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Abstract

Many Internet multicast applications such as teleconferencing and remote diagnosis have Quality-

of-Service (QoS) requirements. The requirements can be additive (end-to-end delay), multiplicative

(loss rate), or of a bottleneck nature (bandwidth). Given such diverse requirements, it is a challenging

task to build QoS-constrained multicast trees in a large network where no global network state is

available. This paper proposes a scalable QoS multicast routing protocol (SoMR) that supports all

three QoS requirement types. SoMR is scalable due to small communication overhead. It achieves

favorable tradeoff between routing performance and routing overhead by carefully selecting the net-

work sub-graph in which it searches for a path that can support the QoS requirements. The scope

of search is automatically tuned based on the current network conditions. An early-warning mecha-

nism helps detect and route around the long-delay paths in the network. The operations of SoMR are

completely decentralized. They rely only on the local state stored at each router.

keywords: multicast routing; quality of service; delay constraint
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1 Introduction

Multicast is an efficient way of delivering content to a largegroup of receivers by using a tree structure

embedded in the network. Building a multicast tree, calledmulticast routing, has been studied exten-

sively. Finding a minimum-cost multicast tree, e.g., one that uses a minimal number of links, is known

to be NP-hard [2]. Heuristics are deployed to find trees that are practically “good enough”. The simplest

heuristic is to form a tree based on unicast routing paths between the sender and the receivers [3, 4].

This approach was adopted by IETF standards: DVMRP [5], PIM [6], MOSPF [7]. The unicast-path

trees work well for delivering information that is not QoS sensitive. However, when applications have

non-trivial QoS constraints, the unicast-path trees may not have adequate characteristics to meet the

constraints [8].

QoS-constrained multicast routing has many important applications such as teleconferencing, IPTV,

and on-demand vedio distribution. Today, these applications are mostly implemented through unicast

connections, which have lower quality and higher cost. Protocols for QoS-constrained multicast routing,

if implemented, will improve the quality and reduce the costof these applications. However, the legacy

design of the Internet is not compatible with QoS provision.Designed thirty years ago, the current Inter-

net has fundamental problems in QoS support, security and manageability. The networking community

has been building consensus that we should take a ”clean-slate” approach to design the next-generation

Internet, which is embodied in the FIND initiative from NSF.The research on QoS multicast routing has

a potential to enable various multimedia applications on the future Internet.

A feasible treeis a multicast tree that satisfies the QoS requirements. Afeasible tree branch (path)

is a path that connects a new group member to a multicast tree without breaking any QoS constraint.

The task of QoS multicast routing is to find feasible tree branches for new group members. A survey of

this research area can be found in [9]. Finding feasible treebranches is difficult in a large network such

as the Internet. It is impossible to maintain global QoS state at any single node. A brute-force flooding

algorithm that searches all possible paths in the network guarantees to find a feasible branch if one exists.

However, the excessive overhead of flooding deems to be impractical for all but small networks. Con-

sequently, for applications that require QoS guarantees, recent research focuses on distributed multicast
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routing algorithms that search a selected subset of the network to find feasible tree branches for new

group members [8, 10, 11, 12, 13, 14, 15].

A good QoS routing protocol should achieve favorable tradeoff between routing overhead and routing

performance (the ability of finding a feasible branch when one exists). In addition, it should minimize

the extra state information kept at the routers, decentralize the routing operations, adapt the routing ac-

tivity based on the current network conditions, and avoid the congested network areas. QMRP [8] has

many of the good merits mentioned above. However, it suffersfrom two problems. First, it deposits

per-join state at routers. When there are many concurrent joins for a multicast group, a router has to

keep separate state information for each join that it assists. It is highly desirable for the routers to not

keep any per-join information but only maintain per-group information. Second, QMRP is designed for

applications with bottleneck QoS requirements such as bandwidth and buffer space. It lacks effective

mechanisms to handle additive/multiplicative QoS requirements such as delay or packet loss. QoS rout-

ing for additive/multiplicative requirements is a more difficult problem. How to extend QMRP for all

kinds of requirements is a challenge by itself.

Spanning join [10] and QoSMIC [12] do not have the above problems. However, they have much

higher overhead and lower success probability [8]. The spanning-join protocol relies on expanding-ring

flooding to find an on-tree node for a new member to join. QoSMICcombines a local search and a tree

search to avoid large-scale flooding, but its overhead can still be high for large multicast trees.

One may argue that any distance-vector protocol will work well for constructing multicast trees

with an additive delay constraint. However, if there is an additional bandwidth constraint and different

multicast groups have different bandwidth requirements, then the protocol has no way to determine

which links should be excluded from the shortest-path computation, because a link that has sufficient

bandwidth for one group may not be qualified for another group. Note that we cannot run the distance-

vector protocol separately for each multicast group, whichdoes not scale in a large network with many

groups. OSPF-like protocols are not a viable option either because maintaining global QoS state at each

node is too costly for a large network. Hence, further study for a scalable, efficient QoS multicast routing

protocol that can handle all types of QoS requirements is under call.

In this paper, we propose a scalable QoS multicast routing protocol, called SoMR, that eliminates the
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use of per-join routing state. In QMRP, each new member initiates a search tree, which grows towards

the multicast tree. The search tree is per-join state information. A router involved in multiple search

trees has to keep state information for each tree. SoMR does not use search trees. Instead it grows the

multicast tree towards new members. The maximum memory space a router uses for a multicast group

is fixed, which is one multicast routing entry. SoMR not only gets rid of per-join state but also allows

dynamic aggregation of multiple join requests, where a single tree branch may grow toward multiple new

members.

To improve the chance of finding a feasible path, SoMR may branch out to grow multiple branches

in the multicast tree towards the new member. The key problemis to select the optimal locations at

which branching should occur. Such locations are calledbranching points. For delay or other addi-

tive/multiplicative requirements, the optimal branchingpoints are not at the locations where the require-

ments are violated. It is often because an early link has too large delay. The branching should occur

there. SoMR uses a novel early-warning (EW) mechanism which finds the real problematic locations in

the network and makes branches to detour around those locations. By doing this, SoMR increases the

success ratio in finding feasible branches for new members.

We also propose several optimization techniques to controlthe worst-case overhead. We prove the

correctness of SoMR and analyze its performance. We performextensive simulations to demonstrate

that SoMR is able to achieve high success ratio at low overhead.

The rest of the paper is organized as follows. Section 2 discusses the related work. Section 3 defines

our network model. Section 4 describes the routing protocol. Section 5 and Section 6 present analytical

and simulation results, respectively. Section 7 draws the conclusion.

2 Related Work

A multicast tree is incrementally constructed as members leave and join a multicast group. When an

existing member leaves the group, it sends a control messageup the tree to prune the branch which has

no members attached any more. When a new member joins the group, the tree must be extended to

cover the new member. Based on how the new member is connected onto the tree, the multicast routing
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protocols can be classified into two broad categories:single-path routing protocols(SPR) andmultiple-

path routing protocols(MPR). An SPR protocol provides a single path connecting the new member to

the tree, whereas an MPR algorithm provides multiple candidate paths to choose from.

2.1 Single-path routing

Most SPR protocols were originally designed for the best-effort data traffic. We briefly discuss two

representative protocols and point out why they are not suitable for QoS traffic. CBT (Core-Based Tree)

[3, 16] and PIM (Protocol Independent Multicast) [4] connect a new memberi to the multicast tree along

the unicast routing path fromi to the root (core) of the tree. The unicast path is typically the shortest path

in term of hops. The resulting shortest-path trees are good for best-effort traffic. However, when QoS is

considered, such shortest-path trees may not have the resources to support the quality requirement.

2.2 Multiple-path routing

In order to increase the chance of finding a feasible tree, theMPR protocols provide multiple candidate

paths for a new member to be connected to the tree. Among the candidates the new member selects the

best one.

Spanning-joins [10]: In the spanning-joins protocol proposed by Carlberg and Crowcroft, a new

member broadcasts join-request messages in its neighborhood to find on-tree nodes. Whenever an on-

tree node receives the message, it sends a reply message backto the new member. The path of the reply

message, determined by the unicast routing algorithm, is a candidate path. The new member may receive

multiple reply messages corresponding to multiple candidate paths. Each reply message collects the QoS

properties of the path it traverses. The new member selects the best candidate path based on the informa-

tion received in the reply messages. Consecutive broadcastsare necessary to search increasingly larger

neighborhood until on-tree nodes are found, and this process can increase the overhead significantly.

QoSMIC [12]: In the QoSMIC protocol proposed by Faloutsos et al, the search for candidate paths

consists of two parallel procedures:local searchandtree search. The local search is equivalent to the

spanning-joins protocol, except that only a small neighborhood is searched. The tree search handles the
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case when there is no on-tree node in the neighborhood checked by the local search. In the tree search, a

new member sends an M-JOIN message to a designated Manager node for the group. Upon receipt of the

message, the Manager multicasts a BID-ORDER message in the tree to select a subset of on-tree nodes.

The selected nodes send BID messages to the new member. The paths of the BID messages, determined

by the underlying unicast routing protocols, are candidatepaths. The tree search allows QoSMIC to

restrict itsfloodinglocal search in a small neighborhood.

Both spanning-joins protocol and QoSMIC are not QoS-aware inselecting candidate paths. The

selection of on-tree nodes, to which the new member may join,is based on the connectivity.1 The

candidate paths are simply the unicast routing paths from the selected on-tree nodes to the new member.

These paths are typically the shortest paths in terms of number of hops, and may not be the best choice

for the QoS requirements specified in other terms such as delay or bandwidth. Hence, the information

about the specific QoS requirement and the availability of relevant resources should be used to make

more effective selection of candidate paths.

QMRP [8]: QMRP grows a search tree from each new member to the root of the multicast tree. The

branches growing in the search tree must satisfy a bandwidthrequirement. When a branch in the search

tree touches a branch in the multicast tree, a feasible path that connects the new member to the multicast

tree is discovered. QMRP only considers bandwidth constraints. Its search tree is per-group-per-join

state.

2.3 Other Related Work

There are other related works that study the QoS multicasting problem from different aspects. Rong et al.

integrate active admission control into traditional QoS multicast routing algorithms to prevent bandwidth

fragmentation in multicast networks [17]. Striegel and Manimaran present a multicast “life-cycle” model,

identifying various issues that are involved in a typical multicast session [18]. Pradhan et al. propose a

hierarchical multicast routing protocol that achieves scalability by organizing a network as a hierarchy of

domains using the full-mesh aggregation technique [14]. Liinvestigates the constrained multicast routing

1After candidate paths are selected, the protocol becomes QoS-aware because the QoS properties of the candidate paths

are collected and checked to see if any of them meet the requirement.
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problem in networks with imprecise state information [19].Lui et al. propose a receiver-initiated QoS

multicast protocol that aims at reducing the bandwidth usedin building a multicast tree for heterogeneous

receivers [15]. Charikar et al. study several NP-hard resource optimization problems in multicast routing

and propose heuristic solutions with provable performancebounds [20]. Sai Sudhir et al. address the

problems of static and dynamic heterogeneous QoS multicasting in DiffServ networks [21].Rong et al.

integrate active admission control into traditional QoS multicast routing algorithms to prevent bandwidth

fragmentation in multicast networks [17]. Striegel and Manimaran present a multicast “life-cycle” model,

identifying various issues that are involved in a typical multicast session [18]. Pradhan et al. propose a

hierarchical multicast routing protocol that achieves scalability by organizing a network as a hierarchy of

domains using the full-mesh aggregation technique [14]. Liinvestigates the constrained multicast routing

problem in networks with imprecise state information [19].Lui et al. propose a receiver-initiated QoS

multicast protocol that aims at reducing the bandwidth usedin building a multicast tree for heterogeneous

receivers [15]. Charikar et al. study several NP-hard resource optimization problems in multicast routing

and propose heuristic solutions with provable performancebounds [20]. Sai Sudhir et al. address the

problems of static and dynamic heterogeneous QoS multicasting in DiffServ networks [21].

3 Network model

We make the following assumptions about the network.

1. There exists an underlying unicast routing protocol which can deliver a message between any two

connected nodes in the network. A node knows the length (number of hops) of the unicast routing

path to any destination. Many widely used unicast routing protocols such as RIP and OSPF provide

this information.

2. Every node maintains its up-to-date local state, such as the delay of each outgoing link, which

includes the processing time, buffering delay, and link propagation delay. Assume that once re-

sources are committed, such delay can be assured during the lifetime of data communication.

How to make resource reservation [22, 23] and what packet scheduling algorithms should be used

[24, 25] are beyond the scope of this paper.
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A node is not required to maintain any global state information or the local state of any other node.

This distinguishes our work from many other works that need to acquire the global state [26, 27] or a

partial map [28] of the network.

With the above assumptions, we study how to construct QoS-constrained multicast trees. We use the

delayconstraint as example to illustrate the protocol, while other additive metrics such ascostcan be

supported similarly. Multiplicative metrics such asloss ratecan also be supported by using logarithm

functions to convert them into additive metrics. Bottleneckmetrics such asbandwidthare easier to

handle: the links having the resources have zero weights; the links not having the resources have infinite

weights; feasible paths are those whose weights are zero.

There are two types of multicast trees:sender-based treesand core-based trees. For a delay-

constrained sender-based tree, the delay from the sender toany other node in the tree has to be bounded

by a delay requirementD. A delay-constrained core-based tree can be modeled as two subtrees. One is

from the core to all receivers, and the other is from all senders to the core. Given a delay requirementD,

if both subtrees are bounded byD/2, then the delay requirement is met. Constructing the first subtree is

the same problem as constructing a sender-based tree, whileconstructing the second subtree is a reverse

problem. To simplify the presentation, we will use sender-based trees to illustrate the protocol in the rest

of the paper.

We assume that any new member is able to map a multicast group address to the root node of the tree

on demand possibly by a query/response Session Directory [29].

Each on-tree node has a multicast routing entry, specifyingwhich node is its parent and which nodes

are its children. We define notations in the following. Letk andi be two on-tree nodes. The path in the

multicast tree connecting them is called thein-tree path, denoted byPk,i. The guaranteed delay bound

of this path is called thein-tree delay, denoted bydelay(Pk,i). Let T be the set of on-tree nodes andr be

the root of the tree. A delay-constrained multicast tree requires that

∀i ∈ T, delay(Pr,i) ≤ D

We require each on-tree nodei to knowdelay(Pr,i). In fact, as we will see later in the protocol descrip-

tion, our protocol makes sure that any node joining the tree will have this value.
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We assume that each link(i, j) can ensure a certain delay bound for the Class of Service (CoS) which

the multicast group is associated with. We denote this delaybound asdelay(i, j).

4 A New QoS Multicast Routing Protocol

In this section, we discuss our design objectives, describethe new routing protocol, and present the

pseudo code of the protocol.

4.1 Design Objectives

We design our QoS multicast routing protocol based on the following objectives.

Favorable Tradeoff: Like many other network functions, QoS routing has multipleperformance

metrics, includingsuccess ratioandoverhead, which represent the average probability of finding a fea-

sible path and the average consumption of network resources(e.g., bandwidth, memory, and CPU),

respectively. These performance metrics often conflict with each other — it normally takes more over-

head to achieve better success ratio. There are two extremesin designing a QoS routing protocol: (1)

searching only one path to minimize the overhead while sacrificing the success ratio, and (2) searching

all paths to optimize the success ratio at the cost of heavy overhead. Many existing protocols [10, 12, 8]

chose a tradeoff between the two extremes: searching multiple but not all paths. The rational behind

these protocols is that sub-optimal success ratio can be achieved by searching a set of carefully selected

paths. The key is how to make the path selection. A good path-selection strategy achievesfavorable

tradeoff— improving success probability significantly at an insignificant overhead increase.

Adaptivity: The design of many QoS routing protocols is geared towardscongestionconditions

where the total demand of all QoS traffic exceeds the resourcesupply. These protocols employ extra

operations (and overhead) in order to find a good way to lay outthe routing paths so that more connec-

tions can be accommodated. The problem is that, for spanning-join and QoSMIC, the same operations

are performed for any network conditions. The extra overhead for congestion condition becomes a waste

under normal traffic condition, where networks are designedto operate for most of the time.2

2Even when QoS traffic is light, best-effort traffic may be heavy [30]. In order to improve the performance of best-effort
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Therefore, an adaptive routing algorithm is desired. It should be able to detect the network congestion

condition and introduce extra overhead only when necessary. In addition, the amount of extra overhead

should also be adaptive according to the traffic condition inthe area where the routing takes place.

4.2 Protocol Overview

SoMR consists of two phases. Letr be the root node of the tree. The first phase is similar to shortest

path routing (SPR), in which a JOIN message is sent from a new membert to the rootr along the unicast

routing path. The JOIN message accumulates the path it traverses. It also accumulates the delay of the

path in the reverse direction. When the JOIN message reaches an on-tree nodek, if the accumulated

delay plus the in-tree delay fromr to k does not violate the delay requirement, a feasible tree branch

is detected, which is the traversed unicast path.3 A CONSTRUCTION message is then sent back along

the path (usingIP source routing) to construct a tree branch connecting the new member. Sincethe new

member joins the tree successfully, the second phase will not be activated.

On the other hand, if the delay requirement is violated atk, the JOIN message continues traveling

to the rootr. When the root receives the message, it starts the second phase, which employs multi-path

routing. The root sends GROW messages to its neighbors. These GROW messages will then travel along

the unicast routing paths towards the new member. As they travel, they try to construct new tree branches

hop by hop along the way. It should be emphasized that, even though multiple temporary tree branches

may grow to a new member, all but one will withdraw. Moreover,any router in the network will keepat

most one multicast routing entryno matter how many concurrent joins there are.No per-join information

is kept. In Section 4.3 and Section 4.4, we will show that, when two growing branches (either for the

same join or for different joins) meet at a common node, one branch will withdraw and the other branch

will continue growing towards one or multiple new downstream members.

Each GROW message carries the delay requirementD. It also accumulates the delay of the con-

traffic, the excess overhead by the QoS routing protocol is always undesirable.
3In addition to delay, if there are additional additive constraints (such as cost), they will be handled in the same way. A

feasible branch is detected when none of the additive constraints is violated. If there are additional bottleneck constraints

(such as bandwidth), then we can simply set the delay of any link that violates a bottleneck constraint to be infinite, and the

rest of the protocol remains the same.
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structed tree branch. Hence, when an intermediate nodei receives GROW, it knows the in-tree delay

from r to i, delay(Pr,i). Now, let us describe the actions thati will take after receiving GROW. First,i

performs an EW (Early Warning) test to see how likely the unicast path to the new membert will satisfy

the delay requirementD. If the EW test is passed, GROW will continue traveling alongthe unicast

path towardst; otherwise,i attempts multi-path routing which may result in multiple downstream tree

branches to be constructed. Letj be the next hop on the unicast path. The EW test takes four input

parameters,D, delay(Pr,i), delay(i, j), andl, which is the length of the unicast path fromi to t. The test

is defined as follows.

if delay(i, j) > (D − delay(Pr,i))/l then warning else pass

D − delay(Pr,i) is the remaining slack of the delay requirement that furthertree construction is

allowed to have.(D − delay(Pr,i))/l is the ”fair share” of this slack for each link on the path fromi to

t. The above EW test states that if the delay of the link is larger than the fair share, a warning should be

triggered; otherwise, the test is passed. More sophisticated EW tests are possible, but are not considered

in this paper since the above simple test already works well in our simulations.

If the EW test is passed, which means that the current unicastpath is likely to satisfy the QoS

requirement,i adds link(i, j) into the multicast tree and forwards the GROW message to the next hopj.

If every intermediate node passes the EW test, a feasible branch is established for the new member.

However, if the EW test warns that the unicast path may violate the QoS requirement, extra effort

needs to be taken. Searching multiple downstream paths willincrease the chance of success. Namely,

the tree construction needs tobranch out. We call i a branching point. GROW messages are sent to a

subset of adjacent nodesx that satisfy the followingQoS test:

if delay(i, x) > D − delay(Pr,i) then fail else pass

Apparently,x can be the nodej that just failed the EW test, butx should not be the adjacent node from

which the GROW was previously sent toi. For the purpose of overhead reduction, we may select only

some of the nodes that pass the QoS test (see section 4.6).

If the QoS test is failed for every adjacent node, a BREAK message is sent back to trim the partially

constructed tree branch. When a nodek receives a BREAK message from a nodei, it first deletes link
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(k, i) from the multicast tree, and then ifk becomes a leaf node and is not a member of the multicast

group, it will delete itself from the multicast tree and propagate the BREAK message to its parent node.

As BREAK travels back tor, the new tree branch is deleted.

There is a difference between the EW test and the QoS test. TheEW test tries to make early guess

on whether the path ahead is likely to satisfy the delay constraint. If it sees signs of trouble, it triggers

branching to improve the chance of success. The QoS test is tocheck if the delay constraint has already

been violated. If it is, no further construction will be donetowards this direction.

At the beginning of the second routing phase, our protocol requires the root to be a mandatory branch-

ing point (an EW test is not necessary). Our simulations consistently show that SoMR performs better

this way. The reason is that an early branching widens the search range and gives the subsequent tree

construction more flexibility. It should be noted that the second phase commences only if the first phase

fails, i.e., the SPR path fails.

Whenever a GROW message reachest, a feasible tree branch is found. However,t may receive

multiple GROW messages from different branches. Fig. 1 gives an example. The multicast tree is shown

by bold lines. i is a branching point, from which two branches reacht. In this case,t needs to send

back BREAK messages to tear down all but the best branch.t can use the information (delay, bottleneck

bandwidth, etc.) collected by the received GROW messages toselect the best branch, and it will send a

resource reservation message back up to reserve resources along this branch. It is rare but possible that,

due to concurrent joins in other multicast groups, the selected tree branch becomes infeasible during the

short period after GROW passes through the branch and beforethe resource reservation message comes

back. When this happens, the new member will have to perform the join again.

4.3 Breaking Loops

As tree branches are constructed towards new member(s), loops may form in the multicast tree. Fig. 1

gives one example. A loop forms when two growing tree branches reach the same node. This is not a

classical loop in which a message will travel forever. It is aloop formed by two tree branches joining at

a common node. The node would receive two copies of the same message if the loop was not broken.

Before we provide a general solution to the looping problem, we need to study GROW messages
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more closely. Consider a GROW message that constructs a tree branch along a unicast pathP to the new

member. Some of the links onP may be already in the multicast tree while the others are not.When a

GROW message travels along a link that is already in the multicast tree, we assign a color ofblue to the

GROW message. When a GROW message travels along a link that is not in the multicast tree, we assign

greento the message.4 Only green-GROW messages may form loops, because green-GROW messages

join new links to the tree while blue-GROW messages follow existing tree links.

The sender of a GROW message can determine the color of the message as follows. When a nodei

sends a GROW to an adjacent nodej, if j is the parent or a child ofi in the multicast tree,i marks the

GROW to be blue; otherwise, it marks the GROW to be green.

Using the coloring scheme, loop detection is easy. When an on-tree node receives a green-GROW

message, a loop is formed. Fig. 2 gives an example, where the existing tree is shown in the left plot. The

GROW message is blue when it traverses an on-tree linkr → a, and then it turns green when traversing

links outside of the tree,a → b → i, which are consequently included in the tree. When the on-tree

nodei receives a green-GROW message, a loop is detected. A BREAK message is sent back to break

the loop, while the GROW message continue constructing a tree branch towards the new member.

Arriving at i, the GROW message has the in-tree delay of the new tree branch(r → a → b → i).

i knows the in-tree delay of the old tree branch (r → a → c → i). The BREAK message can be sent

to tear down the new branch, in which case the in-tree delay inthe GROW message needs to be updated

to equal that of the old tree branch. Or the BREAK message can be sent to break the old branch based

on certain optimization criteria (e.g., the in-tree delay of the new branch is smaller), and in this case the

in-tree delay stored ati needs to be updated.

Two growing branches may meet at a common node to form a loop, which will be broken similarly.

In Fig. 3 (a), two green-GROW messages grow two tree branchessimultaneously. Suppose the green-

GROW message fromc arrives ati first in Fig. 3 (b). The message addsi to the tree and continues to

travel towards the destination along unicast path. Then in Fig. 3 (c) the second green-GROW message

arrives ati. This message triggers a BREAK message to break the loop and a blue-GROW message

follows the same unicast path to the destination in Fig. 3 (d). The blue-GROW message is necessary

4The green-GROW message will join this link to the multicast tree.
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becausei does not keep per-join routing state to indicate that a previous green-GROW for the same

destination has been sent downstream.

No blue-GROW messages but only green-GROW messages will cause BREAK messages.

4.4 Concurrent Joins

SoMR can efficiently support concurrent join requests. Fig.4 (1) gives an example, in which each

GROW message is identified by the group addressG and the new member address. Two concurrent new

members,t andy, join the tree at the same time. Two GROW messages independently construct two

new branches, which are partially overlapped. The messagescontain different new member addresses,

and thus the branches grow towards different directions.

Fig. 4 (2) gives an abnormal case. Suppose the green-GROW message fory arrives atj first. It finds

that link (j, y) will violate the delay requirement. It sends a BREAK message back to i to tear down the

partially constructed tree branch. While the BREAK message is on the way toi, i sends a blue-GROW

message fort down the same link. Whenj receives the blue-GROW, link(i, j) no longer belongs to the

multicast tree and thusj should not construct a tree branch further towardst. Therefore, when a node

(j) receives a blue-GROW message and finds that it is no longer anon-tree node, it should discard the

blue-GROW message without further constructing tree branch.
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4.5 Pseudo Code

The first phase of SoMR is quite straightforward thus we present only the pseudo code of the second

phase. Two types of routing messages are of concern.

1. A GROW message grows a new tree branch to connect the new member.

2. A BREAK message tears down a tree branch in order to break a loop in the multicast tree.

Both messages carry the multicast group address. GROW messages also carry the new member address,

the delay boundD, the in-tree delay from the root to the current node, and the message color.

Each node in the multicast tree keeps amulticast routing entry, which is denoted asM{G, in, out},

whereM.G is the address of the multicast group,M.in is the parent node in the multicast tree, andM.out

is the set of child nodes. The next hop on the unicast routing path from nodei to nodet is denoted as

Ni→t. Given any nodei, our protocol is implemented by the following pseudo code. Supposei received

a control message fromk.

Node i:

switch (the received message)

case GROW(G, t, ...):

if (it is a green-GROW)

if (i is an on-tree node)

/* break loop in the tree */

send BREAK(G) back tok

else

/* add i into the tree */

create a multicast entryM(G, out, in)

M.in = k

M.out = ∅
if (i = t)

routing is successful

else

/* further grow tree branch to next hop */

if (Ni→t ∈ M.out or Ni→t = M.in)

send blue-GROW(G, t, ...) toNi→t

else if (the EW test is passed)
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M.out := M.out + {Ni→t}
send green-GROW(G, t, ...) toNi→t

else

for every adjacent nodej, j 6= k

if (j ∈ M.out or j = M.in)

send blue-GROW(G, t, ...) toj

else if (j passes the QoS test)

M.out := M.out + {j}
send green-GROW(G, t, ...) toj

if (no GROW was sent by thefor loop,M.out = ∅, andi is not a group member)

/* tear down partially constructed branch */

remove the multicast entryM(G, out, in)

send BREAK(G) to k

case BREAK(G):

M.out := M.out − {k}
if (M.out = ∅ andi is not a group member)

/* removei from the multicast tree */

remove the multicast entryM(G, out, in)

send BREAK(G) to M.in

4.6 Optimization

Whenever the EW test generates a warning at an intermediate node, the node becomes a branching point

and multiple tree branches may grow out from this node towards the new member.5 The number of

branching points, if not restricted, can potentially be large, which will result in large routing overhead.

We define two protocol parameters that are used to restrict the number of constructed tree branches.

Maximum Branching Level (MBL):An easy way to control the number of branching points is to

maintain an assertion: when a GROW message travels from the root and a new member, it may pass at

5The BREAK messages will cut all but one branch. Hence, there will be only one tree branch connecting the new member

eventually. The key difference from QMRP is not about less number of temporary tree branches per join but about removing

temporary per-join state information from routers. SoMR does not require any information other than one multicast entry to

be stored at a router for a group.
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mostm branching points, wherem is a system parameter calledmaximum branching level. Since the

root is a mandatory branching point, each GROW message from the root carries a counter whose initial

value ism− 1, specifying the maximum number of downstream branching points that it can pass. When

a GROW message reaches a node that fails the early warning test, if the counter in the message is above

zero, the node becomes a branching point, which forwards GROW to multiple neighbor nodes with the

counter value decreased by one; however, if the counter is already zero, the node will not become a

branching point and the GROW is forwarded only on the unicastpath to the new member.

It is easy to see that the maximum number of branching points is bounded by
∑m−1

i=0 (d − 1)i, where

d is the maximum degree of a node. Whend = 2,
∑m−1

i=0 (d − 1)i = m; whend > 2,
∑m−1

i=0 (d − 1)i =

(d−1)m
−1

d−2
. Such a restricted version of SoMR is denoted as SoMR-m. An illustration of SoMR-3 is given

in Fig. 5. SoMR-m can be easily implemented by augmenting the GROW messages with a counter.

Directivity can be implemented to discourage tree branches growing awayfrom the new membert.

When a GROW is sent fromi to j, if the distance fromj to t is not shorter than the distance fromi to

t, the counter for MBL is set to zero, indicating that there is nobranching point allowed for this GROW

message.

Maximum Branching Degree (MBD):A branching point may have a large number of adjacent links,

which can also cause excessive overhead. SoMR-m can be further augmented with an additional param-

eter,maximum branching degree, which specifies the maximum number of GROW messages that are

allowed to be sent by a branching point. If the maximum branching degreex is smaller than the node

degree minus one,6 the node selectsx outgoing links (based on distance to the new member or randomly)

from which GROW has not been received, and sends GROW messages out along these links.

We suggest both MBL and MBD to be implemented. With MBL =m and MBD =x, the maximum

number of branching points isΣm−1
i=0 xi = xm

−1
x−1

. Therefore, the overhead can be controlled by these two

parameters.

6The node should not send GROW to a link from which a GROW message has been received previously.
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Figure 5: an example of SoMR-3

5 Analysis

5.1 Correctness Analysis

We show that SoMR does not form any persistent loop, does not partition the multicast tree, and termi-

nates in finite time.

Theorem 1 SoMR never forms a persistent loop in the multicast tree.

Proof: Only green-GROW messages add new links to the tree and can form loops. Supposej sends

a green-GROW message toi, adds link(j, i), and forms a loop. Letk be the parent node ofi in the

tree. By the structure of trees, both link(j, i) and link (k, i) belong to the loop. According to Section

4.3, a BREAK message will be sent to eitherj or k to tear down(j, i) or (k, i), which breaks the loop

immediately. Hence, any loop can not persist. �

SoMR grows new tree branches from the tree towards new members. In many other protocols, new

branches are constructed from new members towards the tree.PIM is an example. Before new branches

actually reach the tree, the tree can be viewed as being partitioned. This is fine without QoS constraints

because those growing branches will eventually reach the tree by following the unicast paths. However,

with QoS constraints, it can cause a problem. When a growing branch reaches an on-tree node, the

node may belong to another growing branch, which may be torn down later due to the violation of QoS

constraints. This case never arises in SoMR.

Theorem 2 SoMR never causes the multicast tree to be partitioned into more than one disconnected

pieces.
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Proof: New tree branches always grow from the multicast tree.7 Hence, any new on-tree nodes must

be connected with the tree. BREAK messages only remove leaf nodes from the tree and thus have no

chance to partition the tree. �

The above two theorems can also be applied to SoMR-m for anym.

The routing process terminates when no control message of a join request is still in transit.

Theorem 3 SoMR-m terminates in finite time.

Proof: Consider an arbitrary join request. SoMR-m has at most
∑m−1

i=0 (d − 1)i branching points,

whered is the maximum degree of a node (Section 4.6). Each branchingpoint generates at mostd

GROW messages. Hence, the total number of GROW messages is finite. Every GROW message follows

the unicast path to the destination and thus terminates in finite time. Each GROW message may or may

not generate one BREAK message. Hence, there are finite BREAK messages. Every BREAK message

follows a multicast tree branch backward to prune the branchand terminates when reaching a non-leaf

node. There are one JOIN message and one CONSTRUCTION message.Both of them follow the

unicast path and terminate in finite time. Because there are finite control messages that all terminate in

finite time, SoMR-m terminates in finite time. �

5.2 Performance Analysis

We analyze the length of the tree branch established by SoMR-m and the overhead of SoMR-m.

SoMR-m prefers the shortest path provided by the underlying unicast routing protocol. However,

when the shortest path does not satisfy the QoS requirement,the GROW messages are sent along other

paths. Though it increases the chance of success, too long paths are often undesired due to larger con-

sumption of resources. The following theorem shows that SoMR-m can make sure that the increase in

path length is bounded.

Theorem 4 Suppose the unicast routing paths are the shortest paths in terms of hops. For SoMR-m, a

tree branch from the root to a member is at most2m hops longer than the shortest path. If the directivity

is implemented, a tree branch is at most two hops longer than the shortest path.

7This is different from PIM [6], which grows branches from newmembers to the tree.
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Proof: When a tree branch is constructed, SoMR-m allows at mostm branching points on the

branch. A GROW message always travels along the shortest path unless at the branching points. At each

branching point, GROW may travel one hop backward away from the new member, which increases two

hops over the shortest path. There are at mostm branching points, which can increase at most2m hops

over the shortest path. Hence, any constructed tree branch to a new member is no more than2m hops

longer than the shortest path.

When the directivity is implemented, according to Section 4.6, if a GROW message does not follow

a shortest path after a branching point, its MBL is set to be zero and no more branching is allowed.

Therefore, a GROW message can travel backward only once. Hence, any constructed tree branch is at

most two hops longer than the shortest path. �

In the following, we compare the worst case overhead of threeprotocols: spanning join, QoSMIC,

and SoMR. To simplify the problem, we consider a network ofn uniformly connected nodes. Let the

diameter of the network be2ω hops. Assume the number of nodes in thek-neighborhood of a node,Nk,

grows quadratically withk, i.e.,Nk = αk2. Thus, the diameter is given byαω2 = n. When the spanning

join protocol broadcasts in a neighborhood with a radius ofk hops, the number of messages sent isαk2.

Hence, in the worst case the total number of messages sent in consecutive broadcasts are

ω

Σ
k=1

(αk2) = α
ω(ω + 1)(2ω + 1)

6
≈ n(2ω + 1)

6
∈ O(nω)

The local search of QoSMIC broadcasts in a small neighborhood with a constant radius. The message

overhead of this part can be considered as a constant. LetT be the size of the multicast tree. The

worst case overhead of the tree search isO(T ). For a dense tree that populates the entire network,

O(T ) = O(n).

Consider SoMR-m with MBD = x. The maximum number of branching points isxm
−1

x−1
(Section

4.6). The maximum number of branches isxxm
−1

x−1
. Note thatx andm are both small constants. The

length of any branch is bounded byO(2ω). Therefore, the total number of messages sent is bounded

by O(xxm
−1

x−1
2ω) = O(ω) in the worst case. We shall do a more detailed study on overhead in Section

6 by simulation. What the above analysis tells us is that, as the network size increases, the worst case

overhead of spanning join, QoSMIC, and SoMR increases in the order of nω, n, andω, respectively.
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For a perfect uniformly-connected network with every node degree beingd, ω = O( d/2
√

n). Among the

three, SoMR is the least sensitive to the size of the network,which means better scalability.

6 Simulation

Extensive simulations were conducted to study the performance of SoMR. Two performance metrics,

success ratioandaverage message overhead, are defined as follows.

success ratio=
number of successful joins

total number of join requests

avg. msg. overhead=
total number of messages sent
total number of join requests

When the message overhead is calculated, sending a message over a path ofl hops is counted asl

messages.

Four multicast routing protocols were simulated:SPR, SoMR-3, QoSMIC[12], andspanning-joins

[10]. SPR stands for single-path routing, which is the traditional way of connecting a new member to

the multicast tree by using the unicast path from the member to the sender (or core). Under a delay

constraint, the join fails if the path has too large delay. The maximum branching degree of SoMR-3 is

5, i.e., a branching point can send at most 5 GROW messages to its neighbors. For QoSMIC, the local

search and the tree search are implemented as sequential procedures; the tree search is executed only

when the local search fails. Comparing with the parallel implementation of these two search procedures,

the sequential implementation minimizes the overhead, butmay introduce additional delay.Directivity,

local minima, andfractional choice[12] were also implemented. For spanning joins, we implemented

its directed flooding version, calleddirected spanning joins[10]. We assume a unicast routing protocol

providing the shortest path in term of hops between each pairof nodes.

Our simulations were conducted on Power-Law network topologies [31] and Waxman network topolo-

gies [32]. The Power-Law topologies are based on the resultsreported in [31], which showed that the

node degrees in the Internet obey a power-law distribution.We used a topology generator described

in [33]. For the Waxman based topologies we used the Waxman method [32] that spreads nodes ran-

domly on a grid and adds links randomly, such that the probability of a link to be included decreases
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Figure 6: Power-Law topology, 600 nodes, 5% links saturated

exponentially with its length.

In the simulation, a small percentage of links in the topology are randomly selected assaturated

links, which refuse to accept more QoS traffic due to the lack of resources. The delays of these links are

thus considered to be infinite.8 When the unicast path has a link that is saturated for QoS traffic, SPR

will fail but the other protocols may still succeed because they explore more paths than the unicast one.

The delays of the remaining links are uniformly distributedin the range of [0, 200] units of time.

In each simulation run, the link delays are first randomly generated, the root of the tree is randomly

selected, and a delay requirement for the multicast tree is set. Then, the nodes in the network start to join

the tree in a random order; each node attempts once. Upon completion, the next simulation run starts.

Two hundred simulation runs are conducted on each of six randomly generated topologies. The average

result (success ratio/message overhead) of all simulationruns yields one data point in the figure. The

standard deviation is less than 4% of the value of the data point.

Fig. 6 compare the success ratio and the message overhead of the four routing protocols. The hor-

izontal axis represents different delay requirements of the multicast trees. Power-Law topologies with

600 nodes are used. Five percent of links are saturated links. The figure shows that the success ratio

of SoMR-3 is better than those of QoSMIC and spanning joins. Remarkably, SoMR-3 achieves better

8Each link typically has a ”quota” on the maximum amount of resources allowed to be reserved for QoS traffic in order not

to starve the best-effort traffic. Once this quota is reached, the link refuses to accept more QoS traffic. It is then asaturated

link. Note that the delay of a saturated link is infinite for new QoStraffic but is not infinite for the best-effort traffic. While

the underlying unicast routing algorithm works on the best-effort traffic, it may select saturated links on its routing paths.
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Figure 7: Power-Law topology, 600 nodes, 15% links saturated
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Figure 8: Waxman topology, 600 nodes, 5% links saturated
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Figure 9: Power-Law topology, 600 nodes, 5% links saturated, SoMR-3, different maximum branching

degrees

success ratio at much lower message overhead, as shown in theright plot. When the delay requirement

is small (i.e., 100), the spanning joins protocol has very large overhead (more than 600 messages per

join request). That is because the multicast tree is always small and most join requests result in large

scale flooding. Although the overhead of SoMR-3 is higher thanthat of SPR, it is worth mentioning

that for join requests SPR is able to find feasible paths, SoMR-3 behaves just like SPR and thus has the

same overhead. Only for join requests SPR is unable to find feasible paths, SoMR-3 sends more control

messages.

The reasons for SoMR-3 achieving low overhead and high success ratio are as follows: (1) it becomes

SPR if the shortest path succeeds, (2) it branches out to search more paths only when needed, (3) it

branches at the ”right” places where the EW test fails, and (4) it allows only limited number of branching

points.

We repeated the above simulation with different percentageof saturated links (Fig. 7) and different

type of topology (Fig. 8). Similar results were always observed. In Fig. 7, 600-nodes Power-Law topolo-

gies are used with 15% of saturated links. In Fig. 8, 600-nodes Waxman topologies are used with an

average node degree of 3.5. In all our simulations, the success ratio of SoMR-3 is better than or com-

parable to those of QoSMIC and spanning joins, and the overhead of SoMR-3 is lower. For small or

medium delay requirements, the overhead of SoMR-3 is often significantly lower than those of QoSMIC

and spanning joins.
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Figure 10: Power-Law topology, 600 nodes, 5% links saturated, MBD = 5, different maximum branching

levels

In Section 4.6, we propose optimization techniques, particularly, maximum branching level (MBL)

and maximum branching degree (MBD), to control the worse-case overhead. Here we perform simula-

tions to evaluate their impact on the performance/overheadtradeoff for the average case. First, we let

MBL = 3 (i.e., SoMR-3) and vary MBD from 2 to infinity. When MBD is infinity,the technique of max-

imum branching degree is effectively turned off. Figure 9 shows that a larger MBD will lead to increase

in both success ratio and message overhead. However, the overhead is not very large even when MBD is

infinity, but a modest value for MBD (such as 5) achieves a better balance between performance and over-

head. Second, we let MBD= 5 and vary MBL from 1 to infinity. When MBL is infinity, the technique

of maximum branching level is effectively turned off. Figure 10 shows that a larger MBL will also lead

to increase in both success ratio and message overhead. There is not much performance/overhead differ-

ence between SoMR-3 and SoMR (with MBL = infinity). However, to guard against large worse-case

overhead, SoMR-3 is preferred.

7 Conclusion

We presented SoMR, a new QoS multicast routing protocol that has a favorable tradeoff between the

communication overhead and the success probability. It wasshown that the protocol overhead is lower

then previously suggested protocols, spanning join and QoSMIC, while its success probability is higher
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in most cases than other protocols (In some cases QoSMIC has comparable success probability but with

higher overhead). The protocol maintains no state in the network and works with both additive and

non-additive QoS requirements.
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