
A Relaxed FPTAS for Chance-Constrained
Knapsack
Galia Shabtai
School of Electrical Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
galiashabtai@gmail.com

Danny Raz
Faculty of Computer Science, The Technion, Haifa 32000, Israel
danny@cs.technion.ac.il

Yuval Shavitt
School of Electrical Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
shavitt@eng.tau.ac.il

Abstract
The stochastic knapsack problem is a stochastic version of the well known deterministic knapsack
problem, in which some of the input values are random variables. There are several variants of
the stochastic problem. In this paper we concentrate on the chance-constrained variant, where
item values are deterministic and item sizes are stochastic. The goal is to find a maximum
value allocation subject to the constraint that the overflow probability is at most a given value.
Previous work showed a PTAS for the problem for various distributions (Poisson, Exponential,
Bernoulli and Normal). Some strictly respect the constraint and some relax the constraint by a
factor of (1 + ε). All algorithms use Ω(n1/ε) time. A very recent work showed a “almost FPTAS”
algorithm for Bernoulli distributions with O(poly(n) · quasipoly(1/ε)) time.

In this paper we present a FPTAS for normal distributions with a solution that satisfies the
chance constraint in a relaxed sense. The normal distribution is particularly important, because
by the Berry-Esseen theorem, an algorithm solving the normal distribution also solves, under
mild conditions, arbitrary independent distributions. To the best of our knowledge, this is the
first (relaxed or non-relaxed) FPTAS for the problem. In fact, our algorithm runs in poly(nε) time.
We achieve the FPTAS by a delicate combination of previous techniques plus a new alternative
solution to the non-heavy elements that is based on a non-convex program with a simple structure
and an O(n2 log n

ε) running time. We believe this part is also interesting on its own right.

2012 ACM Subject Classification Theory of computation → Approximation algorithms ana-
lysis, Theory of computation → Stochastic approximation, Theory of computation → Discrete
optimization, Theory of computation → Nonconvex optimization

Keywords and phrases Stochastic knapsack, Chance constraint, Approximation algorithms,
Combinatorial optimization

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.72

1 Introduction

Stochastic optimization has been studied by a large community since the 1950s. In a
stochastic problem the input contains information about distributions rather than concrete
values, and the goal is to provide a solution that works well on instances drawn according
to the input distributions. For example, one might want to optimize the expected value of
certain objective function for inputs drawn from the given input distributions.

© Galia Shabtai, Danny Raz, and Yuval Shavitt;
licensed under Creative Commons License CC-BY

29th International Symposium on Algorithms and Computation (ISAAC 2018).
Editors: Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao; Article No. 72; pp. 72:1–72:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:galiashabtai@gmail.com
mailto:danny@cs.technion.ac.il
mailto:shavitt@eng.tau.ac.il
https://doi.org/10.4230/LIPIcs.ISAAC.2018.72
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

72:2 Stochastic CC Knapsack

An important special case of stochastic optimization is chance-constrained optimization
where we want to optimize a target function under the restriction that the probability
we violate the constraints is at most some given threshold p. For example, Kleinberg,
Rabani and Tardos [6], who were among the first to study approximation algorithms for
stochastic problems, studied a chance-constrained version of the stochastic knapsack problem,
CCKnapsack, in the context of bursty connections. In their case the input is information
about n items. Item i has value vali and its size is Bernoulli distributed, i.e., with probability
qi it has size si and with probability 1− qi it has size 0. The distributions of the n items are
independent. The input also includes a value p and the knapsack capacity c. The goal is
to choose a subset of the n items that maximizes the total value subject to the constraint
that the overflow probability is at most p. Kleinberg et. al. provide a close to linear time
O(log 1

p)-approximation algorithm, by showing a simple reduction to the deterministic case.
Goel and Indyk [4] studied CCKnapsack for several other distributions: Poisson, Expo-

nential and Bernoulli.
For Poisson they gave a PTAS (Polynomial Time Approximation Scheme). More precisely,
given ε > 0 the algorithm runs in time nO(1/ε) time and outputs a feasible solution (i.e., a
solution where the overflow probability is at most p) with value at least (1− ε)P ∗, where
P ∗ is the optimal feasible value.
For the Exponential distributions they obtained a relaxed PTAS, namely, they output an
objective value that is no worse than the optimum, but the solution violates the knapsack
size and the overflow probability by a factor of (1 + ε).
For Bernoulli distribution the situation is even worse and they obtain a relaxed QPTAS
(Quasi-Polynomial Time Approximation Scheme) algorithm which relaxes the constrains
by a factor of (1 + ε), and for a given constant ε runs in quasi-polynomial time in n.

Goyal and Ravi [5] present a PTAS for CCKnapsack when item sizes are normally distributed.
Their algorithm does not relax the overflow probability constraint nor the capacity constraint.
However, it does not give a FPTAS, as the running time of the algorithm is Ω(n1/ε). Later,
Bhalgat, Goel and Khanna [1] obtained a PTAS which relaxes both the overflow probability
constraint and the capacity constraint and works for any random variable. In a recent work,
De [3] showed a “(nearly) FPTAS” for the CCKnapsack with Bernoulli distributions and
quasi-FPTAS for k-supported random variables, i.e. when all item sizes are supported on
a common set of constant size. De [3] also showed a PTAS for hypercontractive random
variables, i.e. random variables whose second and fourth moments are within constant factors
of each other. Poisson, Gaussian and Exponential random variables are hypercontractive
random variables. All three algorithms presented by De [3] relax the overflow probability by
an additive ε. Table 1 summarizes the above mentioned previous work results.

Goyal and Ravi [5] study the normal distribution case. The normal distribution is partic-
ularly interesting since by the central limit theorem the sum of n independent distributions
converges to a normal distribution and the Berry Essen theorem gives a concrete bound on
the rate of convergence as a function of the first three moments. It is shown in [9] and [8],
in a slightly different setting, that an algorithm that solves a chance constrained stochastic
problem also works for any n independent distributions, as long as the input distributions
respect some mild conditions (e.g., their third moments are reasonable), and this is also true
for CCKnapsack.

The special case where there are no heavy items, i.e., items whose value is more than ε
fraction of the optimal value P ∗, is particularly interesting, because this is the usual setting
for many cloud problems, where there are many services and no single service alone dominates
resource demand. In this special case Goyal and Ravi’s algorithm is much faster and runs in
poly(n) time (with no dependence on ε).

G. Shabtai, D. Raz, and Y. Shavitt 72:3

Table 1 Known Results for CCKnapsack.

Relaxed Relaxed
Reference Distribution Overflow Knapsack Approximation

Probability Capacity Scheme

O(log 1
p

)P ∗
Kleinberg et al [6] Bernoulli no no polynomial time

Poisson no no PTAS

Goel and Indyk [4] Exponential yes yes PTAS

Bernoulli yes yes QPTAS

Goyal and Ravi [5] Normal no no PTAS

Bhalgat et al [1] any yes yes PTAS

Bernoulli yes no (nearly) FPTAS

k-supported yes no quasi-FPTAS
De [3] hypercontractive

(Poisson,Gaussian, yes no PTAS
Exponential, ...)

Current work Normal no yes FPTAS

We mention that other variants of the problem were studied, e.g., the dynamic knapsack
problem [7, 2] where decisions are adaptive and each size is revealed (or realized) only after
the decision maker attempts to insert it.

1.1 Previous techniques

Kleinberg et al. [6] show a simple reduction to the deterministic case, by calculating an
effective bandwidth value for each item, and then running a greedy algorithm on these
deterministic values.

Goel and Indyk [4] proceeded by separating the items to big and small based on whether
their value is “large” (which should be appropriately defined) or “small”. On small variables a
greedy fractional algorithm is used, and it is easy to see that it has at most one non-integral
value. This value is then dropped, and the loss in value is small, because the dropped item is
“small”. For “large” items, all candidate sets of large items (and there are at least 21/ε such
candidate sets) are checked.

Goyal and Ravi [5] replaced the greedy algorithm with a parametric LP program and
showed that the resulting fractional solution has at most two non-integral values. They exploit
that for a rounding algorithm that essentially solves correctly (with a small approximation
error) the non-heavy elements. For the heavy elements, Goyal and Ravi again try all n1/ε

subsets of heavy elements (as there are at most 1/ε elements with value εP ∗).
Of course, there are more technical issues to be handled. For example, to do the partition

to large and small items correctly one needs to know (approximately) the optimal value P ∗.
The solution is to try all approximations to P ∗ from the set

{
Pmin, , . . . , Pmin(1 + ε)i, . . .

}
.

There must be one Pi in the set such that Pi ≈ P ∗, and the number of such Pi is linear in
the input length.

ISAAC 2018

72:4 Stochastic CC Knapsack

1.2 Our contribution
The results in this paper are two-fold:

First, we simplify the solution of the light elements (items whose value is at most ε
fraction of the optimal value P ∗) and show a simple non-convex program that has an
efficient almost integral solution, and,
Second, we use it to give a relaxed FPTAS (i.e., an algorithm with running time poly(nε)
rather than n1/ε). We note that this is the first FPTAS algorithm for CCKnapsack, relaxed
or not.

We now explain more about these two contributions. First, using a technique from
Nikolova [8] we translate the problem on the light elements, to a concrete non-linear (and
non-convex) program on R2. The program is, in fact, a quasi-concave minimization problem,
and is minimized on one of the vertices of the polygon of possible solutions. We study this
polygon and prove that:

The polygon has at most n2 vertices,
These vertices can be easily enumerated, and,
Each vertex represents an almost integral solution, with at most one non-integral item.

While the base approach is taken from Nikolova [8] the situation here is very different. In
[8] the polygon has many (super polynomial) vertices and also it is NP hard to enumerate
all the vertices of the polygon. Accordingly, we deviate from the approach taken in [8] and
in this paper we use geometric intuition that completely unravel the nature of the polygon
in our case. We use the above three properties to construct an efficient algorithm solving
CCKnapsack when all the items are not heavy. Specifically, we show:

I Theorem 1. There exists an algorithm for CCKnapsack over normal distributions such
that if the value of each element is at most εP ∗, where P ∗ is the optimal feasible value, then
the algorithm outputs a feasible integral solution with value at least (1− ε)P ∗. The running
time of the algorithm is O(n2 log n

ε).

We remark that Goyal and Ravi’s algorithm [5] also gives a poly(n) algorithm for the
case in which all items are not ε-heavy, but our solution is simpler and faster, and we hope
that it can also be used in practice .

We now move to our second contribution. As explained above, Goel and Indyk [4] showed
a relaxed PTAS for CCKnapsack over several distributions and Goyal and Ravi [5] showed a
strict PTAS for the normal distribution. The above algorithms have running time Ω(n1/ε)
which indeed allows a PTAS, but is prohibitively large. It is a natural intriguing problem
to improve this situation and find a FPTAS whose running time is poly(n, f(ε)) for some
function f . We show such a result with running time poly(nε). We prove:

I Theorem 2. There exists an algorithm solving CCKnapsack over normal distributions that
ε approximates the optimum in the relaxed sense, i.e., given an input, it finds a solution such
that the overflow probability with a slightly larger capacity (1 + ε)C is at most the specified
overflow probability. The running time of the algorithm is poly(nε).

The idea is quite natural. We have two basic algorithms for CCKnapsack:
The algorithm of Theorem 1 that approximates the optimal integral solution for non-heavy
elements.
An exact dynamic programming algorithm that finds an integral solution for Knapsack
in time polynomial in the number of partial sums. This algorithm can be easily extended
to CCKnapsack.

G. Shabtai, D. Raz, and Y. Shavitt 72:5

Suppose we know the optimal integral value P . If we divide all items to light and heavy
according to whether their value is smaller than εP or higher than it, and if we want an ε
approximation of the optimal value, we are allowed to lose any constant number of light
items, but we are not allowed to lose any heavy item. This leads to the following strategy:
On the light items we run the algorithm of Theorem 1. On the Heavy items we cannot miss
any single item but we do not mind taking an ε multiplicative approximation. Hence, we
round the input values of the heavy items, and run the exact algorithm (that does not lose
even a single item) on the rounded heavy items. As there are only few possibilities, the
number of partial sums is small, and that part can be efficiently implemented.

There are many technical challenges in implementing the above idea, and our solution
is a delicate combination of previous techniques: the multiplicative incremental guessing of
parameters, truncation of heavy elements, the dynamic programming for Knapsack and its
extension to CCKnapsack and our new reduction to the non-convex problem and its simple
structure.

The paper is organized as follows. In Section 2 we show a simple fractional solution
to CCKnapsack. In Section 3 we study the non-convex program and the polygon of pos-
sible solutions. In [10] we generalize the dynamic programming algorithm of Knapsack to
CCKnapsack, and In Section 4 we present our FPTAS with relaxed constraints.

2 The Fractional Chance Constrained Knapsack Problem

The Chance Constrained Knapsack Problem for Normal distributions is defined as follows:

CCKnapsack: Chance Constrained Knapsack

Input: The input to the problem consists of:
C specifying the knapsack capacity,
n specifying the number of items available for inclusion in the knapsack,
ζ specifying a bound on overflow probability,
ε - accuracy parameter.
The size of item i, denoted by X(i), is normally distributed with mean µ(i), and
variance V (i) that are given as input. Set Q(i) = (µ(i), V (i)). The distributions X(i)

are independent.
Also, for each item i we are given the value p(i) > 0 of that item.

A solution α = (αi, . . . , αn) ∈ {0, 1}n is feasible if Pr[
∑n
i=1 αiX

(i) > C] ≤ ζ.

Output: The output is a vector αout = (αi, . . . , αn) such that:
Integrality constraint: αi ∈ {0, 1}, αi = 1 if item i is selected to be included in the
knapsack and αi = 0 otherwise.
The solution is feasible, and
Let Pout =

∑
i αip

(i), POPT = max
{∑n

i=1 αip
(i) | αi ∈ {0, 1}, α is feasible

}
. We

require that |Pout − POPT | ≤ ε.

CCKnapsack is not linear as the overflow probability is not linear. Moreover, the exact
problem is clearly NP-hard since its deterministic version, in which each item X(i) takes
a single value with probability 1, is the knapsack problem. Therefore, we only ask for an
efficient approximation to the problem.

A fractional solution is a feasible vector α = (α1, . . . , αn) with αi ∈ [0, 1], dropping the
integrality constraint.

ISAAC 2018

72:6 Stochastic CC Knapsack

I Theorem 3. There exists an algorithm that ε-approximates the CCKnapsack problem with
running time O(n2 log n

ε), where n is the number of elements. Furthermore, in the fractional
solution found, there is at most one fractional item.

We now explain our approach for solving the problem. In the CCKnapsack problem the
item sizes are independent and normally distributed. Suppose α is a fractional solution.
The size of the solution α is a random variable Xα =

∑
αiX

(i) and is normally distributed
with mean µα =

∑n
i=1 αiµ

(i) and variance Vα =
∑n
i=1 αiV

(i). Also, µα and Vα determine
the overflow probability (because the distribution is Normal and is determined by the
mean and variance). Hence, we can represent each fractional solution α by the point
(µα, Vα) ∈ R2 and define the following polygon Λ ⊆ R2 of fractional solutions: Λ ={
Q =

∑n
i=1 αiQ

(i) ∈ R2 | 0 ≤ αi ≤ 1
}
. The algorithm performs a binary search to find an

approximate maximum value with overflow probability at most ζ. Each step in the binary
search determines whether there exists a feasible solution with a given value P . This translates
to the question whether the polygon

ΛP =
{
Q =

n∑
i=1

αiQ
(i) ∈ R2 | 0 ≤ αi ≤ 1,

n∑
i=1

αip
(i) = P

}
. (1)

contains a point with overflow probability at most ζ. Equivalently, the problem is whether
the minimal overflow probability over the points in the polygon ΛP is at most ζ.

We will see (in Section 3) that the problem of minimizing the overflow probability over
the polygon is a quasi-concave minimization problem over a convex body and is seemingly
hard. The novelty of the algorithm lies in efficiently solving this problem. This is done by
showing (in Section 3) that:

I Lemma 4. Fix P and look at the polygon ΛP .
1. The minimum overflow probability over points in ΛP is obtained at a vertex of ΛP .
2. The polygon ΛP has at most n2 − n vertices.
3. There exists an algorithm FPBoundary that outputs all vertices in time O(n2 logn).

Having that, a simple binary search (over the possible values of P) gives Theorem 3 and
we give it (along with the correctness proof) in [10].

3 The boundary of the polygon ΛP .

The overflow probability of a solution α = (α1, . . . , αn), denoted OFP (α), is,

OFP (α) = Pr[
n∑
i=1

αiX
(i) > C] = 1√

2πVα

∫ ∞
C

e−
(x−µα)2

2Vα dx = 1− Φ(C − µα√
Vα

),

where Φ is the cumulative distribution function of the standard Normal distribution. Nikolova
shows in [8] that when C − µα > 0, OFP is a quasi-concave function (on an n dimensional
space (α1, . . . , αn)). Also, Nikoova noticed that as OFP depends only on the total mean and
variance, when we project the problem to two dimensions (as we did in the previous section)
OFP remains quasi-concave. Hence, OFP gets a minimum value over ΛP on a vertex of ΛP .

In [10] we prove:

I Theorem 5. For every I1 =
∑n
i=1 αiQ

(i) and I2 =
∑n
i=1 βiQ

(i) that are adjacent vertices
of the polygon ΛP , the tuples α = (α1, . . . , αn) and β = (β1, . . . , βn) differ in exactly two
elements. Let k and ` be the indices of these two elements. We call the items k, ` the active
items in vertex I1.

G. Shabtai, D. Raz, and Y. Shavitt 72:7

Figure 1 I1, I2 and I3 are vertices of the polygon. The angle the edge (I2, I3) has with (I1, I2) is
the smallest among all edges (I2, X) for X in the polygon.

3.1 Enumerating the polygon vertices
In this section we first show an algorithm PBoundary running in O(n4) time, and then we
introduce a faster algorithm FPBoundary solving the problem in (n2 logn) time.

Algorithm PBoundary

1. The algorithm first calculates the leftmost vertex, I1, of the polygon ΛP on the
mean-variance plane. The point I1 has the minimum mean value among all points in
ΛP and therefore it is the leftmost point.
To find I1, sort the input in increasing order of mean to value ratio and re-index it,
such that µ(1)

p(1) ≤ . . . ≤ µ(n)

p(n) . Denote I1 =
∑n
i=1 αiQ

(i). Find the smallest k such that∑k
i=1 p

(i) ≥ P and set αi = 1 for all i < k and αi = 0 for all i > k. Set αk such that∑n
i=1 αip

(i) = P . Also, set E1 = (0,−1).
2. Suppose we have calculated all points I1, I2, . . . , It and all vectors E1, E2, . . . , Et. We

now calculate the point It+1 and the vector Et+1. Denote It =
∑n
i=1 αiQ

(i) and
It+1 =

∑n
i=1 βiQ

(i).
a. Find direction: Find a pair of items (k, `) ∈ [n]× [n], k 6= `, such that swapping

items k and ` creates the smallest angle with Et. Namely, αk > 0, α` < 1 (meaning
that we can take more of item ` and less of item k) and the angle between Et and
Q(`) −Q(k) is smallest. Also, set Et+1 = Q(`) −Q(k).

b. Edge length: Set βi = αi, ∀i /∈ {k, `}. If αkp(k) ≤ (1 − α`)p(`), let βk = 0 and
set β` such that (β` − α`)p(`) = αkp

(k). Otherwise, let β` = 1 and set βk such that
(αk − βk)p(k) = (1− α`)p(`).

The algorithm stops when It+1 = I1.

I Claim 6. The list of points I1, I2, . . . found by PBoundary is the list of all polygon vertices.

Proof. Step (1) finds the leftmost point I1 in ΛP which, in particular, is a vertex of ΛP . We
now want to find the next adjacent vertex, going counterclockwise. According to Theorem
5 two adjacent vertices differ in exactly two items. Among all possible pairs of different
items, Step (2a) chooses the pair of indices (k, `) ∈ [n]× [n] such that inserting item ` and
removing item k creates the smallest angle with the vector E1 = (0,−1) which is parallel
to the variance axis. This sets a direction that equals the direction of the edge leaving I1
in ΛP . Step (2b) sets (β1, . . . , βn) ∈ [0, 1]n such that we go in this direction as far as we
can while staying in ΛP : it either sets βk to 0 or β` to 1, which ensure that we go on the
chosen direction as far as we can. We therefore stop on the next vertex I2. We then set
E2 = I2 − I1. Notice that E2 is the direction of the edge (I1, I2). See Figure 1.

ISAAC 2018

72:8 Stochastic CC Knapsack

Figure 2 The angle between (I5, I6) and (I1, I2) is larger than angle between (I4, I5) and (I1, I2).

Similarly, suppose we have found the first t vertices I1, . . . , It for t > 1, and (It−1, It)
is the last edge found on the boundary so far with direction Et = It − It−1. Again, by
Theorem 5 two adjacent vertices differ in exactly two items. Step (2a) chooses a pair of
items (k, `) ∈ [n]× [n] such that inserting ` and removing k creates the smallest angle with
Et. This sets a direction that equals the direction of the edge leaving It in ΛP . Again, step
(2b) sets (β1, . . . , βn) ∈ [0, 1]n such that we go on the chosen direction as far as we can while
staying in ΛP and therefore stops on a vertex. See Figure 1. The algorithm stops when it
reaches back to the initial vertex I1. J

I Corollary 7. The polygon ΛP has at most n(n− 1) vertices.

Proof. Let I1, . . . , Im be the vertices in the order found by algorithm PBoundary. Notice
that the direction of (Ij , Ij+1) is Q(`) −Q(k) where (k, `) are the active items at vertex Ij ,
and does not depend on the edge length. Thus, there are at most n(n − 1) possible edge
directions. As all edges of a convex body in R2 must have different (directed) directions, we
see that the number of vertices is at most n(n− 1). J

Algorithm PBoundary takes O(n4) time, because we have seen that the number of vertices
of ΛP is at most n2 and if we have found It, to find the next vertex we go over n2 possible
directions. Altogether, the running time is O(n4). Algorithm PBoundary goes over all n2

possible directions at each step t. However, in a convex body that is contained in R2 the
edges have a natural ordering. Suppose the polygon ΛP ⊆ R2 has m vertices. Make any
vertex a distinguished one and call it I1. Suppose the other vertices of the polygon are ordered
by I2, . . . , Im, i.e., (Ij , Ij+1 mod m) is an edge of the ΛP . Let anglet be the angle between
the vectors It+1 mod m − It and I2 − I1. Then, the angles are monotonically increasing in t
until we complete a whole circle and get the zero angle again. Notice that the orientation of
a vector is important and the angle between a vector v and −v is π. See Figure 2.

With that it becomes clear that we do not need to consider all the n2 directions at
each time step t. Instead we first do a pre-processing step in which we calculate all the n2

directions and sort them by the angle they make with the vector (0,−1) in increasing order.
Then, at step t we never look at a direction that we already passed (because the angles are
monotonically increasing) and we start the search right after the last entry we have reached
in the table. Altogether, our total running time is the table size, reducing the running time
from n4 to about n2. We give algorithm FPBoundary and its analysis in [10].

3.2 The vertices of polygon ΛP are almost integral
I Theorem 8. Let I be a vertex of ΛP . Then there is a way to write I =

∑
αiQ

(i) with
α = (α1, . . . , αn) ∈ [0, 1]n such that there is at most one element k ∈ [n] in which αk 6∈ {0, 1}.

G. Shabtai, D. Raz, and Y. Shavitt 72:9

Proof. Assume that there are at least two elements, k and l, in which αk, αl 6∈ {0, 1}. Let
δk = 1

2min{αk, 1− αk} and δl = 1
2min{αl, 1− αl}. If δkp(k) < δlp

(`), decrease δl to get
δkp

(k) = δlp
(`), otherwise, decrease δk to reach this equality. It is easy to see that both points

I − δkQ(k) + δlQ
(`) and I + δkQ

(k) − δlQ(`) are in ΛP , and that the point I is the mid point
of the line connecting them. This contradicts the fact the that I is a vertex. Hence, there is
at most one element k ∈ [n] in which αk 6∈ {0, 1}. J

I Corollary 9. There exists an algorithm for CCKnapsack such that if the value of each
element is at most εP ∗, where P ∗ is the optimal feasible value, then the algorithm outputs a
feasible integral solution I ′ with p(I ′) ≥ (1− ε)P ∗. The running time is O(n2 log n

ε).

Proof. Run the algorithm of Theorem 3 to find the optimal fractional solution. We know
that the optimal fractional value is obtained on a vertex of the corresponding polygon, and
that the solution contains at most one non-integral element. Drop that element. Clearly, the
new solution is feasible, and its value is smaller than the optimal value by at most εP ∗. J

3.3 Every fractional point in the polygon is dominated by some
integral point with almost the same value

The partial lexicographic order on R2 is (a, b) ≤ (a′, b′) iff a ≤ a′ and b ≤ b′. We claim:

I Lemma 10. For every point X ∈ ΛP there exists a vertex I of ΛP and an integral point
A 6∈ ΛP , such that A ≤ X, A ≤ I and I −A = γQ(i) + δQ(j) where i, j ∈ [n] are the active
items at vertex I and 0 ≤ γ, δ ≤ 1. I.e., for every point X in the polygon ΛP there exists an
integral point A such that A ≤ X in the lexicographic partial order, and A is almost a vertex
of the polygon differing from some vertex in at most two elements.

Proof. We start at the point X, and vertically go down till we reach the boundary of ΛP at
some point Y . Obviously, µ(Y) = µ(X) and V (Y) ≤ V (X), and hence Y ≤ X. Let I and J
be the two vertices of ΛP to the left and right of Y , respectively (if Y is a vertex I = Y).
Notice that µ(I) ≤ µ(Y) = µ(X) and at least one of V (I) ≤ V (Y) or V (J) ≤ V (Y) holds.

According to Theorem (8), I has a representation I =
∑
αiQ

(i) that has at most one
element k ∈ [n] in which αk 6∈ {0, 1}. Let i and j be the active items at vertex I.

I Claim 11. k ∈ {i, j}.

Proof. Suppose not, i.e. αk 6∈ {0, 1} and yet we do a replacement (i, j) in which k does not
participate. Since I is a vertex we must have αj = 0 and αi = 1. Now we notice that:

αk < 1 and αi = 1, hence k could have replaced i, and,
αk > 0 and αj = 0, hence j could have replaced k.

The direction of k replacing i is Ek,i = Q(k) − Q(i). The direction of j replacing k is
Ej,k = Q(j) −Q(k). Notice that Ej,i = Ej,k + Ek,i. Hence, Ej,i is inside the parallelogram
defined by Ek,i and Ej,k, and therefore the algorithm cannot choose the replacement (i, j)
since it doesn’t give the smallest angle with the vector (0,−1). A contradiction. J

Let A be the integral point that is received by throwing elements i and j from the vertex I
(if they participate in I), i.e. A =

∑
` 6=i,j α`Q

(`). Therefore, A ≤ I. Also, since vertex J is
received from vertex I by decreasing element i and increasing element j, J ≥

∑
` 6=i α`Q

(`).
Hence A ≤ J . Thus A ≤ I and A ≤ J . In particular, µ(A) ≤ µ(I) ≤ µ(Y) and also
V (A) ≤ V (I) and V (A) ≤ V (J). Therefore, V (A) ≤ V (Y) and hence A ≤ Y ≤ X. J

ISAAC 2018

72:10 Stochastic CC Knapsack

4 The Relaxed FPTAS for CCKnapsack

In this section we present algorithm IntegralRelaxed, which is a relaxed FPTAS for
CCKnapsack. The input to IntegralRelaxed is the same as that of CCKnapsack, defined
in Section 2. Suppose the optimal solution outputs a set of items I∗ with total value P ∗ such
that the probability the total size of the items in I∗ exceeds C is at most ζ (C and ζ are
inputs to the problem). The output of IntegralRelaxed is a set of items I ′ with total value at
least (1− 5ε)P ∗ and the probability the total size of items in I ′ exceeds (1 + ε)C is at most
ζ. Before we explain the algorithm we need a few pre-requisites:

The algorithm uses as a subroutine a dynamic programming algorithm (described in
tails in [10]) that does the following. The input to the algorithm is a set of triplets{

(a(i), b(i), c(i)) | i ∈ S
}
. Define the set of partial sums in each coordinate by PSa ={∑

i∈I a
(i) | I ⊆ S

}
, and similarly for PSb and PSc. The algorithm finds all triplets{∑

i∈I(a(i), b(i), c(i)) | I ⊆ S
}
, i.e., triplets in PSa × PSb × PSc that can be obtained

as the partial sum of the same set I ⊆ S. The algorithm does that by keeping a table
whose k’th row records all combinations that can be obtained by the first k triplets in
S. The procedure OUT ((s1, s2, s3), |S|) of the algorithm checks whether (s1, s2, s3) is a
feasible triplet, and if so returns a subset I ⊆ S that obtains it. The running time of the
algorithm is polynomial in the number of partial sums.
We need a truncation operator to truncate heavy elements so that the dynamic program-
ming algorithm runs in polynomial time. We define bxcS = b xS c · S. If x ∈ [0,KS), then
bxcS also belongs to [0,KS) but may belong only to a set of K points which are the first
points in consecutive intervals of length S partitioning [0,KS).
Define OFPC(µ, V) = 1−Φ(C−µ√

V
), and also for I = (µ, v) write OFPC(I) = OFPC(µ, v).

We use the following fact, when proving that we get a relaxed constraint: For every
B > 0, OFPB·C(Bµ,B2V) = 1− Φ(BC−Bµ√

B2V
) = 1− Φ(C−µ√

V
) = OFPC(µ, V).

Finally, when we have a sequence
{
p(i)}n

i=1, we think of it as a function p(i) = p(i) and
extend it to sets A ⊆ [n] by letting p(A) =

∑
a∈A p(a). We do the same for µ, V, p, etc.

With that IntegralRelaxed does the following. First it guesses four values:
p̂: the guessed total value of the optimal solution.
p̂h: the guessed value of the heavy elements in the optimal solution.
µ̂h: the guessed mean value of the heavy elements in the optimal solution.
V̂h: the guessed variance of the heavy elements in the optimal solution.

For each such guessed quadruplets, IntegralRelaxed splits the input elements to heavy and
light, such that the value of an heavy item is at least εp̂. Then, it truncates the value, the mean
and the variance of each heavy element, i.e., p(i) = bp(i)c

p̂h/T1
, µ(i) = bµ(i)c

µ̂h/T2
, V

(i) =
bV (i)c

V̂h/T2
, where T1 = 1

ε2 and T2 = 1+ε
ε n. The truncated values of the heavy elements are

passed as an input to the dynamic programming algorithm, the light elements are solved
using Algorithm FPBoundry. More specifically, the algorithm does the following:

IntegralRelaxed(ε)
• Go over all (p̂, p̂h, µ̂h, V̂h) tuples with p̂h ≤ p̂ that are in:

p̂ ∈
{
Pmin(1 + ε)i| i ≥ 0 , Pmin(1 + ε)i ≤ (1 + ε)Ptotal

}
,

p̂h ∈
{
Pmin(1 + ε)i| i ≥ 0 , Pmin(1 + ε)i ≤ (1 + ε)Ptotal

}
,

µ̂h ∈
{
µmin(1 + ε)i | i ≥ 0 , µmin(1 + ε)i ≤ (1 + ε)µtotal

}
,

V̂h ∈
{
Vmin(1 + ε)i | i ≥ 0 , Vmin(1 + ε)i ≤ (1 + ε)Vtotal

}
,

where Pmin = min
{
p(i)|i ∈ [n]

}
and Ptotal =

∑
i∈[n] P

(i). Similarly for µmin, µtotal,
Vmin, Vtotal.

G. Shabtai, D. Raz, and Y. Shavitt 72:11

• For each such (p̂, p̂h, µ̂h, V̂h) divide [n] to heavy and light items, H ={
i | p(i) ≥ εp̂

}
and L =

{
i | p(i) < εp̂

}
.

• Fix T1 = 1
ε2 and T2 = 1+ε

ε n. Run the dynamic programming algorithm presented
in [10] on the input

{
(p(i) = bp(i)c

p̂h/T1
, µ(i) = bµ(i)c

µ̂h/T2
, V

(i) = bV (i)c
V̂h/T2

)
}
i∈H

and
compute all partial sums. Now we do the following two checks:
1. (Check that (p̂h, µ̂h, V̂h) is heavy-feasible). Check that there exists some partial sum

(p, µ, V) such that (1−2ε)p̂h ≤ p ≤ p̂h, µ ≤ µ̂h, V ≤ V̂h. If there is no such (p, µ, V) the
test for (p̂, p̂h, µ̂h, V̂h) failed. If there is any such (p, µ, V) let H ′ = OUT ((p, µ, V), |H|)

2. (Check that the light elements can complete a good solution): Let Λ 1
1+ε p̂−p̂h

be
the polygon defined in Equation (1) using the light items, L, and the target value

1
1+ε p̂ − p̂h. Use Algorithm FPBoundry to enumerate the (at most) n2 vertices of
Λ 1

1+ε p̂−p̂h
. For each vertex I, throw away the two active elements, i and j, to get a

set L′ ⊆ L of integral light items (if the polygon is empty, L′ = ∅). This step passes if

OFPC(µ(L′) + µ(H ′)
1 + ε

, V (L′) + V (H ′)
1 + ε

) ≤ ζ.

• Let p̂ be the largest value for which steps 1 and 2 passed for some (p̂h, µ̂h, V̂h). Suppose
we used (p, µ, V) and H ′ in step 1 and L′ in step 2 when accepting (p̂, p̂h, µ̂h, V̂h). Return
H ′ ∪ L′.

I Lemma 12. Let ε, T1, T2 be as defined before. Let I∗ be an optimal feasible integral
solution with value P ∗, mean µ∗ and variance V ∗. Let p̂ be such that P ∗ ≤ p̂ ≤ (1 + ε)P ∗.
Define H =

{
i | p(i) ≥ εp̂

}
and L =

{
i | p(i) < εp̂

}
. Denote H∗ = I∗ ∩H and L∗ = I∗ ∩ L.

Let p̂h, µ̂h, V̂h be such that p(H∗) ≤ p̂h ≤ (1 + ε)p(H∗), µ(H∗) ≤ µ̂h ≤ (1 + ε)µ(H∗) and
V (H∗) ≤ V̂h ≤ (1+ε)V (H∗). Then, IntegralRelaxed(ε) accepts (p̂, p̂h, µ̂h, V̂h) and the value
of the associated set is at least (1− 5ε)P ∗.

Proof. One of the solutions the dynamic programming algorithm generates is (p = p(H∗), µ =
µ(H∗), V = V (H∗)). It is clear that p = p(H∗) ≤ p(H∗) ≤ p̂h. Similarly, µ ≤ µ̂h and V ≤ V̂h.
Also, we first notice that for every i ∈ H we have

p(i) = bp(i)c
p̂h/T1

≥ p(i) − p̂h
T1

= p(i) − ε2p̂h ≥ p(i) − ε2 p
(i)

ε
= (1− ε)p(i),

because p(i) ≥ εp̂ ≥ εp̂h (as i ∈ H). Therefore, p = p(H∗) ≥ (1 − ε)p(H∗) ≥ 1−ε
1+ε p̂h ≥

(1− 2ε)p̂h. Hence the check at step 1 passes. Let H ′ = OUT ((p, µ, V), |H|).
Next the algorithm does the check at step 2. We first notice that L∗ has value p(L∗) =

p(I∗) − p(H∗) ≥ P ∗ − p̂h ≥ 1
1+ε p̂ − p̂h, and therefore the polygon Λ 1

1+ε p̂−p̂h
is not empty

and there exists some X in the polygon that is supported over elements from L∗, i.e.,
X =

∑
i∈L∗ αiQ

(i) ≤ L∗. By Lemma (10) there exists a vertex I and an integral point L′
such that L′ ≤ X, and I − L′ = γQ(i) + δQ(j) for i and j that are the active items in vertex
I and 0 ≤ γ, δ ≤ 0.

When the algorithm goes over all the vertices in Λ 1
1+ε p̂−p̂h

it also checks I, and it
computes the integral solution L′ (which is the vertex I with the active items removed),
and when checking L′ we have µ(L′) ≤ µ(X) ≤ µ(L∗) and V (L′) ≤ V (X) ≤ V (L∗).
Notice that µ(H ′) ≤ µ(H ′) + n µ̂hT2

≤ µ(H∗) + n (1+ε)µ(H∗)
T2

≤ (1 + ε)µ(H∗). Similarly,
V (H ′) ≤ (1 + ε)V (H∗). Together,

OFPC(µ(L′) + µ(H ′)
1 + ε

, V (L′) + v(H ′)
1 + ε

) ≤ OFPC(µ(L∗) + µ(H∗), V (L∗) + V (H∗))

= OFPC(µ(I∗), V (I∗)) ≤ ζ.

ISAAC 2018

72:12 Stochastic CC Knapsack

Thus, when the algorithm gets to check vertex I (and the algorithm checks all vertices I)
the algorithm accepts and returns the solution H ′ ∪ L′. Finally, notice that

p(H ′ ∪ L′) = p(H ′) + p(L′) ≥ p(H ′) + 1
1 + ε

p̂− p̂h − 2εp̂ ≥ p+ (1− ε)p̂− p̂h − 2εp̂

≥ (1− 2ε)p̂h + (1− 3ε)p̂− p̂h = (1− 3ε)p̂− 2εp̂h ≥ (1− 5ε)p̂ ≥ (1− 5ε)P ∗

J

I Lemma 13. If algorithm IntegralRelaxed(ε) returns the set I ′, then OFP(1+ε)C(I ′) ≤ ζ.

Proof. Suppose the algorithm accepts and returns the integral set I ′ = H ′ ∪ L′. As the
algorithm passed both checks, we know that OFPC(µ(L′)+ µ(H′)

1+ε , V (L′)+ v(H′)
1+ε) ≤ ζ. Hence,

OFP(1+ε)C(µ(I ′), V (I ′)) = OFP(1+ε)C(µ(L′) + µ(H ′), V (L′) + V (H ′))

≤ OFP(1+ε)C((1 + ε)(µ(L′) + µ(H ′)
1 + ε

), (1 + ε)2(V (L′) + V (H ′)
1 + ε

))

= OFPC(µ(L′) + µ(H ′)
1 + ε

, V (L′) + V (H ′)
1 + ε

) ≤ ζ.

J

In [10] we prove:

I Lemma 14. IntegralRelaxed(ε) takes Õ(len
4n6

ε8) time, where len is the input length.

References
1 Anand Bhalgat, Ashish Goel, and Sanjeev Khanna. Improved approximation results for

stochastic knapsack problems. In Proceedings of the twenty-second annual ACM-SIAM
symposium on Discrete Algorithms, pages 1647–1665, 2011.

2 Daniel Blado, Weihong Hu, and Alejandro Toriello. Semi-infinite relaxations for the
dynamic knapsack problem with stochastic item sizes. SIAM Journal on Optimization,
26(3):1625–1648, 2016.

3 Anindya De. Boolean function analysis meets stochastic optimization: An approximation
scheme for stochastic knapsack. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1286–1305. SIAM, 2018.

4 Ashish Goel and Piotr Indyk. Stochastic load balancing and related problems. In IEEE
FOCS, pages 579–586, 1999.

5 Vineet Goyal and R Ravi. A PTAS for the chance-constrained knapsack problem with
random item sizes. Operations Research Letters, 38:162–164, 2010.

6 Jon Kleinberg, Yuval Rabani, and Éva Tardos. Allocating bandwidth for bursty connections.
SIAM Journal on Computing, 30(1):191–217, 2000.

7 Jian Li and Wen Yuan. Stochastic combinatorial optimization via poisson approximation.
In Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages
971–980. ACM, 2013.

8 Evdokia Nikolova. Approximation algorithms for offline risk-averse combinatorial optimiz-
ation. Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 338–351, 2010.

9 Galia Shabtai, Danny Raz, and Yuval Shavitt. Risk aware stochastic placement of cloud
services: the case of two data centers. In International Workshop on Algorithmic Aspects
of Cloud Computing, pages 59–88. Springer, 2017.

10 Galia Shabtai, Danny Raz, and Yuval Shavitt. A relaxed FPTAS for Chance-Constrained
Knapsack - Technical Report, 2018. To appear.

	Introduction
	Previous techniques
	Our contribution

	The Fractional Chance Constrained Knapsack Problem
	The boundary of the polygon Lambda_P.
	Enumerating the polygon vertices
	The vertices of polygon Lambda_P are almost integral
	Every fractional point in the polygon is dominated by some integral point with almost the same value

	The Relaxed FPTAS for CCKnapsack

