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Inferring PoP level maps is gaining interest due to its importance to many areas, e.g., for
tracking the Internet evolution and studying its properties. In this paper we introduce a
novel structural approach to automatically generate large scale PoP level maps using tra-
ceroute measurement from multiple locations. The PoPs are first identified based on their

structure, and are then assigned a location using information from several geo-location
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databases. We discuss the tradeoffs in this approach and provide extensive validation
details. The generated maps can be widely used for research, and we provide some possible
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1. Introduction

Mapping the Internet and studying its evolution has
become an important research topic. Internet maps are pre-
sented in several levels of aggregation: from the AS level,
which is the most coarse, to the finest level of routers, each
level of abstraction is suitable for studying different aspects
of the network. The Autonomous Systems (AS) level is most
commonly used to draw Internet maps, as it is relatively
small (tens of thousands of ASes) and therefore relatively
easy to handle. The disadvantage of using AS information
for Internet evolution study is that AS sizes may differ by
orders of magnitude. While a large AS can span an entire
continent, a small one can serve a small community. Obvi-
ously, it is hard to correlate large ASes to geographic loca-
tion due to their span, but network evolution is triggered
by economic factors that may be restricted to much smaller
areas than those spanned by large ISPs. Router level maps
represent the other extreme: they contain too many details
to suit practical purposes, and the large number of entities
makes them very hard to handle.
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Service providers tend to place multiple routers in a sin-
gle location called a Point of Presence (PoP), which serves a
certain area. Thus for studying the Internet evolution and
for many other tasks, PoP maps give a better level of aggre-
gation than router level maps with minimal loss of infor-
mation. PoP level graphs provide the ability to examine
the size of each AS network by the number of physical
co-locations and their connectivity instead of by the num-
ber of its routers and IP links, which is an important contri-
bution. The points of presence are not only counted, but
also provided with a geographical location and information
about the size of the PoP. Using PoP level graphs one can
detect important nodes of the network, understand net-
work dynamics, examine types of relationships between
service providers as well as routing policies and more.

This paper focuses on PoP level map generation, based on
an algorithm described in Section 3. The traceroute mea-
surements used in this work were generated by DIMES, a
highly-distributed Internet measurements infrastructure
[1]. DIMES achieves high distribution of vantage points by
employing a community based distribution methodology
that uses Internet users’ PCs for measurements.

2. Related work

While aggregating IPs to AS is a fairly simple task, PoP
level maps are more difficult to create. Andersen et al. [2]
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used BGP messages for clustering IPs and validated their
PoP extraction based on DNS. Rocketfuel’s [3] generated
PoP maps using tracers and DNS names. The iPlane project
also generates PoP level maps [4] by first clustering router
interfaces into routers by resolving aliases, and then clus-
tering routers into PoPs by probing each router from a
large number of vantage points and using the TTL value
to estimate the length of the reverse path, with the
assumption that reverse path length of routers in the same
PoP will be similar.

Assigning a location to an IP address, let alone a PoP, is a
complicated task. The most common way to do so is using a
geolocation service. Geolocation services range from free
services to services that cost tens of thousands of dollar a
year. The most basic services use DNS resolution as the basis
for the database [3], while others use proprietary means
such as random forest classifier rules, hand-labeled host-
names [5], user’s information provided by partners [6] and
more. IP2Geo [7] was one of the first to suggest a measure-
ment-based approach to approximate the geographical dis-
tance of network hosts. A more mature approach is
constraint based geolocation [8], using several delay con-
straints to infer the location of a network host by a triangu-
lation-like method. Later works, such as Octant [9] used a
geometric approach to localize nodes within a 22 miles ra-
dius. Katz-Bassett et al. [10] suggested topology based geo-
location using link delay to improve the location of nodes.
Yoshida et al. [11] used end-to-end communication delay
measurements to infer PoP level topology between thirteen
citiesinJapan. Laki etal.[12] increased geolocation accuracy
by decomposing the overall path-wise packet delay to link-
wise components and were thus able to approximate the
overall propagation delay along the measurement path. Eri-
ksson et al. [13] applied a learning based approach to im-
prove geolocation. They reduced IP geolocation to a
machine learning classification problem and used Naive
Bayes framework to increase geolocation accuracy.

In this paper we present a structural approach for creat-
ing large scale PoP maps with geographic information. We
study the effect of the volume and quality of the data on
the algorithm and provide detailed validation of the algo-
rithm and its results.

3. PoP discovery
3.1. PoP extraction algorithm

We define a PoP as a group of routers which belong to a
single AS and are physically located at the same building or
campus. In most cases [14,15] the PoP consists of two or
more backbone/core routers and a number of client/access
routers. The client/access routers are connected redun-
dantly to more than one core router, while the core routers
are connected to the core network of the ISP. Fig. 1(a)
shows a simple interconnection of four routers with a
small number of interfaces. Assuming that during tracero-
ute measurements ICMP replies are received from the
incoming interfaces of the routers, the graph shown in
Fig. 1(b) is obtained. For example a traceroute measure-
ment that enters our network through interface A on router

a and leaves the network from interface L on router b will
create an A — [ path on the graph. In a similar way a mea-
surement that enters the network from interface L on router
b and leaves it from interface W on router ¢ will create a
L —» C — Y path on the graph. At the core of the Interface
graph, which results from performing many traceroute
measurements through a PoP, there is clearly a bi-partite
graph. We look for this specific structure when trying to
discover PoPs. Alon et al. [16] showed that many complex
networks have repetitive patterns of interconnections,
called ‘network motifs’, which became a standard term in
the networks analysis community. Their work showed that
real-world networks outside the communication field are
not purely random, but have a higher than (or lower than)
expected number of specific motifs. We have used their
mfinder [17] package to search for motifs in graphs ob-
tained by the DIMES measurements. In order to show the
significance of a specific motif, the software uses the Z-
score measure, which is calculated according to Eq. (1).

X-—u

== M
where X is a number of a motif occurrences in a specific
network, and p and ¢ are the mean and standard deviation
of the motif occurrences within a certain random network.
The number of motif appearances in a random network is a
stochastic function with mean and variance. The Z-score
reveals how many units of the standard deviation a specific
count of a motif is above or below the mean. Unsurpris-
ingly, we have found a number of motifs with a high Z-
score across all AS networks in the graph; partial results
displayed in Table 1 show the clear dominance of the ‘bi-
fan’ motif (number 204) in three large providers, Global
Crossing, France Telecom and Broadwing (now Level3).
Note that motif 460 is bi-fan with one additional measure-
ment in the reverse direction and motif 206 is a bi-fan with
an additional measurement.

Although mfinder [17] is a very useful tool for identifica-
tion of important motifs, it is not designed to be used for
network clustering. In our work we do not look for a spe-
cific motif in the network, but for highly connected clusters
as described in the previous chapter. However, we do
search for ‘bi-fan’s (id204) repetitions under certain weight
constrains as cores of the PoPs. The cores are extended
with other close by interfaces. The following steps, intro-
duced in [18], are used to reduce the IP level graph G
(V,E) to a PoP level network:

Initial Partition. Remove all edges with a delay higher
than PDjqx o, the PoP maximal diameter threshold, and
edges with number of measurements below PM,, ¢, the
PoP’s edges measurements threshold. PM,;, (» is intro-
duced in order to consider only links with a highly reliable
delay estimation to avoid false indication of PoPs. As a re-
sult, a non-connected graph G’ is obtained. Then, for each
connected component of G’ an induced sub graph is built
by adding back all the edges that connect nodes of the con-
nected component. Each connected group is a candidate to
become one or more PoPs.

There are two reasons for a connected group to include
more than a single PoP. First and most obvious is geo-
graphically adjacent PoPs, e.g., New York, NY and Newark,
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Fig. 1. Typical network connection.

Table 1
Common network motifs in IP interconnections networks of three ASes.

I id 204 I I id 206 1

I id 280 :

id 460 id 904
AS number Z-score
AS6395 377 - 9.51 43.84 148.39
AS5111 329.29 36.42 - 74.63 73.57
AS3549 154.8 5.38 37.87 19.51 -

NJ. Second is wrong delay estimation of a small number of
links. For instance a single incorrectly estimated link be-
tween Los Angeles, CA and Dallas, TX might unify the
groups obtained by such a naive method.

Refined partition.

(a) Parent-child classification. The next stage in the algo-
rithm uses a classification to parent pairs and child
pairs.

Definition 3.1. A pair of nodes is marked as parent pair if
both of them point to two or more nodes.

Definition 3.2. A pair of nodes are marked as child pair if
both of them are pointed to by at least two nodes.

All parent pair nodes are assigned to groups by pair-
wise unifying parent pair nodes. For example in Fig. 3,
nodes {1,2}, {2,5} and {3,4} are defined as parent pair,
thus we obtain two parent pair groups {1,2,5} and {3,4}.
The groups of child pair nodes are created according to
the same process as defined for parent pair groups. Some
nodes might belong to both categories and it is allowable
for a node to belong to one parent pair group and to one
child pair group. By definition, if a node belongs to two or
more groups of the same kind, these groups are unified.
Fig. 2 shows an example of parent/child classification.

The PoP algorithm checks for each connected group ex-
tracted in the initial partitioning of the algorithm, if it con-
tains more than one possible PoP. Note that each candidate
partition looks like a collection of highly connected bipar-
tite graphs with rich connectivity between them. The con-
sidered partition of parents and children is then divided
according to the measurement direction in the bipartite
graph (each node or a group of nodes simultaneously can
be a parent of one bipartite and a child of another). In this
operation the weights of the edges are ignored. The mini-
mal size of each group is two nodes.

(b) Localization. Dividing the parents and children
groups into physical collocations using the high
connectivity of the bipartite graph. The input for
the localization stage algorithm is a highly
connected bipartite graph G(V,E) with a weight
function W:E — R representing the estimated
physical link delay, as shown in Fig. 3. The other
input to the algorithm is a partition of the graph
to the parent/child groups as previously described.
The localization algorithm checks whether nodes
of the same type (parent/child) belong to the same
physical collocation. For this task the algorithm
takes advantage of the topological structure of the
group. For instance, if we check the parent group
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Fig. 2. Parent-child classification: blue nodes (left) — parent pair, red nodes (right) - child, blue and red nodes (middle) - both parent and child, gray stripes

nodes (right) - not classified.

mmm — 1 mMs—>

—5 ms—

Fig. 3. Bipartite graph example, on the right side dark and bright nodes
belongs to different collocation.

P we note that each child node of the group is
pointed to by at least two parent nodes. Comparing
the delays from the child pair nodes we can parti-
tion nodes of the parent pair group to one or more
geographic collocations.

Formally, we represent each member of a group of two
or more nodes (either parent pair or child pair group) in a
coordinate space of the nodes that points to them using
the weight of the edges. Next, we check the distance be-
tween each pair of nodes in that coordinate space. We as-
sume that the link delay estimation errors in [19] are
caused mainly by an impulse noise, i.e., most of the mea-
surements are fairly precise or have only small noise, while
a small portion of the measurements may have large er-
rors. Therefore, unlike the Gaussian noise case, where
Euclidean distance is used as a representation of the dis-
tance between nodes, we compare the similarity over the
coordinates.

An example of the difficulties in determining geo-
graphic co-location is shown in Fig. 3. By looking at the de-
lay spread, one can easily determine that nodes 6-8
(darken) are not co-located with nodes 9-11. Looking at

the distance between nodes 1-3 and nodes 9-11 it
becomes clear that the former are also co-located. How-
ever deciding whether node 5 is also collocated with nodes
1-3 is not straightforward. Examining the delay spread
between nodes 5 and 1-3 to nodes 9 and 11, gives a posi-
tive answer for collocation, while the measurement to
node 10 that puts node 5 away from nodes 1-3 might be
discarded as noise. The existence of yet another group of
measurements to node 6, which is indecisive in its results,
complicates the picture, and shows the difficulties in auto-
mating these decisions.

We propose the following deterministic algorithm to
classify the locations of nodes in the bipartite graph. For
each pair of parent nodes (u,v) € P, u # v, we define the
‘common children’ group, CC by

CC(u, v) = {w € G|(u,w) € E("\(v,w) € E}. 2)

We denote the members of CC(u, v) as {ccy,cca,. . .,CCn}.
Then using the weights of the edges from the pair of parent
nodes to the ‘common children’, W(u,cc;) and W(v,cc;), we
calculate the ‘Error Ratio’ vector, ER:

W(u,cc1) W(u,ccy) W (u,ccm)

ER(u, v) = W(v,cc1) W(v,cc;)’ " W(v,ccm)| 3)

The selection between (u,») and (»,u) for a numerator
and a denominator results in identical results when
observing |log(ER(u, v))| due to the properties of loga-
rithms. Another important property of |log(ER(u, v))| is
that for coordinates with a small relative error, the values
of the elements in ER(u, ) will be rather small, and will in-
crease with a loss of the accuracy. Therefore comparing
er(u, v) = median(|log(ER(u, v))|) to a certain threshold
gives a proper indication of the accuracy in the majority
of measurements.

We use the er values for the parents, to partition par-
ents groups into smaller parent groups which are geo-
graphically collocated. To this end, we produce a
weighted clique of all the parent nodes in a group, where
the weight of the edge (u,v) is er(u, v). We remove all the
links with a weight above a certain small threshold. Each
connected component in the remaining graph becomes
a parent group for the next step. To summarize, we
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partitioned the parent group to several parent groups that
are geographically co-located.

The same process is repeated for child groups, where
the error vectors are calculated by the distances to the
common parents.

This kind of localization helps us to overcome a rela-
tively large number of errors. However, if more than half
of the measurements to a certain node are incorrect, the
algorithm may fail to determine its location. Otherwise,
there is no impact on the overall performance. Those
‘badly’ measured nodes might not became a part of the cor-
rect PoP, but the PoP map will be formed correctly in spite
of them, i.e., no new PoPs will be created.

(c) Unification. Unifying parent/child group to the same
PoP. If a parent pair and a child pair groups are con-
nected, then the weighted distance between the
groups is calculated (if they are connected, by defini-
tion more than one edge connects the two groups);
if it is smaller than a certain threshold, PPCax tn,
the pair of groups is declared as part of the same
PoP.

Final refinements.

(a) Unification of loosely connected components. In some
cases, e.g., due to insufficient measurements, different
parts of a PoP are only loosely connected in a way that does
not form even a 2 x 2 bi-partite; in the extreme case only a
single link connects two parts of a PoP. This will not allow
the unification process, just described above, to identify
the parts as belonging to the same PoP. Thus, the algorithm
looks for connected components (PoP candidates) that are
connected by links whose median distance is very short
(below PDyax (1) Note that at this point, due to the unifica-
tion process, the graph has shrunk considerably, and thus
the search for ‘close’ components is inexpensive.

(b) Singleton Treatment. At the end of the process, the
ISP graph has evolved through the multiple node unifica-
tions described above into a graph that is comprised of sev-
eral multi-nodes (the PoPs) and a larger number of nodes
(IP interfaces) that were not assigned to any PoP. Typically,
these nodes have only one or two links connecting them to
the rest of the graph, and the path from a node to the clos-
est PoP is in most cases one hop and sometimes two. This
final step assigns many of these nodes to existing PoPs. The
assignment is conducted by running a Dijkstra shortest
path algorithm from a node to all PoPs, and connecting a
singleton to the closest PoP, providing the distance (in
mSec) is below a given threshold PDux ¢h-

While this step has some advantages, it typically de-
grades the algorithm accuracy and does not add to the
number of discovered PoPs. Therefore, unless noted differ-
ently, it is eliminated in most presented results. We discuss
the effect of Singletons in Section 3.2.

3.2. PoP extraction validation and results

Following, we present our validation tests and the results
of a full implementation. The validation is then extended to
discuss tradeoffs in the algorithm’s implementation and
their effect on result’s accuracy.

Two collected datasets for PoP extraction are taken
from DIMES [20]. One is from 2009, with a focus on weeks
27 to 30 for specific examples, and the other taken from
weeks 42 to 43 of 2010. The database from weeks 27 to
30, 2009 includes 56 million traceroute measurements,
collected by 1415 agents. The 2010 database, from weeks
42 to 43, has a total 33 million measurements, an average
of 2.35 million measurements a day. The measurements
were collected by 1308 agents, which were located in 49
countries around the world.

First, we examine the best time period length for col-
lecting measurements for PoPs, and select it to be two
weeks. DIMES produces five to six million daily measure-
ments, both traceroute and ping, meaning thirty to forty
million measurements per week, which typically result in
55M to 6.5M distinct IP edges being discovered. The
selection of a two weeks time period balances between
two delicate tradeoffs: the number of distinct edges used
for the PoP construction and the sensitivity to changes in
the network. A time frame of a single week is too short,
with considerably fewer distinct edges than those from
two weeks. A month, on the other hand, does add many
more edges, but it is insensitive to changes in the network,
which we would like to track. In addition, the algorithm
runs considerably slower on such large data sets. Table 2
shows the changes in PoP maps between different time
frames. The first row in the table shows the difference in
PoP maps between two consecutive weeks. The second
row refers to a one week period compared to two weeks,
and the last row compares two to four weeks measure-
ments collection periods. The columns “#PoPs” and “#IPs
in PoPs” refer to the change in number of discovered PoPs
and IPs included in these discovered PoPs over the com-
pared periods. “#Distinct Edges” refers to the change in
distinct IP edges measured by DIMES. This number is inde-
pendent of the PoP algorithm.

We set PMpin ¢n, the minimal number of node’s mea-
surements, to be 5. This threshold was found to be optimal
over many heuristic test cases, cleaning noisy measure-
ments while filtering out only a small number of edges.
We then ran the median algorithm described in [19] to find
the delay between two adjacent nodes.

The resulting IP address to PoP mapping table typically
consists of over 50,000 IP addresses, in about 4000 differ-
ent PoPs. The average size of a PoP is 16 IP addresses, with
a median of 6. The largest PoP size observed was 2500. The
size of the discovered PoPs depend both on our measure-
ment method and the ISP’s policies. When a PoP is mea-
sured from many different agents or there are many
paths between the source and destination nodes, the size
of the PoP will be larger. However, measuring from
one direction or if there is a relatively small number of

Table 2
Changes in PoP maps between different time frames.

Compared time frame  #PoPs  #IPs in PoPs  #Distinct edges
1 week to 1 week <1% <1% +20%
1 week to 2 weeks +58% +79% +43%
2 weeks to 4 weeks +10% +15% +59%
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alternative routes, the size of the discovered PoP will be
small. The policies of the ISP can cause nodes inside the
PoP to not answer traceroute messages and become anon-
ymous or transparent e.g., due to use of MPLS.

On a single day, DIMES may run several experiments in
parallel, however, the vast majority of the measurements
performed over a week belong to the DIMES default exper-
iment where a set of roughly 2.5 million target IP ad-
dresses, selected to cover all the allocated IP address
prefixes, are cyclically sent to the agents. To test whether
the target set limits us from discovering more PoPs, 2.5
million IP addresses were added to this basic experiment,
identified by the iPlane project [4] as belonging to PoPs.
The addition of the iPlane IP addresses increased the num-
ber of PoPs discovered by less than 20%, yet did not reach
the numbers in iPlane. We believe that the immense num-
ber of IPs grouped by iPlane into PoPs partly represent IPs
which are not part of the PoP.

The number of PoPs found in an AS network correlates
with its measured size. Fig. 4 shows that the number of
PoPs discovered per AS depends logarithmically on the
number of IP edges measured. Fig. 5, showing the number
of IPs included in PoPs compared to the number of IPs
edges measured, demonstrates even better the logarithmic
relation between the number of measurements and the
discovered PoPs. As the number of IP edges reflects mea-
surements through unique IPs and not PoPs, this is an ex-
pected outcome.

Figs. 6-9 explore the PoP extraction algorithm’s sensi-
tivity to its two parameters PDux n and PMp, . In each
figure five ISPs are explored: Level 3, ATT, Comcast, MCI,
and Deutsche Telekom. In Fig. 6 the number of discovered
PoPs is compared with PD;,qx ¢, the maximal delay thresh-
old. Fig. 7 presents the number of IPs included in these
PoPs under these conditions. Neither the number of discov-
ered PoPs nor the number of IPs within the PoPs are sensi-
tive to the delay threshold, as long as the threshold is 3mS
or above. PDy,q , Was therefore selected to be 3msS, as it
presents a good tradeoff between delay measurement er-
ror and location accuracy. Figs. 8 and 9 show the effect of
PMpin_tn, the minimal number of measurements threshold,

80 . 5
.
70t e —
60| o
.
& 50 i
[s}
a L)
S 40t . E
[
Q .
E ol S . ]
z
° .. L] L] .
. .
20} IR :
o -
10} s, Se e °« ° Ce oo i
eoln u o o .
0 o &
0 X .
10* 10° 10°

Number of IP Edges

Fig. 4. Number of Discovered PoPs vs. number of measured IP edges.

Number of Internal PoP IPs

Number of PoPs

Number of Internal PoP IPs

3500

3000

2500

2000

1500

1000

500

D. Feldman et al. / Computer Networks 56 (2012) 1029-1040

o
Se o *

o 30, X
L

oo @b ©

oy

10*

10°

Number of IP Edges

Fig. 5. Number of IPs in PoPs vs. number of measured IP edges.

150

50 R

Level 3

ATT

—— MClI

Comcast
Deutsche Telekom

4000

3500

3000

2500

2000

1500

1000

500

PD

MAX_TH

5

6

[mSec]

7

Fig. 6. Number of PoPs vs. maximal delay.

Level 3
ATT
—— MCI
Comcast

Deutsche Telekom

PD

MAX_TH

6
[mSec]

7

Fig. 7. Number of IPs in PoPs vs. maxi-mal delay.



D. Feldman et al. / Computer Networks 56 (2012) 1029-1040 1035

150

Level 3
ATT

——MCI
Comcast
Deutsche Telekom|

Number of PoPs

MMINiTH

Fig. 8. Number of PoPs vs. minimal number of measurements.

4000
Level 3
ATT
——— MCI
3500 . Comcast
Deutsche Telekom
» 3000 7\
o —_—
o
& 2500
T
c
£ 2000
=
k)
% 1500 F
Qo
€
=3
Z 1000 v
500 |
ol ‘ ‘ ‘ ‘ ‘ ‘ ‘
3 4 5 6 7 8 9 10
PMMINiTH

Fig. 9. Number of IPs in PoPs vs. minimal number of measurements.

on the number of discovered PoPs and the number of IPs
included in them. The number of IPs included in PoPs
clearly decreases as the minimal number of required mea-
surements increases, as can be expected. The number of
discovered PoPs shows a mixed behavior as the reduction
of IP level links may have two conflicting outcomes; An in-
crease is caused by a loss of connectivity inside a PoP
which in turn causes it to split to several PoPs located at
the same place, while a decrease is caused by the loss of
the ability to identify a PoP. In our experiments, PM,in ¢n
was selected to be 5.

Additional validation tests repeatedly targeted previ-
ously identified PoP IP addresses within several large ASes,
such as Level3, ATT and MCI, from agents within the AS.
They did not increase the number of discovered PoPs, but
proved that discovered PoPs are stable. To show that the
PoP algorithm succeeds when enough measurements are
provided, two ASes were taken as an example: GEANT,
the pan-European academic network, and Proxad, a French
ISP. Both were selected since their PoP topology is public

and since DIMES did not have many measurements in
them by default. Comparing the amount of PoPs and IPs
within PoPs discovered based on default DIMES measure-
ments and directed measurement tests, the number of dis-
covered PoPs more than doubled and the number of IPs
within PoPs grew by a factor of ten. In both cases, the di-
rected tests doubled the number of distinct measured
edges within the AS, thus increasing the connectivity re-
quired to discover PoPs. We conclude that increasing the
number of measurements improves the algorithm’s
performance.

Other stability tests examined the IP addresses identi-
fied as part of PoPs and found 85% similarity between con-
secutive fortnights. The difference between PoPs was due
to lack of measurements through the PoP connecting
nodes, rather than the PoP extraction algorithm. In addi-
tion, not all the traceroutes are identical every week, due
to the community based nature of DIMES. Additional vali-
dation actions taken are detailed in Section 4. Validation of
PoP maps was always an issue in related work, e.g., in
iPlane [4] or RocketFuel [3], and we find that the level of
validation introduced in this work is at least at the level
of previous efforts.

4. PoP geolocation methods

Automatically assigning every discovered PoP to a geo-
graphical location is the second contribution of this work.
We use geolocation services in order to find the PoP’s geo-
graphic coordinates. Geolocation services provide location
information regrading a given IP address, including coun-
try, city, longitude and latitude.

In the past, as Katz-Bassett et al. [10] indicated, geoloca-
tion databases were not highly reliable: They were com-
bined from multiple sources, such as DNS hostname
parsing rules, whois registration and DNS LOC records.
Due to the sources of information, many of them were out-
dated as well. In recent years geolocation services have
been widely used to countermeasure Internet frauds, for
marketing, publicity and conditional access. This led to
an immense effort to improve the database quality, yet
not resulted in a great deal of accuracy. While some loca-
tion services do not reveal their level of accuracy, coun-
try-level assignment is typically over 99% accurate, as the
IP assignments to ASes are in most cases bounded within
a single country. MaxMind GeolP service [21] provides
with its database accuracy information on city level, within
a radius of 25 miles of true location, which ranges from 40-
44% (Nigeria, Tunisia) to 94-95% (Georgia, Singapore). The
United states, for example, has 83% accuracy at the city le-
vel. A further assessment of the geolocation information is
therefore required. We present such an evaluation in [22],
based on PoP and IP level analysis.

We use several geolocation services to maximize the
accuracy of our PoP location. The initial results from
2009 used MaxMind GeolP [21], IPligence [23], and Hosti-
p.info [24]. The results from 2010 were extended to use
also f IP2Location DB5 [25] and GeoBytes [26]. Information
from Netacuity [6] and Spotter [27] was used to some ex-
tent as well.
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To identify the geographical location of a PoP, we use
the geographic location of each of the IPs included in it.
As all the PoP IP addresses should be located within the
same campus, or within its vicinity if singletons are consid-
ered, the location confidence of a PoP is significantly higher
than the confidence that can be gained from locating each
of its IP addresses separately. The algorithm, introduced in
[28], operates as follows:

Initial location. Each of the geolocation databases used
is queried for the location (longitude,latitude) of each IP
included in the PoP. Next, the center of weight of the PoP
location is found by calculating the median of all PoP’s IP
locations. Unlike average calculation, where a single wrong
IP can significantly deflect a location, the median provides
a better suited starting point, but does not guarantee good
results if there is complete disagreement between geoloca-
tion databases. For example, Fig. 10 shows a single PoP in
the UUNET network, which is located by different geoloca-
tion databases in six locations spread in 4 countries and
two continents. However, since geolocation databases are
typically reliable in country-level assignment, such exam-
ples are rare.

Location error range. Every PoP location is assigned a
range of convergence, representing the expected location
error range based on the information received from the
geolocation databases. For every IP address in a PoP and
for every geolocation database we collect the geographic
coordinates. Thus if there are N IP addresses and M dat-
abases, for each of the IP addresses we get at most (if all
are resolved) N x M location votes. The algorithm finds
the smallest radius which has at least 50% of the votes,
with 1 km granularity. If the radius is above a given thresh-
old, typically 100 km or 500 km, the algorithm outputs the
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threshold radius and the percentage of location votes with-
in it. If one of the geolocation databases lacks information
on an IP address, this IP element is not counted in the
majority vote.

Location refinement. After a range of convergence is
found, the PoP location accuracy is further improved. The
new PoP location is set to the median of the location votes
inside the range of convergence. This ensures that devia-
tions in the PoP location caused by a small number of IP
elements outside the range of convergence are discarded,
and the PoP is centered based only on credible IP addresses
locations.

To summarize, the PoP geolocation algorithm provides
per PoP longitude, latitude, range of convergence and the
percentage of location votes within its convergence range.

4.1. Geolocation results

The geolocation algorithm has two interesting out-
comes. First, it validates the PoP extraction algorithm by
showing that PoPs are indeed scattered geographically,
and locates points of presence around the globe. Second,
it examines the quality of the geolocation services and
finds their faults.

The algorithm converges successfully based on its vali-
dation’s results. 70% percent of the PoPs have a range of
convergence of ten kilometer or less. Although 89% of the
PoPs have more than the minimal requirement of 50% of
the IP location votes within the convergence range, for only
9.1% of the PoPs have over 90% of the location votes within
the convergence range, indicating inaccuracies in some of
them. To strengthen this point, when requiring the PoP
location to be agreed upon by any three geolocation
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databases instead of five, over 90% of the PoPs converge
within ten kilometers range, which comes to show that
the disagreement between the geolocation database is
the cause to the above.

Fig. 11 shows the discovered PoPs located on a world
map. Clearly, the US and Europe have very good coverage.
In East Asia many PoPs are discovered as well, but only a
few are found in South America and Africa.

We then proceed and generate a PoP location map per
Internet service provider. The maps display the PoPs of
all the ASes residing under the same provider (sibling
ASes), to provide a full picture of the vendor’s network.
The provider maps also show the connectivity between
the different PoPs, as measured by DIMES. Fig. 12 shows
as an example provider map of Qwest with its internal net-
work connectivity.

To validate our generated maps we compare them
against the PoP maps published by the ISP, such as Sprint
[29], Qwest [30], Global Crossing [31], British Telecom
[32], ATT [33] and others. The PoP algorithm detects most
of the large points of presence, but it detects very few
small, local PoPs. There are several explanations for this
behavior. First, we measure mainly to and through nodes
that pass a lot of traffic, and filter out edges that were
hardly measured, in order to filter out noise. Even when
we add the PoP IPs discovered by iPlane, most of these
small PoPs are still not found. This leads us to the second
reason some PoPs are not discovered: due to security rea-
sons, many routers do not answer traceroute ICMP pack-
ets, which reduces the algorithm’s ability to discover the
PoP structure. Last, some of the vendors employ encapsu-
lating protocols such as MPLS, which may hide most of
the routing path. Luckily, as our results show, these
protocols are not deployed widely enough to harm our
measurements.
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As another method of validation, fifty PoPs that belong
to universities around the globe were selected, and the
location given to them by the algorithm was compared
against the institute’s actual location. For 49 out of 50 uni-
versities, the location was accurate within a 10 km radius.
The last PoP, belonging to The University of Pisa, was lo-
cated by the algorithm in Rome instead (330 km away),
due to an inaccuracy in the MaxMind and IPligence dat-
abases. Only Hostip.info provided the right coordinates
for this PoP. Each PoP location was also validated against
its DNS name, yet many interfaces had no DNS name as-
signed to them.

We compare our PoP geolocation also for GARR, the
Italian research network. In weeks 42-43, 2010 we found
eight PoPs in GARR, containing 99 IP addresses. GARR has
a total of fifty-eight PoPs in Italy; however in several
cases a few PoPs are located in a small area. For example,
there are eight PoPs in Milan’s area, and six in Florence’s
vicinity. Our extraction algorithm thus merges such PoPs
into a single entity. Checking the assignment of PoPs to
locations, based on DNS, information provided on GARR'’s
website [34] and information from users, we successfully
geolocate five of the PoPs in their correct location based
on 100% of the IP locations. In two PoPs, the PoP is located
correctly, however it seems to include a single IP address
which is supposed to reside in a different location. In both
cases we observe that the edge delay to other IP ad-
dresses included in this PoP is less than 2mS. For the last
PoP, the PoP is located correctly in Milan, however it in-
cludes several IP addresses that are supposedly part of
different PoPs. We note that the geolocation databases
are also missing information for many of these IP ad-
dresses — only 55% of the IPs which are part of the PoP
have location information, and the agreement level that
we assign for the PoP is low as well: 66%.
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For less than 10% of the PoPs we fail to find the location
with high confidence using five geolocation databases. In
almost all these PoPs the cause is lack of location informa-
tion in the databases, mostly in HostIP.Info, GeoBytes and
MaxMind (MaxMind provides country level information).
When a majority is requested only amongst three dat-
abases, more than 99% of the PoPs are located with high
confidence. When IP location information is available, the
main cause of PoP location failure is due to disagreement
between the location services. To summarize, while in
some cases the disagreement is a result of incorrectly esti-
mated links, as suggested in subsection 3.1, the majority is
caused by geolocation database inaccuracies.

5. Discussion
5.1. Issues in PoPs discovery

The extraction of PoPs and assignment to geolocation
based on active measurements requires careful data filter-
ing. Previous [3,4,11] PoP discovery algorithms were based
on methods such as RTT measurements, Interface aliasing,
and DNS entries; all three are known to inflict errors. In
particular, the delay measurement inaccuracy is a known
problem [10,35], and clustering by the delay from a limited
number of vantage points is prone to errors in distinguish-
ing short distances. Internet aliasing to routers was shown
to be problematic, as well as the use of DNS [36].

Our PoPs extraction algorithm takes several precau-
tions. First, at least PMp,;, » measurements are required
per IP level edge in order for it to be considered by the
PoP extraction algorithm, and a median algorithm [19] is
applied in order to reduce the delay measurement error.
Second, the distribution of the DIMES vantage points re-
sults in the measurement of an IP edge being made by dif-
ferent agents from different locations, thus reducing the
inherited measurement error of a specific path. Last, when

DIMES measures a certain path, it sends four consequent
traceroutes per destination. We considered the median of
both, the average of two middle delay results time mea-
sured and minimum delay, across all edges and studied
the tradeoffs between the two. Fig. 13 shows a CDF of med-
ian edge delay, based on best (least) and average tracero-
ute measurements, over one million edges. As can be
seen, both graphs follow the same trend, with about 1TmS
shift between the two plots at the small delay values
(e.g., the probability of getting 2mS delay using average de-
lay measurements equals the probability to get TmS delay
using best delay measurements). Looking at an edge delay
of 3msS, the value set for the PD,,4x ¢, threshold in our eval-
uation, the best (least) delay CDF probability is 0.43, while
the average delay CDF probability is close to 0.36. As there
may be a variance between networks, we compare the
edge delay of five service providers: ATT, Sprint, Cogent,
Level3 and France Telecom. Fig. 14 shows for each of the
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providers the CDF of best (least) and average edge delay. As
can be seen, the best edge delay curves (top) overlap for all
ISPs, and the same applies for the average edge delay (bot-
tom). We thus take the best time per quartet of measure-
ments for our edge delay calculations.

5.2. Geo-location results

Validating the geolocation results is problematic [22]
due to the need for ground truth which is hard to obtain.
Our validation is based on two methods. First we point to
coherence in the data from multiple databases. If the ra-
dius of convergence between five different databases for
a large majority of the PoPs is small, it is strong evidence
for the validity of the results. The advantage of our geolo-
cation method is that the returned location comes with a
radius of convergence which serves as a confidence mea-
sure. In the future, we plan to use an iterative algorithm
that will start by locating the PoPs with the highest confi-
dence values and then based on triangulation (using the
PoP to PoP delay estimations) will continue to locate PoPs
with decreasing confidence. The second validation we used
is by comparing our results to data available on the Web by
service providers. Some ISPs provided feedback on the PoP
maps as well. Overall, we believe our validation shows a
high confidence in the results, but of course we do not
claim of 100% accuracy.

5.3. Leveraging PoPs for network properties study

PoP-level maps can be used in diverse ways to study the
Internet. Beyond providing geographical information on
service providers’ equipment spread, additional informa-
tion can be obtained on the connectivity within the AS net-
work, and more importantly, the connectivity between
service providers. While most of the studies until today fo-
cused on types of relationships (ToR) between service pro-
viders on the AS level, a study of ToR on the PoP level can
provide much more information, such as how ToR between
a pair of ISP changes between locations over the globe. This
will help us understand routing in the Internet.
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0 20 40 60 80 100
Edge Delay [mSec]

Fig. 14. CDF of best and average edge delays, different ISPs.

Analyzing PoP level maps from geographic and demo-
graphic standpoints can be leveraged to design an evolution
model of the network. An advance modeling framework
may also take into account the combined PoP/AS level to
create evolutionary models coupling various socio-
economic datasets to the growth of the Internet capability.

Another application of PoP-level maps is evaluation of
geolocation databases. The fact that a PoP groups IPs with
a locality property allows to check consistency within the
database. Another option is to check the spread radius of
IPs within the same PoP according to a single database
and to compare different databases’ range of convergence.
By placing PoPs on a map according to different geoloca-
tion databases, it is also possible to find anomalies in the
database. We discuss this topic thoroughly in [22].

The PoP level maps, as well as source measurements
and derived tables are all available for the research com-
munity from the DIMES Web site at www.netDimes.org.

6. Conclusion

In this paper we presented a novel structural approach
to automatically generate world-wide PoP maps using the
DIMES project infrastructure. The extraction algorithm is
based on detection of a network motif, and we discuss at
length the theoretical background supporting this scheme.
The generated PoP maps have location information for
each PoP, deduced from geolocation databases and using
a geolocation algorithm which increases the PoP location
accuracy. An extensive validation of both PoPs extraction
and geolocation algorithms is provided, studying different
aspects of the approach. We recognize that many PoPs,
mainly small ones, are not discovered due to insufficient
measurements. To make the map richer we believe one
should improve DIMES’s spread, adding more vantage
points and increasing the number of measurements. The
generated PoP maps can be used for purposes such as the
study of type of relationships (ToR) between service pro-
viders on PoP level, geolocation databases evaluation
[22], distance estimation, and more.

References

[1] Y. Shavitt, E. Shir, DIMES: Let the Internet measure itself., in: ACM
SIGCOMM Computer Communication Review, vol. 35, 2005.

[2] D.G. Andersen, N. Feamster, S. Bauer, H. Balakrishnan, Topology
inference from BGP routing dynamics, in: Internet Measurement
Workshop, 2002, pp. 243-248.

[3] N. Spring, R. Mahajan, D. Wetherall, Measuring ISP topologies with
Rocketfuel, in: ACM SIGCOMM, 2002, pp. 133-145.

[4] H.V. Madhyastha, T. Anderson, A. Krishnamurthy, N. Spring, A.
Venkataramani, A structural approach to latency prediction, in:
IMC'06: Proceedings of the 6th ACM SIGCOMM conference on
Internet measurement, 2006, pp. 99-104.

[5] Quova, 2010, <http://www.quova.com>.

[6] Digital Envoy, NetAcuity Edge, , 2010, <http://www.digital-
element.com/our_technology/edge.html>.

[7] V.N. Padmanabhan, L. Subramanian, An investigation of geographic
mapping techniques for Internet hosts, in: SIGCOMM '01:
Proceedings of the 2001 conference on Applications, technologies,
architectures, and protocols for computer communications, 2001,
pp. 173-185.

[8] B. Gueye, A. Ziviani, M. Crovella, S. Fdida, Constraint-based
geolocation of Internet hosts, [EEE/ACM Trans. Netw. 14 (6).

[9] B. Wong, L. Stoyanov, E.G. Sirer, Octant: A comprehensive framework
for the geolocalization of Internet hosts, in: NSDI, 2007.


http://www.netDimes.org
http://www.quova.com
http://www.digital-element.com/our_technology/edge.html
http://www.digital-element.com/our_technology/edge.html

1040 D. Feldman et al./ Computer Networks 56 (2012) 1029-1040

[10] E. Katz-Bassett, J.P. John, A. Krishnamurthy, D. Wetherall, T.
Anderson, Y. Chawathe, Towards IP geolocation using delay and
topology measurements, in: The 6th ACM SIGCOMM Conference on
Internet Measurement (IMC'06), 2006, pp. 71-84.

[11] K. Yoshida, Y. Kikuchi, M. Yamamoto, Y. Fujii, K. Nagami, I
Nakagawa, H. Esaki, Inferring PoP-level ISP topology through end-
to-end delay measurement., in: PAM, vol. 5448, 2009, pp. 35-44.

[12] S. Laki, P. Matray, P. Haga, I. Csabai, G. Vattay, A model based
approach for improving router geolocation, Computer Networks 54
(9) (2010) 1490-1501.

[13] B. Eriksson, P. Barford, J. Sommers, R. Nowak, A learning-based
approach for IP geolocation, in: Passive and Active Measurement,
2010, pp. 171-180.

[14] A. Sardella, Building next-gen points of presence, cost-effective PoP
consolidation with juniper routers, White paper, Juniper Networks,
June 2006.

[15] B.R. Greene, P. Smith, Cisco ISP Essentials, Cisco Press, 2002.

[16] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon,
Network motifs: simple building blocks of complex networks,
Science 298 (5594) (2002) 824-827.

[17] Mfinder - network motifs detection tools, <http://
www.weizmann.ac.il/mcb/UriAlon/>.

[18] D. Feldman, Y. Shavitt, Automatic large scale generation of Internet
PoP level maps, in: GLOBECOM, 2008, pp. 2426-2431.

[19] D. Feldman, Y. Shavitt, An optimal median calculation algorithm for
estimating Internet link delays from active measurements, in: IEEE
E2EMON, 2007.

[20] DIMES, Distributed Internet Measurements and Simulations, <http://
www.netdimes.org/>.

[21] MaxMind LLC, GeolP, 2010, <http://www.maxmind.com>.

[22] Y. Shavitt, N. Zilberman, A geolocation databases study, IEEE Journal
on Selected Areas in Communications 29 (9).

[23] IPligence, IPligence Max, 2010, <http://www.ipligence.com>.

[24] hostip.info, hostip.info, 2010, <http://www.hostip.info>.

[25] Hexsoft Development, IP2Location, 2010, <http://
www.ip2location.com>.

[26] Geobytes, GeoNetMap, 2010, <http://www.geobytes.com/>.

[27] S. Laki, P. Matray, P. Haga, T. Sebdk, 1. Csabai, G. Vattay, Spotter: A
model based active geolocation service, in: IEEE INFOCOM 2011,
Shanghai, China, 2011.

[28] Y. Shavitt, N. Zilberman, A structural approach for PoP geolocation,
in: Infocom Workshop on Network Science for Communications
(NetSciCom), 2010.

[29] Sprint, Global IP network, <https://www.sprint.net/network_maps.php>.

[30] Qwest, IP network statistics, <http://66.77.32.148/index_flash.html>.

[31] Global Crossing, Global Crossing network, http://www.globalcrossing.com/
html/map062408.html.

[32] BT Global Services, Network maps, http://www.bt.net/info/europe.shtml.

[33] AT& T Global Services, AT& T Global Services global network map,
http://www.corp.att.com/globalnetworking/media/network_map.
swf.

[34] GARR, The Italian academic and research network, http://
www.garr.it/eng/index.php.

[35] D. Lee, K. Jang, C. Lee, S. Moon, G. lannaccone, Path stitching:
Internet-wide path and delay estimation from existing
measurements, in: [EEE Infocom mini-conference, 2010.

[36] M. Zhang, Y. Ruan, V. Pai, J. Rexford, How DNS misnaming distorts
Internet topology mapping, in: ATEC '06: Proceedings of the annual
conference on USENIX '06 Annual Technical Conference, 2006, pp.
34-34,

Dima Feldman received his B.Sc. in Electrical
Engineering from the Technion-Israel Insti-
tute of Technology, Haifa, Israel in 2000, and
his and M.Sc. in Electrical Engineering from
Tel-Aviv University, in 2007. His re- search
focused on Internet measurements,mapping
and characterization. He currently serves in a
managerial position in the telecommunica-
tions industry.

Yuval Shavitt received the B.Sc. in Computer
Engineering (cum laude), M.Sc. in Electrical
Engineering and D.Sc. from the Technion-
Israel Institute of Technology, Haifa, Israel in
1986, 1992, and 1996, respectively. After
graduation he spent a year as a Postdoctoral
Fellow at the Department of Computer Sci-
ence at Johns Hopkins University, Baltimore,
MD. Between 1997 and 2001 he was a Mem-
’ ber of Technical Stuff at Bell Labs, Lucent
<~ - Tech- nologies, Holmdel, NJ. Starting October
- 2000, he is a Faculty Member in the School of
Electrical Engineering at Tel-Aviv University, Israel. His research interests
include Internet measurements, mapping, and characterization; and data
mining peer-to-peer networks.

Noa Zilberman received her B.Sc. and M.Sc.
(both magna cum laude) in Electrical Engi-
neering from Tel-Aviv University, Israel in
2003 and 2007, respectively. Since 1999 she
has filled several development, architecture
and managerial roles in the telecommunica-
tions industry. She is currently a Ph.D. candi-
date in the School of Electrical Engineering at
Tel-Aviv University. Her research focuses on
Internet measurements, mapping, and char-
acterization.


http://www.weizmann.ac.il/mcb/UriAlon/
http://www.weizmann.ac.il/mcb/UriAlon/
http://www.netdimes.org/
http://www.netdimes.org/
http://www.maxmind.com
http://www.ipligence.com
http://www.hostip.info
http://www.ip2location.com
http://www.ip2location.com
http://www.geobytes.com/
http://https://www.sprint.net/network_maps.php
http://66.77.32.148/index_flash.html
http://www.globalcrossing.com/html/map062408.html
http://www.globalcrossing.com/html/map062408.html
http://www.bt.net/info/europe.shtml
http://www.corp.att.com/globalnetworking/media/network_map.swf
http://www.corp.att.com/globalnetworking/media/network_map.swf
http://www.garr.it/eng/index.php
http://www.garr.it/eng/index.php

	A structural approach for PoP geo-location
	1 Introduction
	2 Related work
	3 PoP discovery
	3.1 PoP extraction algorithm
	3.2 PoP extraction validation and results

	4 PoP geolocation methods
	4.1 Geolocation results

	5 Discussion
	5.1 Issues in PoPs discovery
	5.2 Geo-location results
	5.3 Leveraging PoPs for network properties study

	6 Conclusion
	References


