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ABSTRACT
Internet traffic classification has been intensively studied
over the past decade due to its importance for traffic engi-
neering and cyber security. One of the best solutions to sev-
eral traffic classification problems is the FlowPic approach,
where histograms of packet sizes in consecutive time slices
are transformed into a picture that is fed into a Convolution
Neural Network (CNN) model for classification.
However, CNNs (and the FlowPic approach included) re-

quire a relatively large labeled flow dataset, which is not
always easy to obtain. In this paper, we show that we can
overcome this obstacle by replacing the large labeled dataset
with a few samples of each class and by using augmentations
in order to inflate the number of training samples. We show
that common picture augmentation techniques can help, but
accuracy improves further when introducing augmentation
techniques that mimic network behavior such as changes in
the RTT.
Finally, we show that we can replace the large FlowPics

suggested in the past with much smaller mini-FlowPics and
achieve two advantages: improved model performance and
easier engineering. Interestingly, this even improves accu-
racy in some cases.

1 INTRODUCTION
Internet traffic classification has been extensively studied
in the past decade [1, 4, 21] as it is used for QoS imple-
mentations, traffic engineering, law enforcement, and even
malware detection. However, due to the growing usage of

∗Work partly done while at Tel Aviv University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
IMC ’22, October 25–27, 2022, Nice, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9259-4/22/10. . . $15.00
https://doi.org/10.1145/3517745.3561436

Internet traffic encryption and an increase in usage of VPNs
and TOR, this task is becoming much harder. Most of the
current techniques for classifying encrypted traffic rely on
extracting statistical features (also called feature extraction)
from a traffic flow. This is followed by a process of feature se-
lection to eliminate irrelevant features, and finally use either
shallow methods of supervised learning or deep learning
models for the classification.
One of the most promising approaches to traffic classi-

fication is to convert the flow features into an image or a
pseudo-image (namely, a 2D matrix) and then use techniques
borrowed from image classification. Generally, these solu-
tions can be divided into approaches that examine large
portions of the packets, usually the packet headers [1, 8],
but sometimes also the payload [7, 12, 22], and others that
extract only packet size, timing and direction [3, 9, 11, 17–
20, 23]. The latter is more attractive due to their low cost of
implementation.
However, many of the previous approaches require suf-

ficiently large labeled datasets to train the deep learning
model. Such datasets are hard to obtain, in fact, the ISCX
and QUIC datasets that are used in this paper are the only
publicly available labeled application flow datasets, and they
both have limitations. Thus, it is desirable to have a solution
that overcomes this difficulty.

Following the difficulties in obtaining labeled flow datasets,
several approaches were suggested. Rezaei and Liu [15] sug-
gested transfer learning where they first use many unlabeled
sessions in order to learn flow statistical features and then
continue to train the same model with a small batch of 5-20
samples per class. Shapira and Shavitt [19] used overlapping
time intervals (time shifts) to extract more samples from
each session. Iliyasu and Deng [9] suggested using samples
generated by DCGAN generators to increase the number
of samples from each session. Rezaei and Liu [16] used 10-
100 samples per class and to overcome the small number of
samples they learned multiple tasks simultaneously.

A recently suggested approach to deal with labeling scarcity
is to use contrastive representation learning, where unsuper-
vised samples are embedded into a latent space, such that
similar sample pairs stay close to each other while dissimilar
ones are far apart [2]. This way samples can be separated
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with simple methods such as a linear classifier. This approach
was not suggested for traffic classification, yet.

In this paper, we utilized contrastive unsupervised repre-
sentation learning for traffic classification and extend it to
the task of few-shot learning, where only a few labeled sam-
ples are used per class. We select the FlowPic approach as
our flow image representation since it was shown to perform
well [19, 20, 23], and it is easy to implement.

In order to perform unsupervised contrastive learn rep-
resentation, we need good data augmentations that alter
images such that the result is an image that may represent
a flow in the class. Unfortunately, common augmentations,
which perform well on natural images, can not be applied
directly on FlowPic images, since most of them would gener-
ate a FlowPic that is significantly different from the original
label class. For example, a dog image that is rotated by 90 de-
grees, is still a valid dog picture, but a FlowPic that is rotated
by 90 degrees may not represent any legitimate flow.

In this paper, we suggest augmentations that are based on
manipulations of the flow data before the FlowPic is built,
e.g., changing the RTT. As a result, our augmentations per-
form consistently well, gaining up to 17% improvement in
classification accuracy. Furthermore, we show how to reduce
the implementation cost with mini FlowPics and show that
they can achieve excellent classifying results.
The only few-shot solution that was suggested for traf-

fic classification in the past [15] is not suitable for online
classification. The solution requires to sample packets from
the entire flow and thus is hard to implement in practice.
FlowPic on the other hand achieves same accuracy, but it is
very easy to implement, and mini FlowPic further reduces
the cost of implementation.

2 METHODS
2.1 FlowPic Representation
FlowPic is a histogram-based image representation for a sam-
ple of an Internet traffic session. It is created by partitioning
a time interval into equal-length time slots and generating
histograms by counting the number of packets arriving in
the time slots according to their size. This image can be seen
as an array of payload size distributions (PSDs) [14].

The FlowPic is a 1500x1500 pixel picture. The X-axis rep-
resents the time slot, and each column is a histogram, where
the pixel value at height Y is the number of packets of this
size in this time slot. If more than max value (255) packets of
a certain size arrive in a time slot, we set the pixel value to
max value. Since the absolute majority of the packets are not
larger than 1500 bytes, which is the Ethernet MTU value, we
disregard all packets with sizes greater than 1500 (less than
5% of all packets) and limit our Y-axis to be between 1 to
1500. For simplicity, we set the 2D-histogram to be a square

image. We store each such histogram in an image matrix and
term it a FlowPic. These images are later classified by deep
learning models.

2.2 Mini FlowPics
As described above, the original FlowPic images[20] are
1500x1500 pixels. The justification for 1500 in the Y-axis
is the ability to count each packet size between 1 to MTU
value, and for the X-axis is the creation of a simple square
image. Furthermore, [20] tested blocks of 120, 60, 30, and
15 seconds and reported that the differences in the average
accuracy were up to 1.25%. In this paper, for all experiments,
we use 15 seconds as the block size.

Mini FlowPics use the same construction idea as FlowPic
but uses significantly smaller images. The Y-axis is reduced
by generating histograms that count the number of packets
in ranges of lengths, and X-axis is reduced by partitioning
the time interval to a smaller number of time slots.

For example, if we use 30x30 image each pixel would count
1500
30 = 50 packets sizes which were arrived within 15

30 = 0.5
second time slot. In the original FlowPic paper the time slots
were 40 or 160 milliseconds long.

The Mini FlowPics are cheaper to construct, train and
predict on, which is a significant engineering advantage. The
Mini FlowPics are also easier to be captured by a human eye
for classification or sanity checks as can be seen in Figure 2
because the pixels are darker due to the aggregation (the
figures of the FlowPics in the original FlowPic paper were
generated by transforming each non-zero pixel to black). In
all the experiments reported in this paper we set the Mini
FlowPic image size to be 32x32 pixels, decreasing image size
(total pixels) by a factor of 2197. In some experiments, we
additionally used FlowPics of 64x64, which decreases the
size by a factor of 549.

2.3 Data Augmentation for FlowPic Images
Training a deep learning (DL) model requires a large dataset
of labeled data, or else one may risk overfitting. To overcome
this, data augmentations were suggested to increase the num-
ber of labeled samples without actually collecting new data.
Data augmentation artificially creates new training data by
applying transformations to input data while preserving the
class labels.
In the field of Computer Vision, there are many known

image transformations, which were reported to work well
in classifying a variety of standard image datasets. Some of
the most popular transformations are flipping, color mod-
ification, cropping, rotation, noise injection, and random
erasure.
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The effect of transformations on regular images is easily
understood by simply observing the new image. For exam-
ple, when a picture of a dog is rotated or when we add some
noise to the picture - it is still easy to observe the dog in the
transformed picture. However, when one considers image
transformations of FlowPics, they may alter significant char-
acteristics of the picture, and it is impossible to tell which
transformation is useful for augmentation by simply observ-
ing the outcome. For example, consider the popular rotation
transformation. When rotating a FlowPic significantly, one
changes the packet size distribution in time, and obviously
does not help the learning process.
Thus, we suggest here to design FlowPic augmentations

that attempt to mimic changes in the network conditions,
such as changes in RTT, time translations, and packet loss.
We will show later that such augmentation performs bet-
ter than the classic ones, which were designed for natural
images.

2.4 Contrastive Representation Learning
When there are only a few labeled samples per class (few
shots) using augmentations cannot generate a sufficiently
large, unbiased dataset. However, with sufficiently many un-
labeled samples, we suggest to use contrastive representation
learning.

The goal of contrastive representation learning is to learn
a low-dimensional representation for each sample in the
dataset such that in the embedding space similar sample
pairs stay close together, while dissimilar ones are far apart.
This method can be unsupervised utilized, as a result, with a
few labeled samples, a simple linear classifier can produce
good separation.

In this paper we utilize the SimCLR framework. To under-
stand how it works we first define some notations:

• T a family of valid augmentations, i.e., transforma-
tions, which preserve label class.

• 𝑓 (·) a CNN based encoder, that extracts representation
vectors from data examples x.

• h = 𝑓 (x) the representation vector of sample x.

In each training step, we select a randomly sampled mini-
batch of 𝑁 samples from unlabeled training set and two sepa-
rate transformations, 𝑡 and 𝑡 ′, from T . Using transformations
𝑡 and 𝑡 ′, each of the 𝑁 samples generates 2 augmented sam-
ples, totaling 2𝑁 for a batch. namely, x̃𝑖 = 𝑡 (x), x̃𝑗 = 𝑡 ′(x).
Since 𝑡 and 𝑡 ′ preserve the label class, each x̃𝑖 and x̃𝑗

are consider as one positive pair, and the other 2(𝑁 − 1)
augmented samples are treated as negative samples. The rep-
resentation vector ℎ of the augmented samples is produced
by the CNN based encoder: h𝑖 = 𝑓 (x̃𝑖 ), h𝑗 = 𝑓 (x̃𝑗 )

Figure 1: Illustration of SimCLR training process [2].
Extra projection layer of the representation ℎ by a Linear

or double Linear layer denoted by 𝑔(·) is applied resulting
with the similarity vector 𝑧: z𝑖 = 𝑔(h𝑖 ), z𝑗 = 𝑔(h𝑗 ).

Finally the contrastive learning loss is defined using cosine
similarity sim(z𝑖 , z𝑗 ) = z𝑖z𝑗/∥z𝑖 ∥∥z𝑗 ∥

L (𝑖, 𝑗)
SimCLR = − log

exp(sim(z𝑖 , z𝑗 )/𝜏)∑2𝑁
𝑘=1 1[𝑘≠𝑖 ] exp(sim(z𝑖 , z𝑘 )/𝜏)

where 1[𝑘≠𝑖 ] is an indicator function: 1 if 𝑘 ≠ 𝑖 and 0
otherwise, 𝜏 denotes a temperature parameter. The final loss
is computed across all positive pairs, both (𝑖, 𝑗) and ( 𝑗, 𝑖),
in a batch and the networks 𝑓 (·), 𝑔(·) weights are updated.
Finally network 𝑓 (·) taken as the representation extractor
function, and 𝑔(·) is thrown away.

3 EXPERIMENTS AND RESULTS
3.1 Datasets

3.1.1 UC-Davis, QUIC Google Services. The QUIC dataset
was captured at University of California at Davis lab [15],
and consists of 5 Google services: Google Docs, Google Drive,
Google Music, Youtube, and Google Search.

The dataset has already been pre-processed, all non-QUIC
sessions and those that have fewer than 100 packets were
removed. Each session is represented as a time series of the
packet’s arrival time, length, and direction. When we process
this dataset we create a single FlowPic per session (composed
of sampling only the first 15 seconds of the session).
The dataset includes thousands of flows that were trig-

gered and labeled by automation scripts, and at least 15 flows
per label class triggered and labeled by real human interac-
tion.

For all experiments, for training set we use only 100 "trig-
gered by script" flows per class, and for test set we follow the
experiments by [16] randomly choosing 30 flows for each
class for a "triggered by script" test set and 15 flows per class
for "triggered by human" test set.

3.1.2 ISCX, VoIP, and Video Application Identification. We
use a combination of the datasets from the Uni. of New
Brunswick (UNB): "ISCX VPN-nonVPN traffic dataset" (ISCX-
VPN) [5] and "ISCX Tor-nonTor dataset" (ISCX-Tor) [10].
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These datasets consist of packet capture (pcap) files labeled
by several encryption techniques (VPN, Tor, Regular), traffic
types (VoIP, Video, etc.), and applications (Whatsapp, Face-
book, etc.).
After filtering the ISCX dataset to include only sessions

with at least 100 packets, most applications don’t have more
than a few sessions (Unlike the situation in the QUIC dataset).
Luckily, the VoIP and video applications were recorded for
several minutes in each session, thus, it is possible to ex-
tract many non-overlapping 15 second FlowPics out of each
session.
Following [20], we create VoIP and Video Application

Identification dataset, consists of 10 classes representing us-
age of VoIP application (Facebook, Hangouts, Skype, Buster)
and video applications (Facebook, Hangouts, Netflix, Skype,
Vimeo, Youtube) over non-VPN encryption technique.

First, we split the sessions to test and train groups, such
that they do not overlap. Then we keep the same setting of
the QUIC dataset and sample FlowPics from the two groups,
so the test set contains 30 FlowPic images per class and the
train set has 100 FlowPics per class for the training set.

3.2 Supervised Training with FlowPic
Augmentations

In this section, we show the strength of designing FlowPic
augmentations by supervised experiments. First, we describe
the different augmentations and the intuition which led us
to build or use them.
We first describe various common Computer Vision

Augmentations and analyze their expected effect on Flow-
Pics and then continue by suggesting new augmentations
based on network effects. Some of the results of the augmen-
tation are illustrated on two FlowPics in Figure 2.

(1) Rotate: Image rotation is a popular augmentation since
obviously, it preserves image content. However, when
applied to FlowPics rotation changes the packet size
distribution and thus seems inappropriate (see Fig-
ure 2(d) and (h)), unless maybe when only small angles
are used. Thus, we tested this augmentation with angle
rotation uniformly distributed in the range [−10, 10]
degrees. Another subtle issue with rotation is that ar-
eas without pixels in images rotation augmentation
are usually filled with black, while in FlowPic the more
appropriate filler color should be white.

(2) Horizontal Flip: This augmentation is acceptable for pe-
riodic signals, which is the case for many applications
in FlowPic, such as Video and VoIP where the sessions
are long and the image does not change significantly
along the horizontal axis.

(3) Color Jitter: When used with small value Noise is equiv-
alent to sending a slightly different number of packets

(a) Original: G-Docs (b) Packet Loss: G-Docs

(c) RTT: G-Docs (d) Rotate: G-Docs

(e) Original: Skype Video (f) Packet Loss: Skype
Video

(g) RTT: Skype Video (h) Rotate: Skype Video
Figure 2: Examples of data augmentation applied on
Mini FlowPics. We Show here Packet Loss of 1 second,
Change RTT by a factor of 1.5, and Rotate by 10°

at some sizes and we expect the model to disregard
these small changes. Large noise values change the
size distributions, and thus may have an adverse ef-
fect. The parameters we chose were brightness = 0.8,
contrast = 0.8, saturation = 0.8, and hue = 0.2.

(4) Crop and Resize: This image augmentation will alter
a FlowPic to a level that will not be considered as a
variant of the original behavior. For example, zooming
in is equivalent to generating significantly more traffic,
since a single pixel that represent 𝑛 packets of size 𝑦
in time slot 𝑡 may become 9 pixels representing 9𝑛
packets of sizes between 𝑦 − 1 and 𝑦 + 1 with three
consecutive time slots.

(5) Vertical Flip: This transformation transforms large pack-
ets into small packets and wise versa, which does not
maintain the same flow class characteristics.
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(6) Translation This transformation also changes the sizes
of all packets and alters the application class.

(7) Cutout This transformation deletes all the packets of
some size range at a specific time interval. The result
may not be similar to the application class behavior.

Since applying the last 4 augmentations will results in Flow-
Pics that are significantly different from the characteristics
of the original class, we did not implement them. Instead, we
suggest the following Networking augmentations:

(1) Change RTT: Round-trip time (RTT) in the Internet
changes between a few milliseconds to a small frac-
tion of a second. Due to TCP congestion control and
application flow control, changes in the RTT translate
almost linearly to the distribution of packets along the
time axis.
We simulate a change in the RTT by multiply the ar-
rival time of each packets by a factor 𝛼 , and rebuild
the FlowPic. The factor 𝛼 is uniformly selected from
[𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥 ], namely 𝑅𝑇𝑇𝑛𝑒𝑤 = 𝛼 · 𝑅𝑇𝑇𝑜𝑙𝑑 . we chose
𝛼𝑚𝑖𝑛 = 0.5 and 𝛼𝑚𝑎𝑥 = 1.5. Figures 2(c) and 2(g) depict
the augmentation result.

(2) Time Shift: We simulate a Time Shift by adding a con-
stant𝑏 ∈ [𝑏𝑚𝑖𝑛, 𝑏𝑚𝑎𝑥 ] to the arrival time of each packet
and rebuild FlowPic. The constant 𝑏 is uniformly sam-
pled from 𝑈 [𝑏𝑚𝑖𝑛, 𝑏𝑚𝑎𝑥 ], so 𝑡𝑛𝑒𝑤 = 𝑡𝑜𝑙𝑑 + 𝑏. we chose
𝑏𝑚𝑖𝑛 = −1 and 𝑏𝑚𝑎𝑥 = 1𝑠𝑒𝑐𝑜𝑛𝑑𝑠 .

(3) Packet Loss There are multiple ways to simulate packet
loss that may take into account complex behavior such
as the TCP congestion control. We simulate a simple
loss process where we delete all packets in the time
interval [𝑡 − Δ𝑡, 𝑡 + Δ𝑡]. 𝑡 is randomly selected in the
session interval, and Δ𝑡 = 0.1seconds. Note that this
augmentation is a special case of a rectangle cutoff
with maximal height. Figures 2(b) and 2(f) depict the
augmentation result.

We first perform a supervised experiment that highlights
the best augmentations for the learning process. The param-
eter selection is based on quite extensive parameter search
that shows little sensitivity to parameters that are in the area
we selected, but drop of accuracy when extreme values are
used.
For this end, we supervised train our CNN architectures

as described in Appendix A.1 on the datasets described in
3.1. For all experiments, we apply each of the augmentations
10 times on the 100 samples per class training set, which
increase the training set to 1000 images per class.

We also train without any augmentation as baseline exper-
iments and term it "no aug". For all experiments we allocated
20% of the images for validation, and early stopped the train-
ing when the validation loss stopped improving. Comparing

the loss of the validation and the training makes sure there
is no over-fitting. The result are tabulated in Tables 1–3.

Mini FlowPic 32 Mini FlowPic 64 Full FlowPic
No aug 98.67 99.1 96.22
Rotate 98.6 98.87 94.89
Horizontal-flip 98.93 99.27 97.33
Color Jitter 96.73 96.4 94.0
Packets Loss 98.73 99.6 96.22
Time Shift 99.13 99.53 97.56
change RTT 99.4 100.0 98.44

Table 1: QUIC triggered by script - Accuracy of super-
vised training with different augmentations

Mini FlowPic 32 Mini FlowPic 64 Full FlowPic
No aug 92.4 85.6 73.3
Rotate 93.73 87.07 77.3
Horizontal-flip 94.67 79.33 87.9
Color Jitter 82.93 74.93 68.0
Packets Loss 90.93 85.6 84.0
Time Shift 92.8 87.33 77.3
change RTT 96.4 88.6 90.7

Table 2: QUIC triggered by human - Accuracy of super-
vised training with different augmentations

Mini FlowPic 32 Mini FlowPic 64 Full FlowPic
No aug 89.73 92.33 93.67
Rotate 86.3 87.135 93.0
Horizontal-flip 88.4 92.17 93.33
Color Jitter 86.9 86.6 91.3
Packet Loss 90.4 91.83 92.6
Time Shift 88.9 92.1 95.33
Change RTT 91.0 93.17 95.33

Table 3: Video and VoIP applications - Accuracy of
supervised training with different augmentations

As Tables 1, 2, and 3 show, using the 100 labeled FlowPics
per class is already a sufficient training dataset for achieving
good results on traffic classifying tasks in the three datasets.
Interestingly, we can see that for the "no aug" baseline the
Mini FlowPics achieve better results on the QUIC datasets,
but not on the Video and VoIP applications.

In all the nine experiments changing the RTT was the best
performing augmentation. The improvement varies from 1%
for the QUIC script dataset (where the "no aug" accuracy
was already 98.7%) up to 17.4% improvement for the most
challenging dataset, the QUIC human. While, the winning
size architecture changes between datasets, choosing a mini
FlowPic has both engineering advantages and is never too
far from optimum.

3.3 Learning a Representation for a Few
Shots classification

In this section, we utilize the FlowPic Augmentations for
Contrastive Representation Learning within SimCLR. Fol-
lowing the results of the previous experiment, we selected
to use ’Change RTT’ by 𝛼∼𝑈 [0.5, 1.5] together with Time
Shift by 𝑏 ∼ 𝑈 [−1, 1]. In each training step, a double batch
of 32 unlabeled images (taken from the pool of 100 unla-
belled samples per class) is loaded after applying the two
augmentations above.
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Figure 3: QUIC triggered by script - Accuracy as a func-
tion of the training set size
For the experiments described here, we use the same

datasets from the last section, but this time the training
process of the base encoder CNN network 𝑓 (·) is fully un-
supervised (see section 2 for details and Appendix A.2 for
training specifications) yielding a 120 dimensional vector
ℎ = 𝑓 (𝐹𝑙𝑜𝑤𝑃𝑖𝑐) for any FlowPic or mini FlowPic.

The evaluation of the learned representations is based on
linear evaluation protocol, where a linear classifier is trained
to classify the representation vectors.

Up until now, we performed unsupervised learning using
the 100 samples per class. Next, we freeze the weights of 𝑓 (·)
and train the linear classifier (see Appendix A.3 for training
specifications) using only a few labeled samples per class.
We vary the number of samples per class, 𝜂, to evaluate how
many such samples are required.

To evaluate our results, we replace our data representation
ℎ, with two other representations. The first representation
used the following 10 statistical flow-based features since
these features have been widely used in previous works
[3, 6, 13]: Mean, minimum,maximum, and standard deviation
of packet sizes and inter-arrival times; Flow Bytes per second
(BPS); Flow packets per second (PPS). While these features
were shown to perform well when plenty of labeled samples
are available, here we limited them to 𝜂 samples per class.
The second representation is also based on FlowPics and

mini FlowPics (32x32), but here we apply PCA directly on
the FlowPic to reduce its dimension to 120.

Figures 3, 4 and 5 depict the accuracy of the three methods,
for the three datasets. Each marker is the average accuracy
of 10 experiments where the training samples are randomly
selected, and the whiskers show the STD.
Clearly, our suggested method performs very well (with

the exception of mini FlowPic of 64x64 for QUIC Human
dataset), and is much better than the other two methods.
For the script-based QUIC datasets, which are the easiest to
classify, we reach 93.4% accuracy with only 3 labeled samples
per class. For the QUIC human dataset, we reach 82.3% for 7

Figure 4: QUIC triggered by human - Accuracy as a
function of the training set size

Figure 5: Video and VoIP applications - Accuracy as a
function of the training set size
samples, and for the ISCX Video and VoIP dataset we reach
87.5% for 7 samples.

It interesting to compare these results with previous works.
For the QUIC dataset script, Rezaei and Liu [16] reached
93.3% accuracywith 10 labeled samples per class. Ourmethod
achieves 93.4% accuracy with only 3 samples, and 94.5% with
10 samples. In their previous paper [15], they got better
results, but as they point out themselves: their approach takes
sampled data packets which means that it needs to observe
a large portion of a flow before performing the classification,
which is not suitable for online applications.

4 CONCLUSIONS
This work presents a practical solution for traffic classifica-
tion with only a few samples per class. In all our experiments
we achieved good accuracy with less than 10 samples per
class. This is the first time that unsupervised contrastive
learning is suggested for traffic classification. We note that
the winning size architecture changes between datasets, but
choosing a mini FlowPic has both engineering advantages
and is never too far from optimum. Understanding this be-
havior is left for future research.
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A CNN ARCHITECTURE
A.1 Supervised classifier CNN architecture
We use the same LeNet-5 based architecture, which was
used by [20] for classifying FlowPics and a similar version
for the Mini FlowPic. As depicted in Figures 6 and 7, our
architectures comprise seven layers, the ReLU activation
function is applied to the output of every convectional and
fully-connected layer and dropout with probabilities of 0.25
and 0.5 are used in order to reduce overfitting.
For the supervised training, we use the categorical cross

entropy cost function, Adam gradient-based optimizer, learn-
ing rate 0.01, batch size 32 and early stopping callback which
monitor the validation loss with threshold of 0.001 in abso-
lute term and patient of 5 epochs.

A.2 Unsupervised representation extractor
CNN architecture

For the representation extractor 𝑓 (·) we employed the 5
first layers of the CNN architectures described in A.1 and
replaced the last 2 layers with 2 linear layers sized 120 and
30. Thus, resulting with a 120 dimensional representation
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vector ℎ = 𝑓 (𝐹𝑙𝑜𝑤𝑃𝑖𝑐) and 𝑧 = 𝑔(ℎ) dimensional similarity
vector.

For the unsupervised training processwe apply LossLSimCLR
with temperature parameter 𝜏 = 0.07, Adam gradient-based
optimizer, learning rate 0.001, batch size 32 and early stop-
ping callback that in each batch count all the x̃𝑖 = 𝑡 (x), x̃𝑗 =
𝑡 ′(x) which are in the top 5 closest samples to each other in
the embedding space (this is correlative to the aim that simi-
lar sample pairs stay close together in the embedding space)
with patient of 3 epochs of non-improvement for stopping
the training.

A.3 linear classifier
We use a simple single layered Neural Network which fit
to the formulae 𝑦 = 𝑥𝐴𝑇 + 𝑏 where 𝐴,𝑏 are the classifier
parameters, 𝑥 is the input vector and 𝑦 is the output. 𝑥 is
120 (or 10 for the statistical features vectors) dimensional
vector and 𝑦 is 5-dimensional vector for Quic dataset and
10-dimensional vector for the ISCX dataset.

For the training, we use the categorical cross entropy cost
function, Adam gradient-based optimizer, learning rate 0.01,

batch size 32 and early stopping callback which monitor the
training loss with threshold of 0.001 in absolute term and
patient of 5 epochs.

Figure 6: An illustration of the Deep Learning Archi-
tecture for FlowPic

Figure 7: An illustration of Deep Learning Architecture
for 32x32 Mini FlowPic
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