
Centralized and Distributed Approximation Algorithms for Routing and
Weighted Max-Min Fair Bandwidth Allocation

Miriam Allalouf
School of Electrical Engineering

Tel Aviv University
Email: miriama@eng.tau.ac.il

Yuval Shavitt
School of Electrical Engineering

Tel Aviv University
Email: shavitt@eng.tau.ac.il

Abstract

Given a set of demands between pairs of nodes, we examine
the Traffic Engineering problem of maximal flow routing
and fair bandwidth allocation where flows can be split to
multiple paths (e.g., MPLS tunnels). In the past we presented a
polynomial solution for this problem but its complexity makes
it hard to implement for large problem sizes. Thus, this paper
presents a fully polynomial epsilon-approximation (FPTAS)
algorithm for the max-min fair allocation problem which is
based on a primal-dual alternation technique. In addition we
present a fast and novel distributed algorithm where each
source router can find the routing and the fair rate allocation
for its commodities. We implemented the centralized algorithm
to demonstrate its correctness, efficiency, and accuracy.

I. I NTRODUCTION

Traffic engineering is a paradigm where network operators
control the traffic and allocate resources in order to achieve
goals, such as, maximum flow or minimum delay. One chal-
lenge is to allow different flows to share the network, so
that the total flow will be maximized while fairness will be
preserved.

We consider as input a network topology and directional
links capacities, a list of ingress-egress pairs, and per-pair
traffic demand. This list of demands may represent aggregates
of (e.g., TCP) connections, such as client traffic (university
campus, business client, client ISP), ATM VPs, or MPLS tun-
nels, and will typically be expressed by average or maximum
required rate. Thus, traffic between ingress-egress pair may be
split arbitrarily among different paths without causing packet
reorder in the connections comprising each demand. Our goal
is to fulfill clients’ demands while keeping a fair sharing ofthe
allocated bandwidth, to lay the set of paths to be used between
each pair in the network, and to allocate them bandwidth in a
maximal way. The fairness criterion is defined by the weighted
max-min fairness.

One way to maximize the network flow is to formulate the
problem as a maximum multi-commodity flow (MCF) problem
which can be solved using linear programming (LP). While the
solution will maximize the flow, it will not always do it in a
fair manner. Flows that traverse several congested links will
be allocated very little bandwidth or none at all, while flows
that traverse short hop distances will receive a large allocation
of bandwidth.

The maximum concurrent multi-commodity flow (MCMCF)
problem introduces fairness to the maximum flow problem. In
this MCF LP formulation, we are given a set ofK demands
demi, one per each commodity pair(si, ti) and require to
satisfy the maximum equal fractionz of all demands and seeks
a routing that maximizes network flow. However, the achieved
solution under-utilizes the network, sometimes saturating only
a small fraction of it.

The max-min fair allocation strikes a balance between fair-
ness and the need to fully utilize the network. An allocationof
bandwidths, or rates, to connection is said to be max-min fair if
it is not possible to increase the allotted rate of any connection
while decreasing only the rates of any connections which
have larger rates. The Max-min fairness criterion bandwidth
allocation was mostly defined in the context of a single fixed
path per session, where a session is defined by a pair of
terminals.

This work focuses on an extended version of the max-min
fair allocation where the flow between two terminals may be
split among several paths. Furthermore, the solution we seek
needs to find the set of the paths that achieve such maximal
fair allocation chosen out of all possible paths. In addition, we
use the weighted max-min fair version of the formulation to
account for the demands.

The WMCM (Weighted Max-min fair Concurrent MCF)
algorithm, developed in our previous work [1] finds the
extended max-min fair rate vector in a polynomial number of
steps. It solves iteratively the maximum concurrent LP until
network saturation is achieved where each iteration performs
the MCMCF LP over the residual capacity of the network with
the commodities whose net flow can still be increased.

However, while the WMCM algorithm can be calculated in
polynomial time, its running time depends on the LP solver
in use, which may make it impractical for large inputs.

In this paper, we present a centralized and a distributed
FPTAS approximation algorithms, called WMCMApprox and
WMCMApproxDist, for calculating the rate vector of the
weighted max-min fair problem. The centralized algorithm
provides a faster way to solve the more complex version (as
presented above) of the max-min fair allocation. As before we
embed the MCMCF solution into the process of finding the
rate vector of the max-min fairness flows. However, here the
algorithm is different as it runs over the dual problem to the
MCMCF and enables a more efficient centralized algorithm

and consequently, the distributed algorithm1.
Our WMCMApprox algorithm embeds and extends the

variable-size increments techniques (which appear in Gargand
Könemann [2] and Fleischer [3]) to achieve a new solution
to the max-min fair. The original form of these algorithms
do not deal with explicit net flows per path, thus, to achieve
network saturation using the dual problem, we extend their
technique using deeper understanding of the trade-off between
the network saturation and links length assignment.

Finally, our novel distributed algorithm, WMCMApprox-
Dist, provides a mechanism where each source node can max-
imally and efficiently allocate bandwidth to its own clients,
supply them a routing and still guarantee global fairness.

The rest of the paper is orgenized as follows. Section II
presents the related works. Section III states definitions and
explains the max-min fairness criteria in our context; it also
describes the primal MCMCF problem and its dual problem.
Section IV describes our new algorithms, the centralized al-
gorithm and its implementation results using simple example,
and the distributed algorithm. Section V summarizes the paper.

II. RELATED WORK

The Max-min fairness bandwidth allocation was mostly
defined in the context of one fixed path per session, where a
session is defined by a pair of terminals. A simple algorithm
that finds the max-min fair allocation where routing is given
appears in [4].

Many other distributed algorithms deal with dynamic adjust-
ments of flow rates to maintain max-min fairness when single
routes are given [5], [6], [7]. The above algorithms differ by
the assumptions on the allowed signaling, and available data.
Bartal et al. [8] find the total maximum flow allocation in a
network for given routes using distributed computations asthe
input to the global MCF LP problem.

The max-min fair problem with an unknown set of routes
was rarely discussed. Kleinberget al. [9] provide an interesting
introduction regarding the relationship between the way in
which one selects paths for routing and the amount of through-
put one obtains from the resulting max-min fair allocation on
these paths. They provide a maximum unsplittable flow allo-
cation for single source commodities. Megido [10] addressed
this problem for a single commodity maximum flow where the
fairness achived among multiple sources and multiple sinks
flows.

Chen and Nahrstedt [11] provide max-min fair allocation
routing. They present an un-weighted heuristic algorithm that
selects the best single path so the fairness-throughput is
maximized upon an addition of a new flow. Their algorithm
searched this route out of the possible paths for each new flow.

Maximum Concurrent MCF problem. Most of the studies
that combined the LP formulation for the traffic engineering
design chose an MCF formulation that considers the demands

1An approximation scheme is a family of algorithms that computes a
solution within a factor of1 − ǫ of the optimal for any constantǫ > 0. The
approximation scheme is a fully polynomial time approximation (FPTAS) if
its running time is polynomial in both1/ǫ and the problem input size.

but they do not discuss the max-min fairness in conjunction
with maximum throughput as the WMCM algorithm does2.
A few directions for building approximation algorithms for
the MCF problem were suggested in the past. Young [15]
described a random algorithm that computes the flow by
solving a shortest path problem (on the dual LP) and pushing
one unit of flow over it, at each step. Garg and Könemann
[2] using detailed analysis extended Young’s algorithm and
improved its time complexity by pushing enough flow so
as to saturate the bottleneck link of the path. Fleischer [3]
and Karakostas [16] improved the Maximum multicommodity
approximation algorithm by partitioning their technique into
phases and by re-calculating a set of shortest paths for all
the commodities with the same source node, instead of per
commodity as done before, and reduced the dependence of
the running time on the number of the commodities,K, to a
logarithmic factor. Our algorithm extends these techniques to
be used for the max-min fair allocation algorithms.

III. D EFINITIONS AND MODEL

A. Max-Min fairness

To clarify the difference between the different fairness
criteria and algorithms, consider the example in Figure 1,
which depicts a line network with four nodes 1,2,3, and 4 and
one unit capacity links. Four flows demands are depicted in the
figure each with a unit demand. Note that in this example, there
is only a single path between each pair of nodes, thus only
bandwidth allocation is considered. The maximum MCF prob-
lem results in an allocation vector (0,1,1/2,1/2) starvingflow
1 since it passes through two congested links. The total flow
this allocation achieves is the maximum possible, 2 units. The
max-min fair [4] vector in this case is (1/3,2/3,1/3,1/3) which
achieves a flow of 5/3. A weighted max-min fair algorithm as
the WMCM and WMCMapprox algorithms treats each flow in
this example as belong to a different commodity (with different
source-destination pair). It will result, in case of equal weights
(or demands) for all commodities (1/3,2/3,1/3,1/3), the same
as the max-min vector given above. In case pair 1 is given a
weight double than the rest of the nodes, the concurrent MCF
problem will allocate it double the bandwidth allocated forthe
flows in its bottleneck link (link(2,3)) and the result weighted
max-min vector is (1/2,1/2,1/4,1/4).

1
4

21 131

Pair 1

Pair 2

Pair 3

Pair 4

Fig. 1. Example of flows assignment

The classical max-min fair definition is stated for the
case where each flow takes a single path [4], the following

2Relevant mathematical and algorithmic background on maximum concur-
rent MCF problem and its complexity can be found in [12], [13],[14].

definitions (See detailed description in [1]) extend it to the
case where a flow may be split among several paths.

Definition 1 The Commodity Rate Vector,cr, is a vector
whose elements are the rates which were assigned to the
commodities.

From this definition we can write
∑

Pij∈Pi
fij = cri where

Pi is the set of all the paths that are assigned to commodity
i. Pij andfij are thej−th path and net flow of commodityi.
The weighted max-min fair algorithm finds a commodity rate
vectorcr∗ and a flow rate vectorfi per each commodity rate
cr∗i .

Definition 2 The vectorcr is said to be(weighted) max-min
fair if it is feasible and if each of its elementscri cannot be
increased without decreasing any other elementcrk for which
(cri/demi ≥ crk/demk) cri ≥ crk

The two definitions above also hold when traffic may be split
to several paths.

B. Maximum Concurrent Problem

The Maximum Concurrent flow problem is stated as
follows. Let G=(V,A) be a directed graph with nonnegative
capacitiesc(a),∀a ∈ A. If a 6∈ A c(a) = 0. There are
K different commodities:C1, . . . , CK where commodityi is
specified by the tripletCi = (si, ti, demi). The pair(si, ti)
are the source and the sink of commodityi, respectively, and
demi is its rate demand. Each pair is distinct, but vertices may
participate in different pairs. The objective is to maximize z
so all the i = 1, . . . ,K, z × demi units of the respective
commodities can be routed simultaneously, subject to flow
conservation and link capacity constraints. The objectivez is
the equal maximum fraction of all demands. The path flow
formulation of the following linear programPR assigns the
maximum commodity flow toPi, the set of all paths between
si andti that belong to the same commodityi, restricted by the
fairness criterion. The assigned net flow per arca is the sum
of the net flows of the paths passing this arc.PR’s solution
is composed of the assigned net flow,f(Pij) ∀Pij ∈ Pi, i =
1, . . . ,K, and the maximal fair fraction,z.

PRIMAL LP PR: Path Flow Formulation
maximizez

subject to

∀a ∈ A,
K

∑

i=1

∑

P∈Pi

f(P) ≤ c(a) (1)

∀i,
∑

P∈Pi

f(P) ≥ z · demi (2)

∀P ∈ Pi=1...Kf(P) ≥ 0, z ≥ 0

This problem can be solved optimally in a polynomial
number of steps; further discussion can be found in [1].

The following is a description of the LP that is dual to the
Maximum Concurrent flow problem. Thel(a) variable holds
the link length which is dual to each primal capacity constraint.
The z(i) variable holds the shortest path per each commodity
and is dual to the demand portion constraint. The minimization

problem can be stated as finding the minimum cost of shipping
dem(k) units fromsk to tk wherel(a) is the price of shipping
one unit along linka. Thus, the dual objective is to minimize
the functionD(l) =

∑

a∈A c(a)l(a). Let α(l) =
∑

i dem(i) ·
disti(l) wheredisti(l) is the shortest path length between the
pair (si, ti). Minimizing D(l) is equivalent to computing the
lengthl(a) per each link which minimizesD(l)/α(l) such that
the dual targetβ is equal tomini D(l)/α(l).

DUAL minimization LP
minimize D(l) =

∑

a∈A

c(a)l(a)

subject to

∀i = 1 . . . K,∀P ∈ Pi,
∑

a∈P

l(a) ≥ z(i) (3)

K
∑

i=1

dem(i)z(i) ≥ 1 (4)

∀a ∈ A, l(a) ≥ 0,∀i = 1, . . . ,K, z(i) ≥ 0

IV. W EIGHTED MAX -MIN FAIR ALGORITHMS

A. Weighted Max-min Centralized Approximation Algorithm

The contributions of this section is a fast centralized ap-
proximation algorithms (FPTAS) for the WMCM which we
term WMCMApprox. WMCMApprox (see Figure 2) is based
on our optimal algorithm ideas but uses completely differ-
ent techniques. It embeds previous approximation algorithm
suggested for the maximum concurrent problem. Specifically
we use the variable-size increment technique (which is close
in spirit to the primal-dual techniques) and iterate on the
dual variables until all the shortest paths are saturated. In the
WMCM algorithm we suggested to check the residual graph
after each maximum concurrent stage (as done for single path
max-min flow algorithms [4]). Here we do not need to check
this condition in the primal problem, and instead suggest a
new saturation test (which also serves as a connectivity test)
that enables us to stay in the dual problem. This provides us a
faster runtime with an easy proof of the approximation ratio.
Another advantage of sticking with the dual problem is the
reflection of the fairness among the commodities, which is
our primal objective, using the dual objectives and variables.
In addition to the fairness, we show that these variables can
be used to determine the saturation of a path.

The WMCMapprox approximation algorithm receives as in-
put the list of commoditiesKCOMM , the vector of demands
dem, the graphG andǫ, the maximum allowed approximation
error. It starts by assigning the length of each linkl(a) to be
δ/c(a), whereδ is a pre-computed value chosen to achieve the
desired approximation value. The algorithm alternates between
primal flow variables and dual length variables to fulfill the
capacity-length constraint (primal Eq.1 and dual Eq. 3). It
proceeds in stages (see line 3 in Fig. 2). In each stage
the algorithm solves the maximum concurrent problem (using
approximation algorithm taken from [2], [3], [16]) and finds
the dual-primal (z andD(l)) solution. Part of the commodities
become saturated during each stage and should be omitted
in the following stages. This is an important contribution

WMCMApprox(KCOMM, dem, G, ǫ)
1. /* Initialization stage */
2. ∀a ∈ A, l(a) = δ/c(a)
3. while (KCOMM 6= NULL) do /* STAGE*/
4. stageCounter + +, phaseCounter = 1
5. lastDL = 0; newDL = D(l)
6. while (newDL − lastDL < 1) do /* PHASE */
7. for (i = 1 to |S|) do /*ITER: S group of diff srcs*/
8. Build shortest path tree for the sourceSi

9. ∀Ck, sk = Si, demIterRes(Ck) = demCk

10. while newDL-lastDL< 1 and
11. demIterRes(Ck) > 0 for somek do /*STEP*/
12. If ∀a ∈ PCk

, l(a) ≥ 1/c(a), l, Ck ∈ Si then
13. PCk

is not a shortest path
14. if NO connectivity forCk then
15. KCOMM = KCOMM \ {Ck}
16. for q = 1 to r do
17. c = mina∈PCq

c(a)
18. fCq = min(demIterRes, c)
19. f(P j

Cq
) = f(P j

Cq
)+fCq /*Update Curr Path*/

20. demIterRes = demIterRes − fCq

21. end for
22. ∀a ∈ PCi , l(a) = l(a)(1 + ǫ ∗

∑

Cq :a∈PCq

fCq

c(a)
)

23. newDL = D(l)
24. end while /* end of step */
25. end for /* end of iteration */
26. phaseCounter + +;
27. end while /* end of phase */
28. lastDL = newDL
29. end while /* end of stage */
30. ∀k = 1 . . . K, ∀P ∈ Pk, f(P) = f(P)

log1+ǫ
1+Kǫ

δ

31. ∀k = 1 . . . K, f(Pk) =
∑

f(P j

k)
32. Returns per commodityk:
33. set of pathsPk and flows∀

p
j

i
∈Pi

f(pj
i)

Fig. 2. Approximation algorithm for the Max-Min fairness

of our algorithm that promises the reduction in the number
of the participating commodities at each stage and thus the
convergence of the algorithm.

The stage proceeds in phases (line 6). Each phase is com-
posed of|S| iterations, whereS is the group of all the sources
(some commodities can have the same sourcesi). Iteration i
of phasej considers the commoditiesCq, q = 1 . . . r starting
from the same sourceSi (see line 7) and routesdem(Cq) units
in a number of steps.

Each step (see line 11) calculates the shortest path tree
starting from source, using the last calculated length variables
l(a). It iterates over theq commodities and in each step
either saturates the current shortest path per commodityCq

or allocates the remaineddem(Cq). For everyc(a) units of
flow sent over the linka, its link length variablel(a) is updated
by a factor of at most1 + Kǫ (line 22). The entire stage ends
as soon asD(l) ≥ 1 according to the dual constraint Eq. 4
and produces a vector of lengths,l. The corresponding per
commodity net flow vectorf(Pk), k = 1 . . . K is infeasible
for the primal LP, as thus need to be scaled down. For this

purpose, we note that as long asD(l) < 1, the length of
each link can not exceed1/c(a), which implies that number
of times the flow is increased over this link (during a stage
period) islog1+ǫ(

1+Kǫ
δ

) times its real flow. By scaling down
this flow by a factor oflog1+ǫ

1+Kǫ
δ

, a feasible flow will be
achieved. The scaling is done after the termination of all the
phases (line 30). Since the scaling factor is known in advance,
the scaling can be done at any point within the step and thus
the feasible value of the flow can be followed.

Iterating over|S| is more efficient than iterating over the
commodities since the entire shortest path tree is calculated
once instead of one shortest path calculation at a time. We will
use this improvement [16] in the distributed implementation.
The connectivity test per each commodity is done at this point,
as well, by checking the unsaturated shortest path per the
participating commodities. Only the commodities that passthe
connectivity test participate in this stage. Note that thischeck
is done while building the shortest path tree and thus no extra
running time is needed for this test.

The primal-dual solutions are found when the functionD(l)
is larger than1. In our WMCMApprox each stage is an
activation of the primal-dual alternation. During stagei we
achieve a primal-dual solutionβi andzi which are found when
the functionD(l) is larger than 1. In order to saturate the
network, we continue to increase the length variables,l(a),
but each stage termination condition (D(l) > 1 in the original
primal problem) should consider only the additional lengthfor
the last stage. Thus, thel(a) variables hold the accumulative
length values and are used for the shortest path calculations.
But for the stage termination condition we consider only the
incremental values, namely,newDL − lastDL (lines 6 and
11), where lastDL is the D(l) value at the beginning of
the stage andnewDL is the current value ofD(l) (line
23). At each stage at least one commodity is saturated and
removed from the listKCOMM since, at least, one link
values is increased by a factor of(1 + ǫ)/c(a). This ensures
the algorithm convergence.

Algorithm correctness and complexity Past analysis [2],
[3], [16] showed the correctness of the maximum concurrent
flow approximation algorithm and proved the dual-primal
solution ratio,β/z, to be less than1 + ξ for any ξ > 0.
In addition, the following theorem was proved.

Theorem 1 (Lemma3.2 and Theorem3.1 in [16]) There is
an algorithm that computes a(1− ǫ)−3-approximation to the
maximum concurrent flow in timeO(ǫ−2m2 log m) wherem
is the number of edges.

Based on above theorem we provide the following analysis:

Theorem 2 The WMCMApprox algorithm computes a(1 −
ǫ)−3-approximation to the max-min fair flow in time
O(ǫ−2Km2 log m) wherem is the number of edges.

Proof: The analysis and proof in [2], [3], [16] hold
for one stage of the WMCMApprox algorithm. The analysis
follows the ones in the above mentioned references, but here

we examine the number of phases in all the stages. Let
D(li) =

∑

l(a)·c(a) andα(li) =
∑

q dem(q)·distq(li) where
distq(li) is the shortest path length between the pair(sq, tq)
for the length assignmentli at phasei. The D(l) function is
increased at each phase as follows:

D(li) ≤ D(li−1) + ǫα(li) (5)

Considering the dual resultβk = mini D(li)/α(li) during
stagek, β =

∑

k βk and substituting these values in Eq. 5,
the following holds

D(li) ≤
D(li−1)

1 − ǫ/β
(6)

Since it holds for any stage thatD(lts
) ≥ 1, wherets is the

total number of phases per this stage, we can assume that
D(lt) ≥ K, wheret is the total number of phases over all the
stages andK is the number of commodities.

Using D(l0) = mδ, β ≥ 1 and D(lt) ≥ K, the following
holds

K ≤ D(lt) ≤
mδ

1 − ǫ
e

ǫ(t−1)
β(1−ǫ) (7)

and a simple Algebraic manipulation yields

β ≤
ǫ(t − 1)

(1 − ǫ) ln K·(1−ǫ)
mδ

(8)

Using the claim from [16] for each of the stages, summing
up, and substituting in Eq. 8 we get

β/z <
ǫ

(1 − ǫ) ln (1 + ǫ) · K
·

ln 1+Kǫ
δ

ln K(1−ǫ)
mδ

(9)

By settingδ to be

δ =
1

(1 + Kǫ)
(1−ǫ)

(K−(1−ǫ)

·

(

K(1 − ǫ)

m

)1+ 1−ǫ

K−(1−ǫ)

(10)

The β/z ratio, which is the primal dual ratio calculated by
the WMCMApprox algorithm, becomes less than(1 − ǫ)−3

and anyǫ can be selected.
Now it is left to show that the resulted rate vector is

indeed max-min fair. This can be done by noticing the analogy
between the operation of WMCM and WMCMApprox, and
the proof of the correctness of WMCM in [1]. The proof can
be found in the full version of this paper [17].

B. Algorithm Implementation

We implemented the WMCMApprox algorithm using MAT-
LAB. To illustrate the way the algorithm iterates, we provide
the simple example of Figure 3. The capacity of each link is 1.
There are four commodities, each with 1 unit of demand. All
the links and paths are uni-directional. Commodities 2 and 4
has one path and its path ID is 1. Commodities 1 and 3 have
2 paths with IDs 1 and 2.

Table I presents the two stages of the algorithm operation
for ǫ = 0.2. We can see that in the first stage all the
commodities receive an equal portion of their demands. link
2 is the bottleneck link of their paths and its length after this
stage becomes1.1451 > 1/c(2) = 1. It means that this link
is saturated. We can verify it by observing its flow which is

1
4

2
1 1

3
1

Pair 3
(path 1)

Pair 1
paths
1 & 2 Pair 2

Pair 4

5

11

Pair 3 (path 2)

Fig. 3. Algorithm Iteration Example

comm. path infeasible feasible per comm. path
ID ID flow flow flow length

stage 1
1 1 2 0.0362 0.3438
1 2 17 0.3077 0.0019
2 1 18 0.3258 0.3258 0.6627
3 1 19 0.3438 0.3438 0.9562
3 2 0 0.0 0.9562
4 1 18 0.3258 0.3258 0.7963
length ={0.552 1.145 0.001 0.266 0.266}, z = 0.326, lastDL = 1.151

stage 2
1 1 32 0.5791 1.4297 0.4602
1 2 47 0.8506 ∞
2 1 18 0.3258 0.3258 ∞
3 1 19 0.3438 0.3438 ∞
3 2 0 0.0 ∞
4 1 18 0.3258 0.3258 ∞
length ={1.145 1.145 0.001 0.552 0.552}, z = 0.326, lastDL = 2.231

TABLE I

SUMMARY OF THE EXECUTION

0.3258+0.3438+0.3258 = 0.9954. The calculatedz for this
stage is0.3258 and the stage terminate whenD(l) = 1.1510.
Path 2 of Commodity 3 does not get any flow due to the
saturation of link 2. The other path of commodity 3 gets its
fair share. At the second stage the algorithm discovers that
commodities 2, 3, and 4 are saturated and delete them from
KCOMM . In the following stage, the algorithm iterates for
commodity 1 between its two shortest paths till the saturation
of both. The final maxmin vector rate for commodity 1 (path
1 and 2) commodities 2, 3 (path 1 and 2) and 4 is{1.6469
0.3258 0.3438 0.3258}. The final maxmin vector rate, when
running the algorithm withǫ = 0.1 is {1.6585 0.3317 0.3317
0.3317} for commodity 1 (path 1 and 2) commodities 2, 3
(path 1 and 2) and 4. Note that when theǫ decreases the
values are approaching the optimal weighted max-min vector
(5/3,1/3,1/3,1/3).

C. Weighted Max-min Fair - Distributed Approximation Algo-
rithm

The distributed implementation of our algorithm is shown
in Figure 4 for a source node. The code for the intermediate
node or the destination node is omitted because of lack of
space. We assume that each source router is familiar with the
network topology, links capacities, the commodities for which
it is serving as a source, and the ids of all other sources. In
addition, the sources need to synchronize at the end of each

SOURCE-CODE(my id, MySrcCOMM, dem, G, ǫ)
1. ∀a ∈ A, l(a) = δ/c(a)
2. while (MySrcCOMM 6= NULL) do /* STAGE */
3. stageCnt + +, phaseCnt = 1
4. lastDL = 0; newDL = D(l)
5. while (newDL − lastDL < 1) do /* PHASE */
6. ∀Ck, sk = Si demItrRes(Ck) = dem(Ck)
7. while newDL − lastDL < 1 and
8. demItrRes(Ck) > 0 do
9. BldShrtPthTree

10. (PCk
, ∀a ∈ PCk

, l(a) ≤ 1/c(a), l, Ck ∈ Si)
11. ∀Ck w/no connectivity
12. MySrcCOMM = MySrcCOMM \ {Ck}
13. Parallel for q = 1 to r do
14. SndSRCAlc(nxtInPCk

, my id, demItrRes(Ck), P j
Ck

)

15. WaitDestMsg(P j
Ck

, f(P j
Cq

), l)
16. demItrRes = demItrRes − fCq

17. newDL(l) =
∑

a∈A
c(a)l(a)

18. end PAR for
19. end while /* end of step */
20. SndAl2AlSRCMsg(my id, l, phaseCnt, stageCnt)
21. GtAlSRCSY NMsg(l, phaseCnt, stageCnt)
22. newDL(l) =

∑

a∈A
c(a)l(a)

23. phaseCnt + +;
24. end while /* end of phase */
25. lastDL = newDL;
26. end while /* end of stage */
27. ∀k = 1 . . . K, ∀P ∈ Pk, f(P) = f(P)

log1+ǫ
1+Kǫ

δ

28. ∀k = 1 . . . K, f(Pk) =
∑

f(P j

k)
29. Returns per commodity k: set of paths Pk and flows
∀

p
j

i
∈Pi

f(pj
i)

Fig. 4. Distribute Max-min fair routing Algorithm (source code)

phase as explained later. By having all source nodes registered
to a multicast group, one can simplify the synchronization
process.

During a phase each source independently perform its
procedure, iterating over the steps. In each step, the source
sends an allocation request message over the pre-calculated
shortest path tree. This message passes all intermediate nodes
towards the destinations and collects the information about the
bottleneck link over each shortest path. The destination node,
upon source message arrival, sends Destination Acknowledge
message with the appropriate bottleneck link information.
Each intermediate router gets the destination message, updates
its length and flow variables, and forwards it towards the
source. Each source node, at the end of a phase, synchronizes
with the other sources by exchanging the length information.
This distributed algorithm can proceed until the network is
saturated and each commodity gets its fair share.

In case a commodity is dropped from the demand list we
need not run the algorithm from scratch. A commodity can be
dropped once the algorithm terminated or even at any synchro-
nization state before. This requires adding another message
type that will be sent from the source node to the destination
over the dropped commodity paths. Each intermediate link

can reduce its length and divide it by a factor of1 + ǫ fk

c(a)
for this specific flow. Since the algorithm is performed over
the dual variables, this will be enough to reset the state
of network bandwidth allocation. After this adjustment, the
network becomes unsaturated for at least some of the sources
and the algorithm continues until saturation. The incremental
algorithm for the case of adding a commodity is left for future
research.

V. CONCLUDING REMARKS

We presented a centralized and distributed approximated
algorithm, which routes and allocates demands such that the
max-min fairness criterion is achieved. However, it shouldbe
noticed that the provided solution is a local maximum for
the max-min fair allocation rate vector. In a sequel work we
provide the global solution for this problem.

REFERENCES

[1] M. Allalouf and Y. Shavitt, “Maximum flow routing with weighted max-
min fairness,” inFirst International Workshop on QoS Routing (WQoSR
2004), Oct. 2004.

[2] N. Garg and J. K̈onemann, “Faster and simpler algorithms for multicom-
modity flow and other fractional packing problems,” inIEEE Symposium
on Foundations of Computer Science, 1998.

[3] L. Fleischer, “Approximating fractional multicommodity flow indepen-
dent of the number of commodities,”SIAM J. Discrete Math, vol. 13,
no. 4, 2000.

[4] D. Bertsekas and R. Gallager,Data Networks, 2nd ed. Englewood
Cliffs, NJ: Prentice Hall, 1992.

[5] Y. Afek, Y. Mansour, and Z. Ostfeld, “Phantom: a simple and effective
flow control scheme,”Computer Networks, vol. 32, no. 3, 2000.

[6] B. Awerbuch and Y. Shavitt, “Converging to approximated max-min flow
fairness in logarithmic time,” inINFOCOM (2), 1998.

[7] Y. Bartal, M. Farach-Colton, S. Yooseph, and L. Zhang, “Fast, fair, and
frugal bandwidth allocation in ATM networks,”Algorithmica (special
issue on Internet Algorithms), vol. 33, no. 3, 2002.

[8] Y. Bartal, J. Byers, and D. Raz, “Global optimization using local
information with applications to flow control,” inthe 38th Ann. IEEE
Symp. on Foundations of Computer Science (FOCS), 1997.

[9] J. M. Kleinberg, Y. Rabani, and E. Tardos, “Fairness in routing and load
balancing,” in IEEE Symposium on Foundations of Computer Science,
1999.

[10] N. Megiddo, “Optimal flows in networks with sources and sinks,” Math
Programming 7, 1974.

[11] S. Chen and K. Nahrstedt, “Maxmin fair routing in connection-oriented
networks,” in Proceedings of Euro-Parallel and Distributed Systems
Conference (Euro-PDS ’98), 1998.

[12] B. Shmoys, “Cut problems and their application to divide-and-conquer,”
in Approximation Algorithms for NP-Hard Problems, D. S. Hochbaum,
Ed. PWS Publishing Company, 1997, ch. 5.

[13] V. V. Vazirani, Approximation Algorithms. Springer-Verlag, 2001.
[14] F. Shahroki and D. W. Matula, “The maximum concurrent flow prob-

lem,” Journal of the ACM, vol. 37, 1990.
[15] N. Young, “Randomized rounding without solving the linear program,”

in Proceedings of the sixth annual ACM-SIAM symposium on Discrete
algorithms, 1995.

[16] G. Karakostas, “Faster approximation schemes for fractional multicom-
modity flow problems,” inACM SODA, 2002.

[17] M. Allalouf and Y. Shavitt, “Fast approximation algorithm for weighted
max-min fairness with maximum flow routing,” Dept. of Electrical
Engineering – Systems, Tel Aviv University, Tech. Rep., 2004, technical
Report EES2004-1.

