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Abstract—The diversity of end-to-end (e2e) Internet routes has
been studied for over a decade, dating back to Paxson’s seminal
work from 1995. This paper presents a measurement study of
this issue and systematically evaluate the diversity of theInternet
routes, while revisiting some of the conclusions previously made.
Two large scale experiments are used for evaluation, one executed
in late 2006 and the second in early 2009, both employ a set
of more than 100 broadly distributed vantage points, actively
measuring between each other.

We find that although e2e routes are quite diverse, they are
relatively stable, albeit with high variance between different
vantage points, with strong dependency on the network type
(academic vs. commercial). We show that while routes are
mostly asymmetric, at the country level, which serves as a good
indication for end-to-end propagation delays, the routes are
highly similar. Finally, longitudinal analysis shows consistency
of the diversity and stability, indicating trade-offs between the
Internet growth and changing trends in its connectivity.

I. I NTRODUCTION

The Internet has evolved rapidly in recent years and has
grown to become an extremely complex communication net-
work. This complexity resulted in work that attempt to quan-
tify various aspects of the diversity, stability and symmetry of
end-to-end (e2e) routes. These include both active measure-
ments [12], [13], [11] and passive BGP collection [14], [7]
techniques. Paxson [12] was the first to study this problem.
However, this was done over a decade ago with data collected
from a set of vantage points (VPs) that were mostly distributed
in academic networks. Since then, the Internet has grown
significantly, requiring more expert knowledge from operators
which, when not available, results in routers misconfiguration
which in turn causes various pathologies and instabilities[9].
Moreover, load-balancing devices and hot-potato routing are
now more commonly deployed, resulting in an even harder to
follow routing schemes.

In this work we perform a systematic analysis of several
aspects of e2e diversity and stability in the Internet. We first
introduce the methodology used to quantify diversity, based
on detecting a set of dominant routes between a source and a
destination hosts, quantifying their prevalence and comparing
it to the remaining non-dominant routes. Several aspects of
stability are analyzed – (a) the hop level, at five levels of
granularity – IP address, IP prefix, autonomous system (AS),
city and country; (b) symmetry of instability, i.e., how similar
are the instabilities of a given pair when looked at in opposite

directions, and (c) variations in observed stability as measured
from different geographical locations and different AS types.

We evaluate these measures by conducting two large-
scale experiments in late 2006 and in early 2009. Driven
by the conclusions of Teixeiraet al.[17], we use various
techniques to extensively probe the diversity of routes. First,
we use DIMES [15], a highly distributed community-based
measurements infrastructure, to run two 96-hours experiments,
using over 100 actively measuring VPs, located in a broad
set of ASes and geographical locations. Each experiment
provides us with more than 100k e2e routes. To avoid possible
measurement artifacts, the data was filtered, resulting with
96 traceroute measurements per pair, using both ICMP and
UDP protocols. Additionally, the ports in UDP packets were
constantly changed to “induce” both per-packet and per-flow
load-balancing, allowing us to detect hidden links.

The contributions of this paper are threefold. First, we use
a distributed approach with a broad set of VPs located in
end-user, commercial and academic Internet. Second, the two
experiments spaced almost 3 years apart, give us the abilityto
perform a longitudinal analysis of the diversity and stability
and observe changes resulted by the evolution of the Internet.
Finally, analysis of routes with evidence to load-balancing
devices is performed as an attempt to differentiate between
diversity and instability.

Evaluation shows that the Internet e2e routes are diverse
but relatively stable, with high variance between different
VPs, strongly biased towards network type (academic vs.
commercial). We show that stability properties are consistent
for routes in opposite directions, i.e. routes are either both
stable or unstable in opposite directions. We further show that
while routes are asymmetric in most levels of aggregation, at
the country level, which serves as a good indication for e2e
propagation delay, routes are highly similar. Finally, longitu-
dinal analysis shows that diversity and stability are consistent,
indicating trade-offs between the Internet growth and changing
trends in its connectivity.

II. RELATED WORK

The diversity and stability of e2e routes has been studied
for over a decade. Paxson [12] was the first to study the
stability of e2e routes by conducting active probes from 37
VPs, back in 1994 and 1995, and found a relatively stable
Internet. Our experiments differ from Paxson’s since we use



a broader set of VPs, fixed time interval between probes as
opposed to exponentially distributed inter probe spacing,and
attempt to probe the complete set of possible routes, whereas
Paxson defined these per-packet fluctuations as pathologies.

He et al.[5], [6] found relatively low levels of routing
asymmetry in the AS level, with a few end-points consistently
being members of asymmetric pairs. Rexfordet al.[14] further
discovered that popular prefixes have an outstanding routing
stability. Pathaket al.[11] focused mainly on the delay prop-
erties and found a strong correlation between changes in the
one-way delay and a corresponding route change.

Labovitzet al.[7] studied AS-level routing instability in the
Internet core using BGP updates and discovered that instability
is equally spread across ASes and prefixes.

This paper extends and revisits existing work by leveraging
a broad set of VPs located in a variety of networks that
manage to capture the diversity of routes, contributing to better
understanding of the stability and symmetry of routes.

III. M ETHODOLOGY

A. Definitions

Quantifying the diversity and stability of e2e routes begins
with an input data ofP of pairs, eachPi = {Si, Di} is
comprised of a source hostSi and destination hostDi. For
each pairPi, the set of traceroutes is partitioned intoki

equivalence subsets (i.e., any two traceroutes in each subset
are the same). We denote the set of subsets byEi. The exact
method used for comparing traceroutes in order to group them
is discussed later. The size of the subset|Ei

j | is the total
number of traceroutes that are contained in it. For a given pair
Pi, each equivalence subsetEi

j , 1 ≤ j ≤ ki is represented by a
single routeR(Ei

j) which represents a measured path between
the source and the destination.

For each pairPi we define thedominant routeas the route
R(Ei

j) whose subset size,|Ei
j |, is the largest. This definition

differs from [13] that defined the dominant routes as those
that occupy a given significant fraction of the total duration.
When several equivalence subsets have the same size, they are
all considered dominant. The dominant route is determined in
the IP level, but is used for all other levels as well. For brevity,
we assume for now that each pair has only a single dominant
routeR(Ei

r).

B. Measurement Setup

The data used in this paper was obtained from DIMES [15],
a community-based Internet measurements system. DIMES
performs active measurements using hundreds of software
agents installed on users’ PCs. For the purpose of this paper
we performed two similar experiments that took place in
December 2006 and April 2009. In each experiment, we
selected over 100 globally distributed agents and designed96-
hours experiments in which each agent executed UDP and
ICMP traceroutes to all other agents in a round-robin fashion.
An agent probes each IP address roughly twice every two
hours and repeat the same script for four days, yielding over
one million traceroutes.

In order to capture path diversity, UDP traceroutes use
per-packet port alternation and ICMP traceroutes have the
sequence field modified per packet. This induce per-flow
balancers and per-packet balancers to route the packets through
different routes [3]. It should be noted that user applications
usually generate packets in consistent flows [2], thereforethis
paper manages to capture route diversity but over-estimates
user perceived instability.

C. Comparing Routes

Creating the equivalence set of traceroutesEi requires the
comparison of traceroutes. We check equality of two tracer-
outes using a simple hop-by-hop comparison of all hops in
the traceroutes. In case we reach an unknown hop (marked by
‘*’), we refer to it as a “wild-card”, meaning it matches any IP
in the second traceroute. For example, the traceroutes (A,B,C)
and (A,*,C) are considered equal, but are not considered equal
to (A,C). This comparison method mandates that any two
traceroutes in a given equivalence setEi have the exact same
length, with exact same hops, up to the unknowns. Since the
number of unknown hops in the traceroutes is relatively low
(on average, 1–2 unknown hops per traceroute after filtering)
we flag an arbitrary traceroute in each equivalence set as the
representative route for that setR(Ei

j). Once selected, each
representative route is resolved to higher levels of granularity.

To quantify the difference between two routes (at any level)
we calculate their Edit Distance [8] (ED) value by counting
the minimal number of insert, delete, and modify operations
that are needed in order to make the two routes equal. Since
ED is highly correlated with the length of the routes that it is
calculated on, we normalized it by the length of the longest
route of the two input routes (see Eq. (1)). This technique isan
extension of the one described by Heet al. [5] who used it for
quantifying AS-level asymmetry, whereas we include stability
issues at the various levels of granularity.

ÊD
i

jk =
ED(R(Ei

j), R(Ei
k))

max{|Ei
j |, |E

i
k|}

∀j 6= k (1)

Since the ED cannot be greater than the longest route, the
normalized ED value is between 0 and 1, where 0 means
that the two routes are identical and 1 means that they are
completely different.

D. Quantifying Route Stability

We use two methods for quantifying the stability of a route.
The overall appearance ratio (i.e., prevalence [12]) of a route
R(Ei

j), in pair Pi is the relative number of traceroutes in the
set Ei

j (see Eq. (2)). The prevalence of the dominant route
R(Ei

r) is used as the first indication to the stability of routing
for each pair.

Prevalencei
j = |Ei

j |
/ ki∑

j=1

|Ei
j | (2)

Second, for a pairPi we find the normalized ED between
the dominant route,R(Ei

r), and all other non-dominant routes,



R(Ei
j), j 6= r. For pairs that have more than a single dominant

route, we calculate the smallest normalized ED for each non-
dominant route (i.e., using the dominant route that is closest to
it in number of hops). We define theRoute Instability Measure
(RouteISM) of a pair as the weighted average of all normalized
ED measures as depicted in Eq. (3). Thus, an ISM value close
to 1 indicates high instability.

RouteISMi =
∑

j 6=r

(
|Ei

j | · ÊD
i

jr

) / ∑

j 6=r

|Ei
j | (3)

We use the RouteISM to quantify instabilities at the various
levels of granularity by simply applying the normalized ED
on depreciative routes that are resolved to higher levels. For
example, we calculateRouteISMAS

i using the normalized
ED between all non-dominant AS-level routesRAS(Ei

j), j 6=
r and the dominant AS-level routeRAS(Ei

r).
In previous work, Heet al. [5] used string matching, a

technique similar to our proposed ED. Puchaet al. [13], [11]
defined a similarity coefficient for calculating AS level route
symmetry as the number of similar elements divided by the
total number of distinct elements in the two routes. We follow
the first since ED better captures stability, as it takes into
account theorder of elements in each route.

RouteISM is used in conjunction with the prevalence of
the dominant route, since RouteISM captures the “noise” that
exists due to the existence of non-dominant routes. Consider
the following two examples: in the first a pair that has a
dominant route with high prevalence and high RouteISM and
in the second a pair that has a dominant route with low
prevalence and low RouteISM. These two routes are stable
in different ways – the first is dominated by a single route
but the non-dominant routes are very “noisy”, while the other
has many different routes but they are all quite similar. The
combination of the two definitions can capture a view of
stability which is more comprehensive than existing work.

E. Symmetry Analysis

Measuring between VPs enables us to do symmetry analysis
of e2e routes. We study two measures of symmetry. First,
we compare the instability measures of each pair as seen
in opposite directions. This is done by taking the absolute
value of the Route ISM difference between the opposing pairs
Route ISM values, hence referred to asDifferential Route ISM.
This measure enables us to assess whether instabilities are
consistent when looking at opposite directions.

Second, the dominant routes in opposite directions are
compared by calculating the Route ISM between them. For
each pairPi, we find its symmetric opposite pairPj and
calculate theSymRouteISMas the normalized ED between the
dominant routeR(Ei

r) and a reversed order
←−
R (Ej

r ) as shown
in Eq. (4).

SymRouteISMi = ÊD(R(Ei
r),
←−
R (Ej

r)) (4)

IV. DATASET ANALYSIS

A. Distribution of VPs

In the 2006 experiment, 113 agents returned slightly more
than a million traceroutes, providing us with 7040 source-
destination directed pairs (an average of 142 measurements
per source-destination pair). Most VPs are distributed in the
USA and Canada (79), followed by West Europe (16), Russia
(6), Australia and New Zealand (10) and Israel (2). In the
2009 experiment, 107 agents returned 1.05 million traceroutes,
resulting in 10408 source-destination directed pairs (an aver-
age of 101 measurements per source-destination pair). VPs
are distributed in numerous countries in West Europe (49),
USA and Canada (35), Israel (9), Russia and the Ukraine (5),
Australia (3), South America (3), and Far-East (3).

In both experiments, measurements were performed from a
diverse set of VP types. Each VP was classified [4] as a large
ISP (t1), a small ISP (t2) or an academic network (edu). Over
80% of the VPs in 2006 and 70% in 2009 were of type tier-2,
while 16% of the VPs in 2006 and 7% in 2009 were tier-1.
48% of the agents that participated in the 2009 experiment
were in academic PlanetLab nodes, providing us the ability
to study the difference between the academic Internet and
commercial Internet, as described in Sec. V-B.

The churn in the availability of DIMES agents resulted in
only 15 VPs that appeared in both experiments. Additionally,
measuring e2e routes between roughly 100 VPs is surely not
a complete probing of the entire Internet, which contains
over 25k ASes. However, since both experiments traverse a
wide range of AS types and geographical regions, the results
represent the broader Internet and comparing between the
results can indicate the way its evolution affects diversity,
stability and symmetry.

B. Data Filtering and Processing

Raw traceroute data is filtered by removing traceroutes that
have only non-routable IP addresses. Additionally, to avoid
any kind of measurement artifact we removed all traceroute
pathologies [2], including repeating IPs, IP-level and AS-level
loops. After filtering, roughly 400k traceroutes remained in
2006 and 800k in 2009. This extensive filtering guarantees
that most, if not all anomalies caused by the traceroute process
itself are mitigated from the dataset.

AS resolution is done using longest-prefix-matching against
BGP announcements obtained from the RouteViews [18]
archive (which resolves approximately 98% of the IP ad-
dresses) and two WhoIs databases, RIPE and RADB (resolves
additional 1.5%). The remaining 0.5% unresolved IP addresses
are discarded. Geographical resolution is achieved using the
commercial MaxMind [10] database, and the few unresolved
IPs were resolved manually using WhoIs databases.

C. Dataset Statistics

In both experiments, a variety of ASes were traversed (121
in 2006 and 195 in 2009). The majority of ASes are tier-2
(63% in 2006 and 60% in 2009), followed by tier-1 (28% in
2006 and 18% in 2009). In 2006 almost all agents resided
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Fig. 1. Analysis of route statistics of the two experiments,showing (a) number of dominant routes per length, (b) the number of distinct routes per pair,
and (c) the prevalence of the dominant route

in commercial ASes (109 out of 113 agents), while in 2009
new agents were installed on PlanetLab nodes, resulting in a
significant increase in the number of academic ASes that were
traversed in the 2009 experiment, reaching from 2% in 2006
to 13% in 2009.

The distribution of dominant route length is shown
in Fig. 1(a). The figure shows that 2006 and 2009 experiments
have roughly the same path lengths, with 2009 having slightly
shorter routes. The median of the dominant route length is 14
for 2006 and 15 for 2009, while the majority of the routes
(96%) traverse less than 25 hops. Interestingly, this result is
remarkably similar to the one found by Paxson [12] in 1995,
who found the mean route length to be between 15 and 16.
Since the Internet has been growing at high rate since 1995, we
assume that this relatively constant IP-level diameter is aresult
of richer connectivity among ASes and increased adoption of
layer-2 tunnels, which can significantly reduce the number of
IP-level hops.

V. RESULTS

A. Diversity and Stability

Fig. 1(b) and Fig. 1(c) depict the diversity and stability
by showing the number of distinct routes per pair and the
prevalence of the dominant route. The figures show that
roughly 25% of the pairs in both years have exactly one
dominant route, which constitute to 100% prevalence of the
dominant route. In both years, roughly 30% of the pairs have
witnessed more than 10 different routes. Having less distinct
routes in 2006 than 2009 is mostly attributed to the smaller
set of measurements.

These results present a higher level of stability than the
one reported by Puchaet al. [13]. The authors performed
a longer experiment (20 days) with different probing policy
(every 20 minutes probe all destinations), and showed that
only 6% of the pairs witnessed exactly one route and 20% of
the pairs witnessed 12 or more unique routes. However, as the
experiments extend to longer time frames, the chances to see
the exact same route over the entire duration decrease.

Fig. 1(b) shows that there are a few pairs that have over
90 different routes (out of the 96 possible routes per pair).

Carefully examining these routes revealed that they are quite
long (20–30 hops), traverse several ASes (over 6) and almost
all ASes use different IP addresses along the different routes.
These are clearly cases of heavily load-balanced routes, where
a packet can traverse many different possible routes. Notice,
that most applications will usually not sustain such high level
of instability as they usually use consistent flows, however,
since we analyze route stability and not flow stability, captur-
ing these routes is needed.

In his 1995 experiment, Paxson [12] found that 30% of the
pairs had a dominant route with prevalence of 60% or less
with a median value of 82%. In our measurements, dominant
prevalence of 60% or less is accounted for roughly 55% of
the pairs, and the median has 50% in 2006 and 55% in
2009. This indicates a much lower stability than reported
by Paxson. We attribute this to our broader set of VPs, in
both the commercial and academic Internet, while Paxson
measured mostly from academic networks (see Sec. V-B for
discussion on measurement bias). Furthermore, the Internet
has significantly evolved since 1995, which causes increased
instability of routes.

Fig. 1(c) shows a clear 8% increase in 50% prevalence and
a smaller increase in 25% prevalence. These can be explained
by the common use of load-balancers that split traffic between
two routes (50%) or four routes (25%), or by prolonged route
flaps caused due to routing changes [19]. Augustinet al. [3]
showed that 39% of their measured routes were load-balanced
per-flow, and only 1.9% were load-balanced per-packet. Our
experiments capture a mixture of the two. UDP traceroutes use
changing port number, which causes load-balancers along the
path to classify them into different flows and switch routes.
ICMP traceroutes are balanced by per-packet load-balancers.

The 2006 and 2009 experiments exhibit similar diversity and
stability properties. We assume that this is the result of a trade-
off between the increasing topology size of the Internet and
usage of load balancers, and on the other hand, the adoption
of tunneling technologies that result in shorter and more stable
IP-level routes.

Fig. 2(a) and Fig. 2(b) show the distribution of RouteISM in
2006 and 2009 respectively. The figures clearly show that the
IP-level hops are the least stable. Additionally, for almost all
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Fig. 2. Cumulative distribution of RouteISM

levels, but most obvious for the IP-level, the 2009 experiment
witnessed higher stability. This indicates that although the
Internet is increasing in topology size, the overall stability
slightly improves over time.

B. Stability Measurement Bias

The stability which we measure can be biased due to several
causes. Academic networks are reported [16], [11], [6] to
be more stable than the commercial Internet. Additionally,
measuring between different geographical locations can con-
tribute to instability due to extreme physical paths lengths. The
analysis in this section is performed only with the data from
2009, since it provides us with higher geographic and type
diversity of VPs.

Previous work [11], [6] studying symmetry reported that
academic networks exhibit more symmetric routing than
commercial networks. We wish to validate whether these
types of networks also exhibit different stability properties.
Fig. 3(a) shows the prevalence of dominant routes measured
between academic networks (often traversing mostly academic
networks) and routes measured from or to non-academic
networks. The figure clearly shows that routing in academic
networks is much more stable: over 30% of the routes in the
academic networks are stable compared to 20% in the com-
mercial network. The stability of academic networks is even
more profound when examining the median prevalence: 95%
for academic networks while only 50% for the commercial
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Fig. 3. Stability of academic and commercial pairs using the2009 experiment

networks. However, Fig. 3(b) shows that the RouteISM is not
very different between the two types (the distribution is similar
for prefix, city and county levels, but not shown for clarity of
the figure). This shows that although the commercial Internet
exhibits a larger route diversity between pairs, the “distance”
between those routes and the dominant route is not much
different than the one measured for academic networks, mean-
ing that when instability occurs (more often in commercial
networks), it has a similar affect on hop alternation.

Fig. 3(a) shows that dominant route prevalence of 50%
exists in 5% of the commercial networks pairs but almost none
of the academic networks pairs. This indicates that commercial
networks use load balancers more than academic networks;
note also the small jump at 25% in commercial networks
which can be attributed to cascading of an additional load
balancer after route forking in both sub-routes.

Considering bias in stability caused by geographic location
of pair end-points, we found that cross-continent pairs are
slightly more stable. This is expected, since often there are
not many alternatives for these routes.

C. Routing Symmetry

Quantifying route symmetry has many applications, mainly
when trying to deduce one-way-delay using RTT measure-
ments. Fig. 4(a) shows the cumulative distribution of Sym-
metric RouteISM at different levels using the 2009 experiment.
The IP-level is not symmetric since routers commonly have



different interfaces with different IP addresses for the various
networks. The address prefix and AS-level are affected by
hot-potato routing mainly in large (tier-1) ASes that have
multiple peering points. Interestingly, AS-level routes are more
symmetric than city-level routes, indicating the existence of
points-of-presence (PoPs) that belong to the same AS but
reside in different cities. The country level being the most
stable shows that even when routes are asymmetric in the AS-
level, the different ASes usually reside in the same country.
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Fig. 4. Symmetry of routes

He et al.[5], [6] studied the routing asymmetry at the AS
level and found that only 14% of the pairs displayed AS
level routing asymmetry. Additionally, the authors found that
90% of the asymmetric routes had normalized asymmetry
(analogous to ourSymRouteISMAS) of less than 0.1, which
led them conclude that forward routes are highly similar
to their reverse counterparts. This conclusion overlooks the
existence of hot-potatoes routing in large ASes. Our results
show that AS-level routes are highly not-symmetric, where
almost 90% of the routes exhibit asymmetry and only 20% of
the routes hadSymRouteISMAS ≤ 0.1. The authors also
quantified correlation between asymmetry and route length,
and showed that longer routes have lower symmetry values.
Although this conclusion makes sense, we suspect that their
extensive usage in NLANR [1] VPs might be the cause to
these conflicting conclusions.

Differential stability quantifies whether stability remains
in opposite directions. As Fig. 4(b) shows, approximately
90% of the pairs have differential stability of less than 0.3

where the median is less than 0.05 for all except IP-level
RouteISM. These figures show that when instability exists in
one direction, it is likely to appear in the opposite direction
as well. This is a non trivial observation, since tier-1 ASes
that constitute 28% of the traversed ASes, are expected to use
more hot-potato routing, which in turn changes the routes in
different directions.

VI. CONCLUSION

This work presents a measurement study of the diversity of
e2e paths in the Internet. We present a methodology used for
quantifying the different measures of stability and symmetry
and perform two wide-scale experiments.

We show that although the Internet today is less stable
than the one studied by Paxson in 1995, it still exhibits
different behavior depending on network type. Moreover,
longitudinal analysis shows that e2e route properties did not
significantly change in recent years. We attribute this to a
trade-off between the increasing topology size of the Internet
and usage of load balancers, and the adoption of tunneling
technologies that result in more stable IP-level routes.
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