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Abstract— This work presents a thorough investiga-
tion of the structure of multicast trees cut from the Internet
and power-law topologies. Based on both generated topolo-
gies and real Internet data, we characterize the structure of
such trees and show that they obey the rank-degree power
law; that most high degree tree nodes are concentrated in
a low diameter neighborhood; and that the sub-tree size
also obeys a power law.

Our most surprising empirical finding suggests that
there is a linear ratio between the number of high-
degree network nodes, namely nodes whose tree degree is
higher than some constant, and the number of leaf nodes
in the multicast tree (clients). We also derive this ratio
analytically. Based on this finding, we develop the Fast
Algorithm, that estimates the number of clients, and show
that it converges faster than one round trip delay from the
root to a randomly selected client.

I. INTRODUCTION

There are several inhibitors to the commercial use
of multicast protocols. While it is clear that multicast
is beneficial for transmitting the same information to
large groups, its exact gain over unicast has not yet been
determined [1], [2], [3]. Network suppliers lack a fast
and efficient way to estimate the size of large multicast
groups, and the research community lacks reliable tree
models.

We present here a thorough investigation we per-
formed on the structure and characteristics of multicast
trees cut from generated power law topologies and the
Internet. While the exact nature of the Internet topology
is in debate ([4]), our results show that the partial views
we have from the Internet obey the power laws found
by [5]. These results were also verified by [6], [7], [8],
who conducted further investigations. Moreover, trees
cut from the Internet and from the generated topologies
had similar characteristics.

We found that trees cut from such topologies and
the Internet obey a degree-rank and sub-tree size-rank

0A shorter version of this paper was accepted for publication at
Infocom 2003.

power law distributions1. We also found that the distance
distribution of nodes from the root node resembles a
Gamma distribution, as shown previously for the Inter-
net [8]. We observed that nodes with degree higher than
five tend to be rare in the resulting trees. These high
degree nodes can always be found in several adjacent
rings, which reside typically at the core of the network,
and in the near vicinity of the tree root.

Our most intriguing result finds a linear ratio be-
tween the number of high degree nodes in the tree and
the number of clients2. The result is shown to be valid for
trees cut from scale-free topologies that were generated
with various parameters, as well as for experiments
conducted on the Internet itself. We further verify this
ratio analytically for power law trees. Based on the
tree topological characteristics we found, we suggest the
Fast Algorithm for estimating the size of large multicast
groups. We analyze the algorithm’s expected delay in the
Internet, which sums up to less than the round trip delay
from the root node of the tree to a random client at the
edge of the network.

Estimating the population size of large multicast
trees can improve the performance of feedback mech-
anisms of protocols such as RTP [9] and SRM [10].
Current feedback supression solutions for RTCP use
timers at the receivers [11], [12]. Our sender based
estimation produces a much faster estimation that can
be propagated to the receivers and eliminate the need for
such timers. Often, feedback suppression protocols are
based on similar techniques as polling based estimation
algorithms [13], [14], [15] and thus can use our faster
estimation instead. Fast estimation may also be beneficial
to forward error correction protocols [16].

Our suggested estimation algorithm offers an alter-
native approach by using the topological characteristics
to obtain an estimation on the number of receivers (rather

1Note that rank-degree and frequency-degree power laws can be
derived from each other [8].

2We note by clients the group of routers that directly attach clients.



than a specific population count). It does not aggregate
information at the router level, but rather polls the high
degree routers in the multicast tree. Our results show that
paths from the root of the tree to its receivers are very
likely to pass through the core of the network; We also
observed that high degree routers tend to reside within
the core or in its close vicinity. Hence, the polled high
degree nodes will be closer to the root than the receivers
they connect. The algorithm adapts itself to dynamic
topological changes, and can therefore reflect changes
in the session size, as does the population sampling
algorithm suggested in [17].

To the best of our knowledge, this is the first time
that the existence of a power law in the underlying
topology is leveraged to construct an algorithm. We
believe that more such algorithms can be developed in
the future for a variety of purposes.

The paper is organized as follows. Section II dis-
cusses our topological findings on trees cut from power
law topologies. In Section III we outline our found
receiver group size estimation method and prove it both
empirically and analytically. Section IV suggests two al-
gorithms that leverage the found method for session size
estimation and analyzes their performance. Additionally,
we outline simulation results of the Fast Algorithm.
Section V discusses the accuracy of the found method in
details. We conclude with our conclusions and discussion
of future work.

II. EMPIRICAL CHARACTERISTICS OF MULTICAST
TREES

This section details our findings on the structure of
multicast trees cut from generated power law topologies,
as well as the Internet. These findings are the basis for
the estimation method we present in Section III, and are
of interest in their own right.

Little work has been done on modeling and charac-
terizing multicast trees. Chalmers and Almeroth [3] in-
vestigated the branching characteristics of Internet mul-
ticast trees on the MBone and their impact on multicast
efficiency. They found that multicast trees tend to have
low average internal degree that grows logarithmically
with the number of receivers in the tree, and a maximum
height of approximately 23 nodes. They also found a
high frequency of ”relay” nodes that have a degree
of two throughout the tree. In previous work, Pansiot
and Grad, who constructed trees from a graph based
on true routing paths in the Internet, also showed a
high frequency of relay nodes in the tree graphs [18].
Chuang and Sirbu [1] found a power law between the
number of links in a multicast delivery tree connecting a
random source to m random and distinct network sites;
Philips at al. [2] developed a mathematical explanation

for the Chuang-Sirbu scaling law, for networks with an
exponential reachability function.

A. Topology and Tree Generation

Our method for producing trees is the following.
First, we generate power law topologies based on the
Notre-Dame model [19] which has been shown to re-
flect the Internet topology quite well despite its limi-
tations [20]. The model specifies 4 parameters: a0, a,
p and q 3. Where a0 is the initial number of detached
nodes, and a is the initial connectivity of a node. When
a link is added, one of its end points is chosen randomly,
and the other with probability that is proportional to the
nodes degree. This reflects the fact that new links often
attach to popular (high degree) nodes. The growth model
is the following: with probability p, a new links are
added to the topology. With probability q, a links are
rewired, and with probability 1− p− q a new node with
a links is added. The rewiring parameter, q, is intended
to corporate local events and increase the small world ef-
fect. An analysis of the rewiring parameter effect showed
that the degree distribution approaches an exponential
distribution for large q values [19]; our measurements
showed that small q values do not affect any of our
results and measurements. Hence, for simplicity, we take
q = 0 in the generated topologies. Note that a, p and q

determine the average degree of the nodes. We created
a vast range of topologies, but concentrated on several
parameter combinations that can be roughly described
as very sparse (VS), Internet like sparse (IS) and less
sparse (LS). Table I summarizes the main characteristics
of the topologies used in this paper.

From these underlying topologies, we create the
trees in the following manner. For each predetermined
size of client population we choose a root node and a
set of clients. Using Dijkstra’s algorithm we build the
shortest path tree from the root to the clients. To create
a set of trees that realistically resemble Internet trees, we
defined four basic tree types. These types are based on
the rank of the root node and the clients nodes. The rank
of a node is its location in a list of descending degree
order, in which the lowest rank, one, corresponds to the
node with the highest degree in the graph. For the case of
a tree rooted at a big ISP site, we choose a root node with
a low rank, thus ensuring the root is a high degree node
with respect to the underlying topology. Then, we either
choose the clients as high ranked nodes, or at random,
as a control group. Note, that due to the characteristic
of the power law distribution, a random selection of a
rank has a high probability of choosing a low degree
node. The next two tree types have a high ranked root,

3The notations in [19] are m0, m, p and q, respectively.



Name Type Parameters No. of Nodes Avg. Node degree
VS generated a = 1; p ∈ 0 : 0.05 : 0.5 10000 1.99− 3.98
IS generated a = 2; p ∈ 0 : 0.05 : 0.5 10000 3.99− 7.9
LS generated a = 3; p ∈ 0 : 0.05 : 0.5 10000 5.98− 12.04

Big IS generated a = 1.5, 2; p = 0.1 50000;100000 3.3,4.4
BL[1,2] real data – Internet 3.2 4

LC real data – Internet 3.2 5

TABLE I
TYPE OF UNDERLYING TOPOLOGIES USED

which corresponds to a multicast session from an edge
router. Again, the two types differ by the clients degree
distribution, which is either low, or picked at random.

The tree client population is chosen at the range
[50, 4000] for the 10000 node generated topology,
[50, 10000] for the 100000 node generated topology, and
[500, 50000] for the trees cut from real Internet data. For
each client population size, 14 instances were generated
for each of the four tree types. All of our results are
averaged over these instances. The variance of the results
was always negligible.

There are two underlying assumptions made in the
tree construction. The first, is that the multicast routing
protocol delivers a packet from the source to each of
the destinations along a shortest path tree. This scenario
conforms with current Internet routing. For example, IP
packets are forwarded based on the reverse shortest path,
and multicast routing protocols such as Source Specific
Multicast [21] deliver packets along the shortest path
route. In addition, we assume that client distribution
in the tree is uniform, as has been shown by [2], [3].
In addition, all trees were tested and validated for the
Chuang-Sirbu law [1].

B. Tree Characteristics

1) Degree-Rank and Size-Rank Power Laws: Our
results show that trees cut from a power law topology
obey a similar power law. Specifically, we compared
the degree-frequency power law found by [5]. Figure 1
shows in log-log scale the degree frequency plot for
10000 nodes topology generated with the parameter
set a0 = 6, a = 1, p = 0.3, q = 0. The dotted lines here,
and in the rest of the linear fit figures, mark the 95%
confidence interval.

Figure 2 shows the same plot for a multicast tree
with 500 low degree clients and a root with a high
degree. In Table II we summarize the best linear fit
parameters in a log-log scale for all trees generated for
the topology set a0 = 6, a = 2, p = 0.1, q = 0. It can be
seen that the power law holds even for very small trees,
e.g., for a tree with 50 multicast clients that has on

the average around 200 nodes. The same phenomenon
appears in all the trees cut from all topologies, regardless
of the way the root and the client nodes were chosen.

These findings conform with the findings of [3],
[18] who found a very large frequency of relay nodes in
the trees, i.e., nodes with a degree of two. In a power
law relationship of frequency and degree, the frequency
of two degree nodes is the highest in the tree. Leaf nodes
are determined by clients, and are a subset of the clients.

We also found that the distribution of degrees at a
specific distance from the root, i.e., in a certain depth
ring, also showed a power law distribution of degree-
rank, but with different slopes.

Given the above findings, it is important to note the
following. Cohen at al. [24] showed that the maximal
node degree in a graph of N nodes is proportional, for
Internet-like topologies, to approximately the square root
of the number of nodes. More precisely, Dmax ∼ N

1

α−1 ,
where α is the exponent of the degree-frequency power
law of the topology. Hence, all resulted degree-frequency
graphs of finite sizes exhibit a cut-off at the tail. This
holds true for partial views taken from the Internet, with
the cut-off being a result of the partiality as well as from
the finite size of the Internet itself.

The second power law we found for the trees is
of frequency and size of the sub-trees in each tree.
Namely, the self similarity holds not only for the degree
distribution in the tree, but also for its inner structure.
Figure 3 shows the excellent fit of the complementary
cumulative distribution function of the sub-tree sizes of
a 2000 node tree. The tree, with a high degree root,
is cut from a 10000 node topology with the parameter
set a0 = 6, a = 2, p = 0.1, q = 0. The size distribution
differs from the degree distribution in that the big sub-
trees, although almost similar in size, may differ by
one or two nodes, which is negligible compared to their
overall size. Thus we give the ccdf graph, which plots the
probability that the observed values are greater than the

4based on [22]
5based on [23]



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

0

1

2

3

4

5
The Topology Frequencies of Degrees

Degrees [log scale]

F
re

qu
en

ci
es

 [l
og

 s
ca

le
]

Line: Y=−2.54 X + 4.23.       ACC=0.9785

Fig. 1. Frequency of degrees for a 10000 node topology with
a0 = 6, a = 1, p = 0.3, q = 0.
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Fig. 2. Tree with 500 low degree clients, high degree root. Cut from
topology a0 = 6, a = 1, p = 0.3, q = 0.

ordinate. It can be seen that the fit to a power law is over
99%. The slope computed for the PDF graph without the
tail, resembles the one of the degree distribution.

2) Per Degree Distance Distribution: Cheswick at
al. [8] found that the distribution of the number of nodes
at a certain distance from a point in the Internet is
similar to the Gamma distribution. Our results show that
the distribution of distance from the root of nodes of
a certain degree seems close to a gamma distribution,
although we did not determine its exact nature. Figure 4
shows the distribution of the distance of two to five
degree, leaf and high degree nodes, where high degree
nodes are nodes with a degree six and higher. In this case
the root is a low degree node, and the tree has 1000 low
degree clients. As can be seen, the high degree nodes
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Fig. 3. Sub-tree size CCDF distribution, for a 2000 node tree cut
from topology a0 = 6, a = 2, p = 0.1, q = 0.

tend to reside much closer to the root than the low degree
nodes, and in adjacent rings. In this example, most of
them are in the second to forth depth rings around the
root.

This phenomenon was even more obvious when
the root was a high degree node. We found the fol-
lowing observation with regard to power law generated
topologies. The high degree nodes seem to form a ‘core’
with a low diameter (around five hops for trees cut
from the generated topologies, and seven for trees cut
from Internet data) and most of the other nodes in the
network are not distanced more than three to five hops
away from this core. Subramanian at al. [25] observed
a similar phenomenon at the Internet AS topology,
although obtained from directed BGP routing tables.

The distribution of client distances from the tree
root is given by the leaves distances in Figure 4. Note
that the longest path to a client is the tree height.
Our results show that the less connected the underlying
topology, the taller is the average tree cut from the
topology.

3) Empirical Results from Internet Data: We ver-
ify the above findings with results obtained from real
Internet data. Our results are verified on two different
data sets. The first is an Internet partial view at the
routers level, obtained from the Lucent Internet Mapping
Project [23]. We used this data set as the underlying
topology, from which we cut trees in the same manner
described in Section II-A. We denote this topology by
LC.

For the second data set we use the client population
of www.bell-labs.com which is a medium size web
site. This may represent the potential audience of a



a p Y ACC
topology 2 0.1 -2.50X + 4.49 0.9721

High degree root, low degree clients Root and clients chosen randomly
Receivers Y ACC Y ACC

50 -2.76X + 2.25 0.9337 -3.27X+2.68 0.9752
100 -2.64X + 2.42 0.9613 -2.96X+2.71 0.9611
300 -2.50X + 2.73 0.9730 -2.64X+2.85 0.9717
500 -2.58X + 2.97 0.9732 -2.58X+2.96 0.9654
750 -2.57X + 3.12 0.9825 -2.59X+3.09 0.9609

1000 -2.56X +3.23 0.9785 -2.59X+3.21 0.9728
1500 -2.64X + 3.45 0.9812 -2.56X+3.32 0.9741
2000 -2.58X + 3.52 0.9858 -2.60X+3.44 0.9620
2500 -2.65X + 3.66 0.9817 -2.63X+3.57 0.9731
3000 -2.66X+ 3.75 0.9851 -2.58X+3.57 0.9670
4000 -2.70X + 3.90 0.9825 -2.64X+3.73 0.9611

TABLE II
LINEAR FIT OF DEGREES AND FREQUENCIES
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Fig. 4. Distribution of the distance of high degree, two to five degree
and leaf nodes in a tree cut from topology a0 = 6, a = 1, p =

0.3, q = 0

multicast of a program with scientific content (such as
the livecast of the INFOCOM conference). From this
set two lists of clients were obtained, and traceroute
was used to determine the paths from the root to the
clients. It is important to note, that the first three levels
of the tree consist of routers that belong to the site itself,
and therefore might be treated as the root point of the
tree, although in these graphs they appear separately. We
denote this tree as the BL tree.

Figure 6 shows the frequency of degrees for a 10000
node tree cut from the LC topology. The tree, which
is an average of 14 instances, exhibits a clear degree-

frequency power law with a good fit6. The tree was
chosen with a high degree root, and low degree leaf
nodes. The variance of the instances of each tree was
negligible, and the same result was obtained for each of
the generated trees, with as low as 1000 clients and as
high as 50000. Figure 7 shows the frequency of degrees
for the BL tree. The linear fit of the log-log ratio is
excellent, with a correlation coefficient of 0.9829.

Figure 5 shows the ccdf of the sub-tree sizes of a
tree with 7000 clients cut from the LC data. The root is a
high degree node, and the clients are low degree nodes.
Note, that every point in the graph is the result of an
average of 14 instances therefore the tail was omitted
from the fit. The size-rank power law appears in all the
trees cut from this data.

Figure 8 shows the distribution of the distance of
two degree, leaf and high degree nodes, for a 15000
client tree, cut from the LC data. The majority (90%) of
the high degree nodes reside within a distance of eight
hops from the root, while the clients are distanced up to
18 hops from the root.

III. RECEIVER GROUP SIZE ESTIMATION METHOD

While all of the above observations are interesting
and help in our understanding of multicast trees, we were
intrigued whether we can use any of this knowledge
to evaluate the size of a multicast tree. We compared

6We fit the data for the points above the line Y=0 which capture
all the degrees that appear on average, at least, once in every tree. To
extend the fit below this line we need more trees. If we want to get rid
of the noisy tail all together we need to generate, at least, an order of
10

4 trees as our fit predicts that the highest degree points will appear
on the average in less than one of every 10

3 trees.
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Fig. 5. Size distribution of a 7000 clients tree cut from the LC data
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Fig. 6. Frequency of degrees of a 10000 node tree cut from the LC
Internet data.

the degree of the nodes in the tree to their degree in
the topology, and focused on the high degree nodes.
Interestingly, we found that while some nodes had a tree
degree that is significantly smaller than their degree in
the underlying network topology, other nodes seemed to
have a tree degree close to their network degree. We
then compared the frequency of nodes with degree i

and above (high degree nodes) to the number of clients
in the tree, and found a linear ratio with a correlation
coefficient of not less than 0.99. We term this ratio the
HCNi ratio (hubs-to-client number ratio).

Next, we outline our findings on HCNi ratio for
both simulated trees and trees cut from the real Internet.
We proceed by giving a mathematical analysis of our
results for power law trees.
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Fig. 7. Frequency of degrees of the BL Internet tree.
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Fig. 8. Distance of two, high degree and leaf nodes from the root of
a 15000 client tree cut from the LC Internet data

A. Empirical Findings

We have found that an HCN6 ratio of 1:16 is a
very good predictor for trees cut from the Internet, and
most generated topologies. Figure 9 shows the HCN6

ratio in trees cut from a 100000 node topology. The
topology parameters are a0 = 6, a = 1.5, p = 0.1, q = 0,
and the root node of all trees is a high degree node. The
linear ratio is obtained after gathering the information
from not more than five depth rings around the root. We
plotted the frequency of high degree nodes obtained after
scanning three, four, five, six and nine depth rings around
the root. As can be seen from the graph in Figure 9, the
entire information was obtained until the sixth depth ring
- the following rings did not add any more information.
The HCN6 ratio was found to be 16. Figure 10 shows
the excellent fit of the HCN6 ratio with a correlation
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coefficient of 0.9998. When we plotted the data for
trees cut from this topology with a low degree root,
we obtained very similar results. The ratio was again
16, with a correlation coefficient of 0.9996. However,
another depth ring was needed to obtain accurate results,
since the root was not as close to the core of high degree
nodes as in the previous case.

We verified our results using actual Internet data on
the client population of the Bell-Labs web site described
in Section II, and on trees cut from the data from
Cheswick’s Lucent Internet mapping project, noted LC,
also described there. The Bell-Labs client population
data contains two log files. The first, denoted BL1, has
10897 clients and the second, BL2, has 7356. We created
subsets of clients by randomly selecting entries from

0 50 100 150 200 250 300 350 400
0

1000

2000

3000

4000

5000

6000

Frequency of high ranks

C
lie

nt
s

Clients vs. Frequency of high ranks for real Internet tree traces

BL1: avg HCN=16.35, Std=1.84
BL2: avg HCN=16.89, Std=2.04
HCN=16

Fig. 11. Clients vs. high degree nodes and the HCN predictor for the
BL[1,2] trees

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Frequency of high degrees

C
lie

nt
s

Clients vs. Frequency of high degrees for trees cut from the Internet (LC)

LC: avg HCN=15.94, Std=0.85
HCN=16                     

Fig. 12. Clients vs. high degree nodes and the HCN predictor for the
trees cut from the LC topology

the log files, and cut the corresponding trees for these
subsets from the original trees. Figure 11 shows the
ratio between the 16 predictor and the actual number
of clients in the generated trees. For BL1 the ratio was
1:160.99 with a fit of 99.75%, for BL2 the ratio was
1:161.04 with a fit of 99.72%. For client populations
larger than roughly 1500 clients the predictor of 16 gives
an excellent estimate - within 9% of the actual number
of clients.

The LC data gives a partial view of the Internet
at the router level with more than 110000 routers. From
this topology, we cut trees in the same manner described
in Section II. Again, each result is averaged over 14
instances. Figure 12 shows the ratio between the number
of clients and high degree nodes, compared with the
predicted value from the simulations, 16. The average



value of the ratio is 15.89, with a standard of deviation
of 0.9. Hence, a 16 predictor for the ratio gives a very
good estimation for this data also.

For the generated topologies and the Internet exper-
iments, our results are less definite for very small trees.
We found that HCN6 ratio=16 is accurate when client
population is at least 0.1% the size of the underlying
topology. Nevertheless, for the Internet, our experiments
yielded very good results for group sizes of 1500 clients
and more. Note that when the group size is small enough,
exact counting of the clients can be done with reasonable
cost.

While a predictor of 16 was shown to be a very
good predictor for large groups, it becomes less scalable
when the group size is extremely large. For example,
in the case of a multicast tree with a million clients,
the expected number of high degree nodes is 62500. A
good solution for this problem is to increase the degree
of the sample nodes. For example, in the case of very
large groups, counting the number of nodes with degree
higher than nine will produce an accurate prediction,
with a ratio of 1:48, namely HCN10 ratio=48. Note that
sampling nodes with a larger degree gives us a coarser
estimation. Our experiments show that when we sample
nodes of degree ten and above the estimation is accurate
only for group sizes of at least 1.5% the size of the
underlying topology. Remember that sampling nodes of
degree 6 and above yields a good estimation for trees as
small as 0.1% of the network.

B. Analytical derivation of HCN6 ratio

In this section, we derive the HCN6 ratio for trees in
power law topologies. Our experiments have shown that
the group of leaf nodes of a tree closely approximates
the tree’s client population. For simplicity we take the
exponent of the underlying topology degree probability
instead of the tree’s, but these are fairly close.

Given a tree with N nodes, we denote by L the
number of leaf nodes and by Ñ the number of non
leaf nodes. Let Ñ be the group of non leaf nodes. The

average internal degree is defined by: r =

∑
j∈Ñ

dj

Ñ

where dj is the degree of node j. But by its definition it
also holds that

∑
j∈Ñ

dj = 2Ñ + L− 1 ≈ 2Ñ + L, and
∑

j∈Ñ
dj = N + Ñ − 1 ≈ N + Ñ . Given all the above

we can write

L = N ·
r − 2

r − 1
. (1)

which holds for any tree.
Given that pi is the probability to find a node with

degree i in the tree we can rewrite the above expression

for r

r =
1

1− p1
·

N∑

i=2

i · pi. (2)

and the probability conservation equation

L

N
+

N∑

i=2

pi = 1. (3)

Substituting (1) in equations (2) and (3), and
given that the degree distribution obeys the power law
pi = c · i−α, we get that:

r =
S1

S2
; c =

r

S1 · (r − 1)
. (4)

Where S1 =
∑N

i=2 i−(α−1) and S2 =
∑N

i=2 i−α.
The HCN6 ratio is defined by:

HCN−1
6 =

∑i=N

i=6 pi ·N

L
. (5)

Plugging (1) and (4) in equation (5) yields

HCN−1
6 =

(1− S3) · (r − 1)

r − 2
− 1. (6)

Where S3 =
∑i=5

i=2 i−α.
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Fig. 13. The change in HCN6 ratio with α

Figure 13 shows how the HCN6 ratio in equation
(6) changes with α. For 3 ≤ α ≤ 4 the HCN6 ratio
changes between 14.5 and 19. Hence, a precise value
for the tree’s α, will yield an excellent evaluation of
the number of leaf nodes in the tree, and hence a good
estimation to the client population (see Section V for a
discussion on how to obtain a more accurate α value).



Nevertheless, our results show that for the shortest path
trees cut from the Internet, as well as from most of our
generated topologies, HCN6 ratio = 16 gives a very
good estimation. Understanding the precise correlation
between our empiric and analytical results may lead to
a deeper understanding of the Internet topology, and is
the subject of our next work.

IV. ESTIMATION ALGORITHMS

A. A Basic Algorithm

The findings in the previous section give rise to an
algorithm for estimating the number of clients in a multi-
cast tree, in which the number of nodes with five or more
child nodes is counted. The main idea, given formally in
Figure 14, is that the root multicasts a feedback request,
Req, along the multicast tree. The request carries the
parameter d, which indicates the minimal node degree
that needs to report back. Such a node, upon receiving
the request, replies with a UDP Rep packet sent directly
to the root. The root waits for a time long enough to
ensure that most replies are accepted. The root then
counts the number of different replies it receives, and
by multiplying with the appropriate coefficient produces
the estimate.

Algorithm 1 (Basic)
1. Send Req(d)
2. n← 0
3. Activate Timer1(Td1

)
When Rep arrives

4. n++
When TimeOut1

5. return(cd · n)

Fig. 14. A formal description of the basic algorithm for the root node.

Note that for the Internet, Td1
, the time the root

waits for the replies to arrive, should be quite large.
Specifically, Td1

needs to be long enough such that the
vast majority of slow responses due to round trip and
processing delays are not lost. (We assume that Td1

of
several seconds satisfies these requirements.)

B. Fast Algorithm

The Fast Algorithm, formally presented in Fig-
ure 15, is motivated by the need to obtain a fast estima-
tion on the client population. We would like to determine
the termination rule in a way that guarantees that a
significant portion of the Rep messages has already
arrived. In the basic algorithm we achieve this by setting
a very large timeout. Here, we monitor the Rep message
arrival process to achieve this goal.

Algorithm 2 (Basic)
1. Send Req(d)
2. n← 0
3. ndt← 0
4. Activate Timer1(Td1

)
When TimeOut1

5. if ndt = 0 then
6. return(0)
7. else
8. Activate Timer2(Td2

)
9. n← ndt

10. ndt← 0
When TimeOut2
11. n+ = ndt

12. if ndt ≤ Kth · n
13. return(cd · n)
14. else
15. Activate Timer2(Td2

)
16. ndt← 0

When Rep arrives
17. ndt++

Fig. 15. A formal description of the Fast Algorithm for the root node.

We start the algorithm with an initial sampling
period, Td1

, whose purpose is to enable responses from
the high degree nodes in the k-neighborhood of the root
to arrive back at the root. If by the end of the initial
sampling period the root receives no replies, it assumes
the group is either very small or inactive. If the root
receives Rep messages, a shorter sampling period termed
the iterative sampling period is activated repeatedly until
the termination condition is satisfied. The purpose of the
iterative sampling period, noted Td2

, is to enable the
algorithm to converge to a good estimate within a short
time.

There are several options to determine a termination
condition based on the Rep message arrival process.
We can choose a threshold and stop when the message
arrival rate drops below it. This solution, however, is
not immune to network jams, and is very sensitive to
the threshold’s value. Another option is to stop when
the rate keeps dropping for several successive iterative
sampling periods. In this case, the algorithm is very
sensitive to the length of the iterative sampling period.
If it is too short the algorithm might terminate too early
with a large estimation error. On the other hand, a long
iterative sampling period might cause the algorithm to
run longer than necessary.

Thus, we devised a termination rule (see line 12
in Figure 15) that can self-tune according to the arrival
process. Under reasonable conditions it will guarantee



termination within a preset estimation error. The algo-
rithm terminates when the number of replies received at
the root during one of the iterative sampling periods does
not improve the estimation by more than Kth, where Kth

is the estimation error. For example, setting the iterative
sampling period to the average two-hop delay and the
initial sampling period to 2T , causes the algorithm to
terminate when the replies gathered from the T + i-
th depth ring, at the ith iterative sampling period, do
not improve the estimation by more than Kth. Under
reasonable network conditions, about half of the replies
from this depth ring reach the root node by the end of
the ith iterative sampling period. Thus, the termination
condition enables the algorithm to stop when it identifies
the end of the adjacent depth rings around the root.

1) Performance Evaluation of the Fast Algorithm:
In this section we estimate the delay of the Fast Algo-
rithm and define the average values for Td1

and Td2
.

The delay of a packet traversing a single link, d, is
comprised of two components: d = ∆ + q, where ∆ is
the fixed minimum link delay and q is a random variable
representing the queuing delay, which is exponentially
distributed. We would like to derive the distribution of
the queuing delay of a packet traveling h links. The
density function of the delay, dh(t), is a convolution of
the density functions of q(t− h∆), h times:

dh(t) = q(t− h∆) ∗ q(t− h∆) ∗ · · · q(t− h∆). (7)

Let us define, for simplicity:

τ = t− h∆. (8)

Thus, dh(τ) is a gamma random variable with parame-
ters h and λ. Namely:

dh(τ) =
λhτh−1e−λτ

(h− 1)!
. (9)

Where λ−1 is the average queuing delay. Assuming that
all high degree nodes reside within h hops from the root
node of the tree, and let the probability of a high degree
node to reside at distance h from the root be phd(h),
from Equations (7) and (9) we get that the probability
distribution function of the total delay is:

D(τ) =

h∑

i=0

Dh(τ)phd(i) =

h∑

i=0

λiτ iΓ(i, iτ)

(iτ)i
phd(i).

(10)
Where Γ(·, ·) is the incomplete gamma function [26, sec.
1.2.11]. Plugging back (8) in (10) we get that the final
form of the total delay probability distribution function
is:

D(t) =

h∑

i=0

λiΓ(i, i(t− h∆))

ii
phd(i). (11)

The values of Td1
and Td2

need to be established
in a way that will ensure that the majority of the replies
are gathered. For example we can select T ′

d1
to the value

of t that minimizes D(t) = 0.5, meaning that ensures
that on the average we wait for half of the replies to be
done waiting at queues.

Alternatively we should chose Td1
to be long

enough for each node to at least reach the core, prefer-
ably its center. Let us define by rc the estimated radius
of the core, in which we have established that most high
degree nodes reside. Let us define by re the average
distance from an edge node to the core. Then,

Td1
= 2(rc + re)(∆ + q̄) (12)

Thus ensuring that Td1
is sufficient for the request to

reach the core vicinity and for some of the replies of
high degree nodes to arrive back to the root. In the same
manner, setting:

Td2
= 2(∆ + q̄) (13)

yields an iterative sampling period of one hop round trip
delay, thus enabling the algorithm to obtain most of the
information from the next hop. From our experiments,
as described in Section II, we discovered that the values
of rc = 7 and re = 6 are sufficient for today’s Internet.

In Table III we summarize the simulation results
of the Fast Algorithm. We denote by τ the average one
hop delay. The hop delay is either normally distributed
(ND) or exponentially distributed (ED). The length of
the initial sampling period is 8τ , and the length of the
iterative sampling period is 2τ . The results in this table
are obtained for trees cut from topology a0 = 6, a =
1, p = 0.3, q = 0, and the Fast Algorithm was executed
with an estimation error of Kth = 2%. All the high
degree nodes in the generated trees reside within five
depth rings from the root. Time units are in [τ ]. Note
that due to the long tail of the exponential distribution, an
iterative sampling period of 2τ is shown to be too short,
since the exponential case represents a bursty network.
However, when the delay is normally distributed with
variance τ , the algorithm counts all of the high degree
nodes in the tree within less than 12τ time units, which is
less than the measured average clients’ round trip delay
of 16τ for these trees.

V. DISCUSSION

Our results, which show a strong correlation be-
tween the number of high-degree nodes and the number
of clients, hold for all tree types over all tested power
laws topologies. As stated before, all of the results
obtained from the simulations as well as the LC data
were averaged over 14 instances. When degrees six and
higher are chosen (i.e., d = 6), we found that 16 is a



Clients 300 500 750 1000 1500 2000 3000 4000
ND prediction 304 512 736 992 1472 2000 2992 4000
ND time 10.0 12.0 10.0 10.0 10.0 10.0 12.0 12.0
ED prediction 256 400 672 960 1456 1920 2736 3856
ED time 12.0 12.0 18.0 14.0 20.0 18.0 16.0 20.0

TABLE III
FAST ALGORITHM TIME AND PREDICTION

very good predictor in the average case. In this section
we discuss the accuracy of this result for specific trees.

We examined the specific predictors of the 14
instances of a 7000 clients tree cut from the LC data.
The smallest ratio was 15.52 and the largest 16.78,
yielding a maximal error of 5%. Figure 16 shows our
results for 14 trees that were cut from a 100000 node
topology. The root is a randomly chosen high-degree
node and the clients are chosen uniformly. The figure
legend details for each of the trees its specific slope,
i.e., its average ratio between the number of clients and
the high degree nodes over all points. It also specifies
for each tree the maximal and minimal deviation points,
i.e., the ratio at the points which are furthest from the
average for that tree. We can see that the slopes of most
of the trees are within 10% of the average predictor. This
phenomenon can be seen throughout the different tree
types. The worst deviation from the average predictor
of a slope was 12.5%. A few points diverge up to 30%
from the estimation, yet this should be expected, given
the statistical nature of the estimation method.
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predict=15.07. std=[−1.56,2.10]

Fig. 16. Clients vs. high degree nodes for each of the 14 instances
of the tree

We found that the reliability of the prediction in-
creases with the group size. According to our findings,
described in Section III, the found predictor is accurate

only for medium to large groups. When group size
exceeds 1000 clients, the average predictor yields very
good estimations, with not more than a 10% error. For
the general case, for all group sizes, the vast majority
of the individual test points are within a marginal limit
of 15%. For our analysis on Internet logs the estimation
error was no more than 15% in almost all cases. The
single exception was for a group of size 1153, which
exhibited a 22% estimation error.

We have found that instances of a tree with the same
root node tend to have a more stable behavior. Thus, a
root can calibrate the estimator for its trees by counting
the number of clients and the number of high degree
nodes when the trees are reasonably small, and use the
more accurate estimator when the trees grow. Figure 17
demonstrates this for 14 trees that were generated with
the same root. It is clear that the best estimator for
these trees is around 15 and the deviation is less than
4% (compared with 12.5% for the general case). The
individual point estimates here are also much better -
within 16% of the calibrated estimate, 15.
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Fig. 17. Clients vs. high degree nodes for each of the 14 instances
of the tree



VI. CONCLUSIONS

We presented our findings on the characteristics of
shortest path trees cut from power law topologies. We
base our conclusions on extensive simulations, and real
Internet topologies from two different sources: The Bell
Labs web site logs, and the Cheswick-Burch Internet
mapping project. All of the empyrical and the simulation
reuslts agree. Our results may not hold, however, in cases
where the group of receivers was generated with different
affinities (clusteredness) [27] or with a client population
from a specific region of the Internet.

Our findings may improve our understanding of
multicast trees and therefore may help theoretical and
practical research done in this area. We have shown that
the structure of such trees follows power laws of rank-
degree and rank-size, and that high degree nodes tend
to reside in a low diameter neighborhood. We found a
linear ratio between the number of high degree nodes
and the number of multicast tree leaves. We also proved
this ratio analytically, and devised the Fast Algorithm
that uses this ratio to estimate the tree client population
in less than the Internet round trip delay.

The Fast algorithm, when used as an initial estima-
tor to polling based counting algorithms such as [13],
[15], enables these algorithms to converge much faster,
especially for medium and large groups. Note, that these
algorithms performance is improved significantly with a
tight initial group size estimation. It is also beneficial
for transport layer feedback suppression algorithms and
control algorithms which need to know the session size
such as RTCP [11]. Finally, the Fast Algorithm can be
used by network providers in calculating the gain from
multicast with metrics such as the one suggested by
Chuang and Sirbu [1]. As part of our future work, we
intend to include an addition to the Fast Algorithm that
enables the root to receive online updates on the changes
of the branching characteristics of the trees. These online
updates sent by nodes going in or out of the high degree
nodes group, enable efficient tracking over time of the
multicast group size.

In general, we have found only a few examples
where the estimator was off by more than 15%. When
the estimator was calibrated to a specific root node the
accuracy was a factor of four better.

This work presents a novel way for leveraging
topological characteristics of a tree to obtain important
knowledge such as its size. A further understanding of
the exact ratio between the trees and the underlying
topology characteristics is the subject of our future work.
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