19] F.K. Hwang, D.S. Richards, Steiner tree problems, Networks 22 (1992)
55–89.

[20] S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, L. Zhang, On placement
of internet instrumentation, in: IEEE INFOCOM 2000, March 2000,
pp. 295–304.

Author's personal copy

S. Chen, Y. Shavitt / J. Parallel Distrib. Comput. 68 (2008) 137–149 149

[21] V.P. Kompella, J.C. Pasquale, G.C. Polyzos, Multicast routing for
multimedia communication, IEEE/ACM Trans. Networking (1993),
pp. 286–292.

[22] L. Li, C. Li, QoS multicast routing in networks with uncertain parameters,
in: International Parallel and Distributed Processing Symposium
(IPDPS’03), 2003.

[23] L. Li, C. Li, A QoS multicast routing protocol for clustering mobile ad
hoc networks, J. Comput. Comm. 30 (2007) 1641–1654.

[24] D.H. Lorenz, A. Orda, D. Raz, Y. Shavitt, Efficient QoS partition and
routing of unicast and multicast, IEEE ACM Trans. Networking 14
(2006) 1336–1347.

[25] K.-S. Lui, J. Wang, L. Xiao, K. Nahrstedt, QoS multicast routing with
heterogeneous receivers, in: IEEE Global Communications Conference
(Globecom 2003), December 2003.

[26] J. Moy, Multicast extensions to OSPF, Internet RFC 1584, March 1994.
[27] S. Pradhan, Y. Li, M. Maheswaran, QoS-aware hierarchical multicast

routing on next generation internetworks, in: 20th IEEE International
Performance, Computing, and Communications Conference (IPCCC
2001), April 2001.

[28] B. Rong, M. Bennani, M. Kadoch, A.K. Elhakeem, Bandwidth
fragmentation avoided QoS multicast routing by employing admission
control, in:19th International Conference on Advanced Information
Networking and Applications (AINA’05), 2005.

[29] G.N. Rouskas, I. Baldine, Multicast routing with end-to-end delay and
delay variation constraints, IEEE J. Selected Areas Comm. (1997),
pp. 346–356.

[30] A. Sai Sudhir, G. Manimaran, S. Tirthapura, P. Mohapatra,
Heterogeneous QoS multicast in DiffServ-like networks, in: Poster Paper,
IEEE INFOCOM, March 2005.

[31] A. Striegel, G. Manimaran, A survey of QoS multicasting issues, IEEE
Comm. 40 (6) (2002).

[32] H.-Y. Tyan, J. Hou, B. Wang, Y.-M. Chen, QoS extension to the core
based tree protocol, in: NOSSDAV’99, 1999.

[33] B. Wang, C.-J. Hou, A survey on multicast routing and its QoS extension:
problems algorithms and protocols, IEEE Network January/February
(2000).

[34] X. Wang, J. Cao, H. Cheng, M. Huang, QoS multicast routing
for multimedia group communications using intelligent computational
methods, Comput. Comm. 29 (2006).

[35] B.M. Waxman, Routing of multipoint connections, IEEE J. Selected
Area Comm. (1988) 1617–1622.

[36] H. Wu, X. Jia, QoS multicast routing by using multiple paths/trees in
wireless ad hoc networks, J. Ad Hoc Networks 5 (2007).

[37] G. Xue, A. Sen, W. Zhang, J. Tang, K. Thulasiraman, Finding a path
subject to many additive QoS constraints, IEEE/ACM Trans. Networking
15 (2007) 201–211.

[38] G. Xue, W. Zhang, J. Tang, K. Thulasiraman, Polynomial time
approximation algorithms for multi-constrained QoS routing, IEEE/ACM
Trans. Networking, to appear.

[39] D. Zappala, Alternate path routing for multicast, in: IEEE INFOCOM,
March 2000.

[40] H. Zhang, Service disciplines for guaranteed performance service in
packet-switching networks, Proc. IEEE. 83 (10) (1995).

[41] H. Zhang, S. Keshav, Comparison of rate-based service disciplines, in:
ACM SIGCOMM’91, 1991.

[42] L. Zhang, S. Deering, D. Estrin, S. Shenker, D. Zappala, RSVP: a new
resource reservation protocol, IEEE Network September (1993).

Shigang Chen received his B.S. degree in com-
puter science from University of Science and
Technology of China in 1993. He received M.S.
and Ph.D. degrees in computer science from
University of Illinois at Urbana-Champaign in
1996 and 1999, respectively. After graduation,
he had worked with Cisco Systems for three
years before joining University of Florida as
an assistant professor in 2002. His research
interests include network security, peer-to-peer
networks, and sensor networks. He received
IEEE Communications Society Best Tutorial
Paper Award in 1999. He was a guest editor

for ACM/Baltzer Journal of Wireless Networks (WINET) and IEEE Transac-
tions on Vehicle Technologies. He served as a TPC co-chair for the Computer
and Network Security Symposium of IEEE IWCCC 2006, a vice TPC chair
for IEEE MASS 2005, a vice general chair for QShine 2005, a TPC co-chair
for QShine 2004, and a TPC member for many conferences including IEEE
ICNP, IEEE INFOCOM, IEEE SANS, IEEE ISCC, IEEE Globecom, etc.

Yuval Shavitt (IEEE S’88–M’97–SM’00) re-
ceived the B.Sc. in computer engineering (cum
laude), M.Sc. in electrical engineering and
D.Sc. from the Technion—Israel Institute of
Technology, Haifa, Israel in 1986, 1992, and
1996, respectively. After graduation he spent a
year as a postdoctoral fellow at the Department
of Computer Science at Johns Hopkins Univer-
sity, Baltimore, MD. Between 1997 and 2001 he
was a member of Technical Stuff at Bell Labs,
Lucent Technologies, Holmdel, NJ. Starting
October 2000, he is a faculty member in the

School of Electrical Engineering at Tel-Aviv University, Israel. His recent
research focuses on Internet measurement, mapping, and characterization,
QoS in networks, and routing.

