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Abstract—Many Internet events exhibit periodical patterns.
Such events include the availability of end-hosts, usage of inter-
network links for balancing load and cost of transit, traffic
shaping during peak hours, etc. Internet monitoring systems
that collect huge amount of data can leverage periodicity infor-
mation for improving resource utilization. However, automatic
periodicity inference is a non trivial task, especially when facing
measurement “noise”.

In this paper we present two methods for assessing the peri-
odicity of network events and inferring their periodical patterns.
The first method uses Power Spectral Density for inferring a
single dominant period that exists in a signal representing the
sampling process. This method is highly robust to noise, but is
most useful for single-period processes. Thus, we present a novel
method for detecting multiple periods that comprise a single pro-
cess, using iterative relaxation of the time-domain autocorrelation
function. We evaluate these methods using extensive simulations,
and show their applicability on real Internet measurements of
end-host availability and IP address alternations.

I. INTRODUCTION

Human behavior often follows periodical patterns as a
result of work habits, weekends and even yearly holidays.
These patterns directly affect the way Internet resources are
consumed, e.g., creating peak bandwidth hours, availability of
hosts and resources, and mobility patterns. As a result, network
operators often engineer their networks to accommodate these
periodical changes in various ways.

For example, excessive traffic during peak hours may re-
sult in congestion, which impact user satisfaction. Network
engineers commonly overcome this using two simultaneous
links: a low cost link with sufficient capacity for most of the
day, and a more expensive spill-over link with a usage based
cost. Alternatively, it is now becoming increasingly common
to perform traffic shaping during peak hours [1], [2].

Another example is the availability of end-hosts and their
IP addresses assignment, the first is mostly determined by
human habits, while the latter is often an engineered process of
the serving ISPs [3]. Both have implications on peer-to-peer
applications [4], online fraud detection [5], and on content
distribution networks [6], that need to know which host is
available and via which IP address it can be reached.

Although it is important to detect these periodical patterns
and understand their effect on network resources, most patterns
are not exposed by network operators, or not even deliberately
engineered. Measurement efforts that attempt to discover and
analyze them perform repeated measurements using various

techniques, generate huge amounts of data, and post-process
it for extracting insightful information. Such measurements
can be viewed as a sampling process of the actual behavior.
However, even though some periodical patterns are intuitive,
detecting the samples that follow periodical patterns within
large datasets is a non trivial task, particularly with the
existence of intrinsic measurement “noise”.

This paper presents efficient methods for detecting periodi-
cal patterns in large-scale Internet measurements data. We first
convert the measurement data into a canonical signal, and then
apply period inference methods for extracting its periodical
patterns. We use a common frequency-domain method for
robustly inferring a single dominant period. Due to its limita-
tions when detecting multi-period signals, we present a novel
iterative, yet a more time-consuming time-domain method for
extracting all periods that comprise the signal.

A major challenge that does not exist in related frequency
inference techniques [7], [8] is that our methods cannot assume
that the signal is indeed periodic. Therefore, our methods first
determine whether periodical patterns exist, and if they do,
infer their period length.

The major contributions of this paper are as follows:
• We present the concept of periodicity in Internet measure-

ment data, pointing out the difficulties of multiple period
inference and noise factors.

• Using a signal processing technique called Power Spec-
tral Density estimation on a signal constructed from
the measurements, we show that it is most useful for
detecting a single dominant period.

• We present a novel time-domain iterative method that is
capable of robustly inferring all periods.

• We study the operation regimes of each method, focusing
on network measurements data.

• Using real-world data, we detect multiple periods that
align with human behavior and IP allocation patterns.

II. SIGNAL CONSTRUCTION

The first phase is to construct a signal that represents
the process being investigated. Consider a sequence S of N
discrete samples, S = {s1, . . . , sN}, where si ∈ C and C is
a set of possible values. We focus on two types of processes:

1) Dual-state processes, namely |C| = 2. Alternatively,
processes may have multiple states which are quantized
to two values.
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2) A processes with multiple states, but we are interested
in the point where the state changes and model this with
two values that alternate at each state change.

The input samples S are converted to a canonical signal xn,
{x1, . . . , xN |xi = ±1}. For dual-state processes, C contains
two possible values, C = {c1, c2}, making construction of xn
straightforward:

xn =

{
1 sn = c1
−1 sn = c2

(1)

For the alternating process, let C = {c1, . . . , cK}, where K
is the number of possible values. The signal xn is represented
using the same canonical notation, so that it keeps its value
while the probe process contiguously samples the same value,
and inverses when the sample results in a different value:

xn =

 1 n=1,
xn−1 if sn−1 = sn,
−xn−1 otherwise

(2)

III. PROCESS PROPERTIES

This section details the operation regions of our model and
inference methods.

A. Number of Periods

The simplest classification of a process can be either pe-
riodic, e.g., with daily or weekly period, or non-periodic.
However, some processes may exhibit multiple periods. For
example, consider a cellphone tower that is next to a large
corporate office [9]. During workdays the amount of traffic
it carries exhibits a daily period during peak hours, while
during weekends the traffic goes almost to zero. Although both
patterns exist simultaneously, the weekly pattern is actually an
“interference” to the daily period, because it creates imperfec-
tions in the daily pattern. The weekly pattern is perfect, unless
the study is sufficiently long that it manages to include yearly
patterns that ‘harm’ some instances of the weekly pattern, due
to yearly holidays for example.

Fig. 1a depicts such a simulated signal, exhibiting a daily
pattern (with non-symmetric duty-cycle), a weekly pattern, and
a monthly pattern. Notice that the weekly patterns are observed
due to a disturbance in the daily pattern (1 in every 7 days
is different), and similarly, the monthly patterns are simply
imperfections in the weekly pattern.

When multiple periods exist, the expected outcome is highly
subjective. One may argue that the longest period (the monthly
in the above example) is the most significant, because its
periodical pattern is more perfect than the others. More com-
monly, the shortest period (the daily) may be considered more
important, since it is the most dominant (contains the highest
amount of “energy”, in signal processing jargon) and already
includes other periods (the weekly and monthly periods are
harmonics of the daily period). Finally, one may want to infer
all of the existing periods.

In either case, in order to be able to distinguish between
periods, there must be a clear difference between them. For
example, a yearly pattern with three days off in every year

will be almost impossible to separate from a weekly pattern
with two days off in every week.

We propose two methods: one for detecting the most reoc-
curring period using frequency domain analysis and a more
complicated time-domain analysis for inferring all periods.
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Fig. 1: Examples of xn given phase noise, sampling noise and
multiple periods

B. Duty-Cycle and Alternations

Two basic parameters of a periodic square signal are its
duty-cycle and number of alternations per period. A simple
signal has a single alternation, meaning it changes states only
once per period. The duty-cycle of such a signal is the percent
of time that the signal is in one state. A symmetric duty-cycle
means that in each period the first half of the signal is one
state and the other half it is in the second state.

The sampled process may have a non-symmetric duty-cycle,
meaning that the change between states may occur anywhere
within the period. This is common in human related behavioral
patterns, for example, peak hours exhibit a daily pattern, but
typically last only a few hours, making the duty-cycle not
more than 0.25. Since we seek to find the periodicity of these
processes, our methods make no assumption on the duty-cycle.

A perfect single-period signal (without noise) has a single
alternation inside each period, i.e., a single zero-crossing.
When noise exists, xn may have more than one zero-crossing
within a period, however, this should be filtered out by the
inference methods. In signals with multiple periods, each
period, except for the shortest one, is bound to have more
than a single alternation. For example, Fig. 1a is comprised
of two periods, a “short” one, which has a single alternation
and a duty cycle of roughly 66%, and a “long” one that has
multiple alternations and a completely non-symmetric duty-
cycle: for each 6 repeats of the fast periodic pattern, it has a
short duration of the fixed state “-1”.

C. Noise Models

We include in our model two types of noise that are a
common result of discrete sampling. The first type is when
the sampling process exhibits jitter, i.e., it misses the exact
time of a change that occurred in the sampled process. This
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is common due to not frequent enough sampling, and causes
xn to have a delayed response to the real change. Since this
delayed response is not likely to be consistent, xn will exhibit
variability in the periods lengths. Fig. 1b depicts such a signal,
having cycles with wider or narrower periods than the real one
(dashed lines).

We refer to this type of noise as phase noise, where the
skewing of the phase in the resulting signal depends on the
distance between the sampling and the actual event. Given that
fs is the sampling rate, assumed to be at least at Nyquist rate,
i.e., twice the sampled frequency [10], the error in the period
inference is at most ±1/fs; +1/fs occurs when a sample is
immediately after the real change and the following sample
is right before the real change, thus missing until the next
sample, and −1/fs occurs when a sample is right before the
real change, thus missing it until the next sample, and the
sample afterwards is immediately after the following change.

Phase noise can also be the result of jitter in the process
itself. For example, the exact peak-hour time that causes a
link to become congested is not consistent. Furthermore, the
sampling process itself is often not accurate, and may exhibit
different intervals between samples. The only important aspect
to maintain is that the sample process is performed in at least
Nyquist frequency, i.e., twice the frequency of the process, so
that it does not misses actual changes [10].

The second type of noise occurs due to mistakes in the
sampling, e.g., a sampling process of the load on a link
incorrectly reported that the link is congested even though it
was not. We refer to this type of noise as sampling noise.

The result of sampling noise on xn differs depending on the
sampled process. In dual-state processes, xn will have wrong
values for each wrong sample. We expect that only a few
contiguous samples will be incorrect, thus the effect on xn is
local and relatively short, given a sufficiently high fs. Fig. 1c
provides an example to sampling noise (3% of the samples
are wrong, up to two contiguous mistakes).

On the other hand, when sampling alternating processes,
contiguous sampling mistakes may have a more global effect.
If the incorrect sample resulted in a single value, then the
result is a local noise in xn, since right after the incorrect
samples, the correct sample is made, and xn returns to the
correct form. However, if there were two (or any even number
of) mistakes that resulted in two different incorrect values ,
then once returning to the correct value, xn is inverted relative
to what it would be without the mistakes. Contiguous sampling
of two different and incorrect values should be a very rare case,
and we assume that in the case of alternating signals, special
care is taken to assure the accuracy of the sampling process,
so that this case is avoided.

Notice that sampling noise is a special form of the common
amplitude noise. When the sampling process experience an
amplitude noise that is high enough for incorrect classification
of the sampled value, it translates into a sampling noise
according to our definition.

IV. PERIOD INFERENCE METHODS

In this section we present two methods for inferring the
periodicity of the sampled signal. The first method uses Power
Spectral Density (PSD) estimation in the frequency domain for
finding the most energetic period. We then present a novel
method, which we call Mutliple Period Estimation (MPE),
that infers all periods, using iterative partitioning of the peaks
observed in the Autocorrelation Function (ACF).

PSD returns the inferred period, P̂ , and a confidence value
ξ, that quantifies the probability that the signal is indeed
periodic with the inferred period. In case of MPE, multiple
pairs (P̂ , ξ) are returned, one for each inferred period.

We note that intuitively, simple statistical inference methods
can be applied. For example, it is possible to create a histogram
of the times between alternations in xn, and consider the peaks
as representing half of the period. Such a method, however,
assumes a duty-cycle of 0.5, and cannot capture multiple
periods. Furthermore, averaging and smoothing is required for
the method to handle noise well. Thus, we use techniques that
are more complicated, but are known to have good properties
for our problem domain.

A. Method A: Power Spectral Density

PSD is a method for estimating the power that each fre-
quency of a signal holds (power spectrum). The basis for
spectral density estimation of a signal xn is the Discrete
Fourier Transform (DFT), that converts the time-domain signal
into the frequency domain.

Before applying DFT, we normalize the signal in order to
remove any DC (corresponding to zero frequency) artifacts.
This is particularly important for signals with non-symmetric
duty-cycle, that have a non-zero mean. Let µ denote the mean
value of xn, i.e., µ = 1

N

∑
xn, we normalize the signal x̂n

using x̂n = xn+1 − µ, n = 0, ..., N − 1. Notice we also
shifted the signal to make it zero-based, allowing simpler DFT
computation. The DFT of x̂ is then computed using:

Xk =

N−1∑
n=0

x̂ne
−2πkni/N k = 0, 1, ..., N − 1 (3)

The power of each frequency is computed simply using the
squared amplitude of each complex component in the DFT.
For computing the PSD, we apply Welch’s average method, a
method that uses segmentation, windowing and averaging for
improving the statistical properties of the resulting spectral es-
timates [11]. Using PSD, the computation of the fundamental
frequency of the signal, which is the one that holds the most
energy, is straightforward – the frequency that matches the
highest peak. We use it for inferring the period (inverse of the
frequency) of the signal by computing:

P̂ =

(
argmax

k
{|Xk|} ·

fs
N

)−1
(4)

PSD provides all the frequencies that comprise the signal,
including their harmonics (multiplications). However, since
our signal is not a composition of periodical sine waves, but
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Fig. 2: Power Spectral Density (PSD) functions of a simulated signal with single period (a–d) and two periods (e–f)

rather a noisy square wave, the signal energy is spread across
many frequencies. Theoretically, the “interesting” periods can
be inferred by iteratively selecting the highest peak with a
frequency smaller than the last detected peak, since higher fre-
quencies are a result of harmonics of already inferred periods
or noise. However, when looking for secondary peaks, even
low levels of noise result in peaks that are indistinguishable
from those we seek to find.

Fig. 2 shows the PSD of a signal with a single period (top
plots, 100 samples per cycle, 15 cycles) and a signal with two
periods (bottom plots, zoomed, second period is 10 cycles of
the first period, with added 100 samples of −1 between each
cycle). For each type of signal, the figure shows its PSD with
no changes, with non-symmetric duty-cycle (20%), with added
phase noise (10% of alternations, jitter of at most 2 samples)
and with added sampling noise (10% of the samples, at most
2 incorrect samples).

In all plots the max peak (marked with a red circle) that
corresponds to the fundamental frequency of the signal is
easily inferred, regardless whether noise exists. Fig. 2e shows
that two periods and no noise are correctly detected (the red
circle and blue triangle), and Fig. 2f shows robustness to duty-
cycle asymmetry, which is a result of the signal normalization
(note that all other higher-frequency peaks are harmonics of
the two inferred periods).

However, Fig. 2c and Fig. 2d show that phase noise and
sampling noise result in a significant amount of secondary
peaks, rendering separation between real periods and noise
almost impossible (e.g., Fig. 2d vs. Fig. 2h). Moreover, as a
result of noise, the harmonics of secondary periods exhibit
higher peaks than the matching fundamental frequency, mak-
ing the inferred period incorrect (e.g., a bi-daily period is
detected instead of the correct daily period).

Given the above, we use PSD for the detection of a single
period, a task that suits many network monitoring applications.
Since it is easily and efficiently implemented (using Fast
Fourier Transform), this method is quite useful and, as we
show in Sec. V, is very robust to noise.

Computing the period confidence, ξ, is done by summing
the energy of the inferred frequency and its harmonics (since
the energy of the frequency is divided amongst all harmonics).
We then normalize it using the energy of the complete signal.
Let k be the index of the peak that corresponds to the inferred

period P̂ , we denote by M the set of harmonics of P̂ , i.e.,
M = {n · P̂}, n = 1..bNk c. We then compute ξ using:

ξ =

∑
m∈M |Xm|2∑
n |Xn|2

(5)

When multiple peaks are detected, it can either be a result of
noise or existence of multiple periods. In this case we perform
the method described next, which is capable of extracting all
periods that comprise the signal.

B. Method B: Multiple Period Estimation

Similar to DFT, the autocorrelation function (ACF) is an
averaging method, only it operates in the time domain. ACF
measures how well a signal is correlated with a shifted version
of itself. More formally, the normalized ACF of a discrete
signal xn can be defined as:

Rn =

∑N
m=1 xmxm−n
N − n

, n = 0..N − 1 (6)

where Rn is the normalized ACF of lag n. Since we only
use this form of normalized ACF in the paper, we refer to it
simply using the term ACF. For periodic signals, the ACF is
periodic with the same period.

Notice that although the ACF is normalized high shifts
(large n) use only a small portion of the signal, thus are less
accurate than low shifts, indicating the importance of a suffi-
ciently long signal. We further evaluate this issue in Sec. V,
and show that MPE is robust to the signal length.

A key strength of ACF, that makes it useful for finding
repeating patterns, is that it smooths both sampling and phase
noise, since these types of noise affect only small sections of
the signal. Fig. 3 plots the ACFs of a signal with a single
period (upper plots) and a signal with three periods (lower
plots), each with different types of noise and duty-cycle. In
the single period plots, the periodic pattern is clearly visible.
Fig. 3c shows that phase noise causes the ACF to lose its
linearity, while sampling noise, depicted in Fig. 3d lowers the
peak value. The non-symmetric 20% duty-cycle in Fig. 3b cuts
the lower parts of the ACF, since there is no lag that results
in an “inverted-phase”, which causes the negative peaks in a
50% duty-cycle signal. However, the periodical pattern in all
variations is still clear.



5

Lag

A
C
F

(a) Clean signal
Lag

A
C
F

(b) Duty-cycle (20%)
Lag

A
C
F

(c) Phase noise
Lag

A
C
F

(d) Sampling noise

Lag

A
C
F

(e) Clean signal
Lag

A
C
F

(f) Duty-cycle (20%)
Lag

A
C
F

(g) Phase noise
Lag

A
C
F

(h) Sampling noise

Fig. 3: Autocorrelation functions of a simulated signal comprised of a single period (a–d) and three periods (e–f)

ACF by itself is commonly used for inferring periodicity,
e.g., inferring the pitch of musical and human speech signals,
however it is still known to be unreliable [8]. For example,
consider the round markers in Fig. 3, depicting the maximal
peak, showing that different maximal peaks are selected,
corresponding to different inferred periods.

Instead, we extend the usage of ACF for extracting multiple
periods that comprise the signal. The basis is the observation
that different periods have different peak levels in the ACF,
while peaks belonging to the same period have roughly the
same value. Looking at the bottom plots in Fig. 3 (depicting
only a portion of the signal), there is an obvious separation
between 3 different levels of peaks (the dashed horizontal lines
were added as illustrative aid); the top ones correspond to the
longest period, which is the most “perfect”, the mid-peaks
correspond to a shorter period and the bottom region (that
are actually peaks) correspond to the shortest period (that has
imperfections due to the longer periods). The reason is that the
more perfect a period is, the higher the corresponding peaks
will be, in all the shifts that match the period.

Consider the following strict definition of a periodic signal
with period τ :

∃τ, s.t. ∀t, f(t) = f(t+ τ) (7)

which holds when there is a single period and no noise.
Whenever multiple periods exist or there is noise in the signal,
we need to relax three aspects of this definition. First, the
equality should be for peaks that belong to the same period.
Second, f(t) and f(t+ τ) needs to be only roughly the same,
and not precisely equal. Third, τ , which represents the distance
in lags between peaks, does not have to be precise, but can
vary (to some extend) between different peaks.

Alg. 1 lists the pseudo-code of MPE. First, accounting for
the separation of periods and relaxing the equality of f(t) and
f(t+τ), MPE partitions the ACF peaks into slices (line 4), so
that each slice contains peaks belonging to different periods.
Since we do not know apriori how to slice the ACF, this is
an iterative process, trying each time a coarser partitioning.
Accounting for the variations in τ , MPE computes, for each
slice that has a sufficient number of peaks, a histogram (PDF
kernel [12]) of the intervals (gaps) between peaks (lines 6–10).
If there is a significant mode (higher than the given probability

Algorithm 1 Multiple Period Estimation (MPE) algorithm
Input: ACF of a discrete signal xn
Output: A set of (P̂ , ξ) for each inferred period

1: scale←MAX SLICES, periods← ∅
2: while scale > 0 do
3: Partition the ACF y-axis to scale equal-size slices
4: for slice in slices do
5: Find the ACF peaks within the slice
6: N ← number of peaks within the slice
7: if N ≥MIN PEAKS then
8: Compute the gaps between the peaks
9: Compute the gaps PDF with width = 1/fs

10: G ← tallest mode in the gap PDF
11: if probability of G > MIN PROB then
12: p←

(
G · f−1

s

)
13: gaps← number of gaps in G
14: egaps ← min(1, dsignal length/pe − 1)
15: ξ∗ ← gaps/egaps
16: if p /∈ periods then
17: periods← periods

⋃
(p, ξ)

18: else if previous ξ is smaller than ξ∗ then
19: replace existing ξ with ξ∗

20: if all peaks are in the same slice then
21: break
22: scale← scale− 1

return periods

MIN PROB), then it is considered a valid period (lines
12–20). If all signal peaks fell into the same slice, then the
algorithm terminates (lines 21–22). Otherwise, it repeats the
above process for a coarser partitioning. For each inferred
period, its confidence, ξ, is calculated by counting the number
of gaps that fall into the tallest mode bin, and normalizing it
by the number of expected gaps in a perfect signal with the
inferred period (lines 13–16). This can later be refined if a
different partitioning result in more peaks per slice (lines 19–
20). In a perfect signal, all of the peaks that correspond to a
given period would fall in the same bin, thus the resulting ξ
will be one. When noise or multiple periods exist, the peaks
may shift between slices, hence ξ will be lower than 1.

Looking back at the bottom plots of Fig. 3, it is possible
to see that MPE can infer three different periods, by detecting
peaks in different slices (marked by the dashed lines), even
when noise exists.
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Fig. 4: Simulation results of increasing phase noise, sampling noise and number of sampled periods

Parameters. MPE requires setting several parameters that
affect its period detection ability and inference mistake. The
resolution of slicing the peaks (MAX SLICES) is a trade-
off between the ability to separate similar periods and the
robustness to noise. Fine partitioning has the ability to dis-
tinguish periods that are very similar, but makes the noise
margins smaller. Notice that this parameter does not imply
that the number of expected periods needs be known a-priori;
it only needs to be higher than the number of periods that are
expected to be detected.

Similarly, the width of the gap PDF bins (line 10) coun-
termeasures noise but also determines the mistake that is
introduced to the inferred period. Small bins improve accu-
racy but are susceptible to noise and also result in lower
confidence values because possibly a few gaps are contained
in the detected mode. We use a bin width of 1/fs, which
already encapsulates the mistake in the inferred period – higher
sampling rate, implies lower inference mistake. By using the
sampling rate as the bin width, we ensure that the period
inference mistake is at most the mistake already introduced
by the sampling process.

MIN PROB and MIN PEAKS determine the ability
to detect periods that do not exhibit a clearly dominant gap.
Setting a low value for these parameters can help detect noisy
periods, however, it may also result in inferring incorrect
periods that managed to pass the thresholds.

Efficiency. The most time consuming task in MPE is the
computation of the ACF, which is naively computed in O(N2),
or more efficiently in O(NlogN) using FFT. Additional
improvements can be made if the signal is significantly longer
than the expected period. In such a case, only a portion of the
signal that matches the length of the expected period should
be autocorrelated. MAX SLICES also impacts the running
time, affecting both the number of iterations, and the number
of PDFs per iteration. However, since the number of expected
periods is commonly low, we expect MAX SLICES to be
in roughly the same order of magnitude.

V. SIMULATION

In this section we evaluate the results of the methods on
synthetic signals. We first compare the two methods for signals
with a single period, and evaluate their performance when
facing noise. We then study the ability of MPE to detect
multiple periods and explore its operation limits.

A. Simulating Noise

Recall that we consider two types of noise – phase and
sampling noise. Simulating phase noise is achieved by varying
the exact time of alternations (zero crossings) in xn. To this
end, we define PrPH as the probability of a zero-crossing to
suffer phase noise and NPH as number of samples relative to
the selected sample, that the zero-crossing should be move to.

Similarly, simulating sampling noise is achieved by select-
ing random samples with uniform probability PrSM at which
the sampling mistake is performed, and inverting the value for
NSM contiguous samples.

We perform separate simulations for each type of noise, by
varying its probability. We set NPH and NSM to use normal
distributions, and repeat each simulation 10 times.

B. Single Period Estimation

Denote by P the period we seek to infer, and P̂ the inferred
period. We define the accuracy of the inferred period as:

Accuracy = 1− |P̂−P |
max{P̂ ,P} (8)

An accuracy of 1 indicates that there is no mistake. As
the mistake increases the accuracy goes down to zero. This
definition aligns with that of the confidence ξ, where 1 is most
confident and the value decays as the confidence is lower.

The simulated signal is built of 15 cycles with a period
P = 100 (total length of 1500 samples). We first validated
that changing the duty-cycle of the signal has no effect on the
algorithm results, and found that both PSD and MPE result in
accurate inference and a perfect confidence (both equal to 1).

When simulating noise, we use a symmetric duty-cycle
(50%) and set NPH∼NORM(5, 1) and NSM∼NORM(1, 0)
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Fig. 5: Simulation results of MPE accuracy and confidence showing phase noise
and sampling noise with 4 periods
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Fig. 6: Simulation results of period ratio
using 2 periods signal

(at most 1 incorrect sample). We note that other noise models
can also be utilized, and we plan to study the effect of
more correlated noise models in future work. Fig. 4 plots the
inference error and confidence for varying PrPH , PrSM and
signal length. The vertical error bars illustrate the variance.
Fig. 4a shows that the phase noise has very little effect on the
accuracy of both methods, with PSD being completely robust
to it. The confidence of both, depicted in Fig. 4d, decreases
as the phase noise increases, but remains mostly above 0.5.

As expected, sampling noise has a greater impact on both
methods. Fig. 4b shows that MPE is affected above 20%,
whereas PSD is more robust, starting to exhibit lower accuracy
only above 40% of noise. The confidence, shown in Fig. 4e,
also exhibits relatively low values for both methods. PSD
confidence is low because the sampling noise spreads the
energy into many different frequencies, hence the overall
energy of the harmonics is low. Similarly, MPE suffers from
peak gaps “falling” into different bins in the PDF, thus the
number of peaks in the same highest mode becomes lower as
the noise increases. If sampling noise is known to exist in the
dataset, the confidence can be improved by increasing the bin
width, but resulting in a lower inference accuracy.

The robustness of the methods to the signal length is shown
in Fig. 4c and Fig. 4f. Fig. 4c shows that both methods result in
an accurate inference. MPE starts with zero accuracy due to the
value of MIN PEAKS, mandating sufficient periods before
detecting a period as valid. PSD exhibits a chainsaw pattern
because the computation of the period depends on whether
the signal length is a complete multiplication of the period.
Thus, when complete multiplications of periods are sampled,
the value is perfectly correct.

Fig. 4f shows that MPE results in a perfect confidence,
regardless of the length. PSD exhibits a similar chainsaw
pattern because when the inferred period is slightly incorrect,
the harmonics are not aligned with that period, thus their
energy is not accumulated, resulting in a low confidence. In
any case, the value is above 0.3 at all times, thus we use 0.3
as a threshold for the confidence in the evaluation in Sec. VI.

C. Multiple Period Estimation

We evaluate MPE’s ability for inferring multiple periods,
by constructing a signal with 4 periods – daily, weekly,
monthly and yearly periods. A dominant gap is selected with
MIN PROB = 0.5, and the finest slicing resolution is
MAX SLICES = 10. Under these typical settings, the
values enable sufficient separation and robustness to noise,
while extracting periods with clear dominance.

Fig. 5 shows the accuracy and confidence for each resulting
period (P0 being the shortest and P3 the longest), when facing
increasing phase noise and sampling noise. Fig. 5a shows that
MPE is robust to phase noise, except for the weekly period
(P1). Note that when the phase noise is very high the accuracy
improves again, which is a result of the signal completely
inverting its phase. Fig. 5c shows that the confidence of the two
extreme periods (P0 and P3) is high, while the two middle
periods (P1 and P2) is relatively low. The baseline confidence
of the latter two is 0.5 since they have ACF peaks that reside
in several slices, thus even though the accuracy is high, the
confidence is relatively low, further indicating that a relatively
low confidence value is sufficient to get accurate results.

Fig. 5b and Fig. 5d show that sampling noise has an even
larger impact on the results when multiple periods need to
be detected. However, since the confidence drops rapidly with
the accuracy (reaching almost 0), it is clear which periods can
be trusted and which cannot. Overall, when multiple periods
need to be detected, the sampling process should be relatively
accurate so that sampling mistakes are not common.

Finally, we measure the effect of the ratio between periods
on MPE’s results. To this end, we simulate a signal with 2
periods, P0 and P1, (P0 < P1), and change their ratio by
increasing the number of cycles of P0 for each appearance
of P1. Fig. 6a shows that the two periods are correctly
inferred (the confidence resulted in the exact same values),
until reaching 13 cycles of P0, which causes P1 to be
completely undetected by MPE.

In order to understand these results, we introduce a Peri-
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oditicy parameter, which is the average of the peak values
that correspond to the selected bin in the gap PDF (notice
that all these peaks come from the same slice). This value
captures how “perfect” the period is, i.e., a high peak value
(close to 1) implies very few interruptions in the ACF, while
low values indicate that the periodicity is interrupted. Fig. 6b
shows that the periodicity of P0 starts in a low value, since
for every other cycle, it is interrupted by P1. However, as
the ratio between periods increases, the periodicity of P0
increases, i.e., their peak values raise. Once the peak values
of P0 surpasses 0.8, the peaks shift into the bin of P1,
making both periods look like a single period, thus P1 is not
detected as a separate period. Increasing MAX SLICES
can provide better separation between the periods (but at a
cost of performance and smaller noise margins). For example,
setting MAX SLICES = 15, produces the two periods until
17 cycles of P0 for every P1 cycle.

VI. EVALUATION

We evaluate our methods on two real-world Internet pro-
cesses that capture the dynamics of end-hosts – the availability
of end-hosts and the alternation of allocated IP addresses.
These patterns has implications on various network applica-
tions. For example, malicious host identification [13], network
forensic analysis and blacklisting require tracking infected
hosts over time using their IP addresses [14], [15], [3].
A. Dataset

The dataset for evaluation is obtained from passive sampling
of the measuring hosts of DIMES [16], a community-based
Internet measurements system. DIMES utilizes hundreds of
software agents installed on user PCs, each has a unique ID,
which is associated with the machine it is installed on.

When a machine is online and connected to the Internet, its
agent performs a set of measurement scripts and reports the
results back to a central server. These results, alongside with
the routable IP address of the machine are reported roughly
every 30 to 60 minutes. This variance is a result of the length
of the measurement scripts, or due to short term network, end-
host or server failures.

We used data collected over three months in 2010. Overall,
1804 agents provided 8.6 million reports, using 7611 different
routable IPs from 432 unique autonomous systems. Using this
dataset, we build two datasets for evaluation – Availability and
Alternations. The availability dataset tracks whether an agent’s
machine is online or not. We consider an agent as “offline”
after 3 hours has passed since its last report. The alternation
dataset tracks the changes in routable IP addresses of the
agents during its “online” time-frames, henceforth windows.

We carefully filter this data to reduce various measurement
artifacts. If an agent exhibits more than 20 IP alternations in a
given online window, we discard its data, since we empirically
found that this it is most likely a measurement artifact. We also
filter windows with IPs spanning multiple ASes, since our goal
is to capture the alternations in IP addresses allocated to the
agent by its ISP, and not human mobility. After applying these
filters 1784 agents remain.
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Fig. 7: Cumulative distribution of availability periods

Constructing the canonical signal from the availability
dataset is straightforward, marking online windows as 1 and
offline as −1. For the alternation dataset, the first IP we
observe for an agent is marked as 1, and whenever we
encountered a change in the IP address we inverse the sign
of the signal. Both datasets exhibit low levels of phase-noise
due to small variations in the intervals between agent reports.
The alternation dataset also exhibits a few sampling mistakes,
which result from rare measurement artifacts [16].

B. Results

We ran the PSD and MPE on both datasets. We consider an
agent as periodic when we detect periods with ξ > 0.3, within
signals that contain at least 4 cycles, with the latter being
imposed to further increase the confidence of the findings.

Availability. Fig. 7 depicts the results of applying the methods
on the availability dataset. Using PSD we found 82 agents that
exhibit periodical patterns and using MPE we found 51. Fig. 7a
shows that PSD inferred a daily pattern with relatively small
mistake. MPE shown in Fig. 7b managed to detect weekly
patterns (7 days) and even a few bi-weekly patterns (14 and
15 days). We note that these weekly and bi-weekly patterns
are secondary periods, i.e., each of the agents that exhibited
one of them also had a daily pattern. Fig. 7c plots the relative
accuracy of PSD and MPE (using Eq. 8), and shows that the
two methods agree on over 90% of the periods.

For inferring the duty-cycle we simply count the amount
of online vs. offline time in signals of agents that exhibit
periodical patterns. Fig. 7d shows a wide range of duty-cycles,
which is the result of capturing different behaviors of agents.

Alternations. Using the alternations dataset, we found 174
agents that exhibit a periodical pattern using PSD and 131
agents using MPE. Fig. 8 shows that MPE resulted in a perfect
2 days period, whereas PSD resulted in slightly less accurate
inference of roughly 2 days period. Thus, the resulting relative
accuracy, shown in Fig. 8c, is mostly above 0.9. The inferred
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Fig. 8: Cumulative distribution of IP alternation periods

duty-cycle shown in Fig. 8d is 0.5 for almost 90% of the
agents, meaning that their IP address is replaced roughly every
day, which is a common DHCP default lease time [4].

This evaluation shows the strengths of PSD and in particular
of MPE for analyzing periodical patterns in large-scale mea-
surements. Without imposing any assumptions on the dataset,
the methods were able to both detect the agents that exhibit
periodical patterns, and extract the corresponding periodicity.
MPE was even able to recover multiple periodicities that
exist in the dataset, which enables better understanding of the
underlying patterns.

VII. RELATED WORK

Monitoring networks and behavioral patterns is a key aspect
of network management. Thompson et al. [17] measured two
OC-3 trunks for 7 days and observed a daily period with
varying duty-cycles in the volume of bytes, number of flows,
number of packets, TCP traffic, etc. Willkomm et al. [9]
studied datasets of a cellular network operator, exhibiting a
clear daily load periodical pattern. Leland et al. [18] studied
the self-similarity of Ethernet traffic, and showed daily cycles
in some of their datasets.

Signal processing was previously used in network applica-
tions, e.g., wavelets in flow and SNMP data [19], spectral den-
sity in wireless networks [20], denial of service attacks [21],
and in bottleneck detection [22]. These methods commonly
focus on a single period. A method that uses iterative refining
of PDF kernel estimation was presented in [23], however, in
the context of detecting multiple congested links along a path.

Inference of multiple periods exists in music and voice
signals [8] and emitter positioning [7], however, these usually
operate on small datasets and assume domain-specific signal
and noise parameters, making them highly tailored to their
tasks. In this paper we studied and proposed robust methods
that are suited to network measurements applications and are
efficient so that they can be applied to large-scale data.

VIII. CONCLUSION

Understanding behavioral patterns in the vast amounts of
data originating from Internet monitoring systems is a key
challenge for making better use of resources and designing
better systems. This paper presents two methods for detecting
and inferring such periodical patterns and shows their ability
to both detect periodical patterns and infer their periodicities
without imposing assumptions on the obtained samples.

Although some of these results may seem intuitive, e.g., a
work-day pattern of availability, applications that care about
periodical patterns, cannot easily detect these patterns. The
amount of data renders any manual detection impossible, and
the inherent measurements noise makes simple comparison
methods inaccurate, particularly in the existence of multiple
periods. The proposed methods overcome these issues and
perfectly fit noisy measurements data.
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