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Abstract—In this paper we study problems related to supporting unicast
and multicast connections with Quality of Service (QoS) requirements. We
investigate the problem of optimal routing and resource allocation in the
context of performance dependent costs. In this context each network el-
ement can offer several QoS guarantees, each associated with a different
cost. This is a natural extension to the commonly used bi-criteria model,
where each link is associated with a single delay and a single cost. This
framework is simple yet strong enough to model many practical interesting
networking problems.

An important problems in this framework is finding a good path for
a connection that minimizes the cost while retaining the end-to-end delay
requirement. Once such a path (or a tree in the multicast case) is found,
one needs to partition the end-to-end QoS requirements among the links
of the path (tree). We consider the case of general integer cost functions
(where delays and cost are integers). As the related problem is NP complete,
we concentrate on finding efficientε-approximation solutions. We improve
on recent previous results by Erg̈un et al., Lorenz and Orda, and Raz and
Shavitt, both in terms of generality as well as in terms of complexity of
the solution. In particular, we present novel approximation techniques that
yield the best known complexity for the unicast QoS routing problem, and
the first approximation algorithm for the QoS partition problem on trees,
both for the centralized and distributed cases.

I. I NTRODUCTION

Quality of Service (QoS) support is a growing need in broad-
band networks. Many modern applications require better ser-
vice than the Internet’s best effort mechanism. There have been
numerous suggestions for QoS provisioning and it has been the
focus of many recent studies. Indeed, there is a growing con-
sensus that QoS support in the Internet is necessary. Almost any
QoS framework requires a QoS Routing (QoSR) mechanism,
and this has been the subject of many proposals, as described
in [1], [2], [16] and references therein. QoSR aims at setting
the connection topology for an application, i.e., a path for uni-
cast and a tree for multicast, based on its QoS requirements and
some optimization criteria.

Many of the QoSR algorithms, first restrict the route selec-
tion to a set offeasibleroutes, which have sufficient resources
to guarantee the QoS requirements of the application, and then
choose an optimal route out of this set. The optimization cri-
terion is generally defined in terms of a “cost”, namely: there
is a cost associated with ensuring a specific QoS guarantee on
a specific route. Naturally, this cost is higher for more strin-
gent requirements, such as larger bandwidth or shorter delay. In
many cases the cost is not explicitly given but rather implied.
An implied cost mechanism is quite flexible and may be used to
incorporate different considerations:
Link considerations The cost may represent the consumption
of local resources that must be reserved on every link of the
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route to support the QoS guarantee. These may include buffer
or bandwidth reservations.
Network considerationsQoSR may be used to improve overall
network efficiency or enforce fairness. The cost may represent
the decrease in overall network performance from establishing
the selected connection. For instance, there may be loss of rev-
enue due to blocked future calls, or there may be management
costs.
User considerationsThere are several proposals for pricing
schemes for different QoS classes. Given such a pricing scheme,
the user would attempt to choose the cheapest feasible route.
Other Other optimization criteria may be expressed in terms of
costs. For instance, where there is parameter uncertainty, the
cost may represent the probability of a bad estimate.

Identifying feasible routes may be a difficult task, and its
complexity corresponds to the intricacy of the QoS mechanisms
(scheduling, signaling, and resource reservation) and of the re-
quired QoS guarantee. The constraints on the feasible set may
be relaxed to include routes that are feasible with just “high”
probability or that provide just statistical guarantees. The QoS
guarantees themselves may be imposed on the whole connec-
tion or on each individual link. The latter typically requires
mapping the application’s end-to-end requirements into local re-
quirements.

In this paper we investigate a model in which a performance-
dependent cost is associated with each network link. The goal
of the QoSR process is to identify a route and a set oflocal de-
mands on its links as to minimize the overall cost incurred. A
feasible allocation of demands must satisfy the end-to-end re-
quirement of the application. For instance, if the QoS require-
ment is end-to-end delay then a feasible allocation is apartition
of the end-to-end delay over the links of the route. The op-
timal solution must be chosen from all combinations of route
and demand allocation, namely it is a combined routing and
resource allocation optimization problem. We use integer cost
functions, which better fit practical purposes (see [15] and ref-
erences therein). We also focus on additive (e.g., delay) QoS
requirements, which are typically harder to solve for than bot-
tleneck (e.g, rate) requirements (see [13] for a more detailed
discussion).

This model and related problems were recently addressed by
several works. Some studies assumed that the route (i.e., unicast
path or multicast tree) is given and only the resource allocation
part of the problem is solved. Heuristics for loss rate guaran-
tees on unicast connections are presented in [14]. Optimal so-
lutions for convex cost functions, from an operations research
point of view, are discussed in [9] under the broader scope of



a general resource allocation problem.1 An optimal solution for
(weakly) convex cost functions and improved results for specific
cost functions are shown in [12], [13], and [15]. Heuristics for
the resource allocation problem for multicast connections are
given in [4] and the problem is optimally solved in [13]. A vari-
ant of this problem for rate guarantees is studied in [10] and a
more efficient solution is given in [8].2 Distributed optimal so-
lutions are presented in [13], and a detailed version for multicast
connections is given in [15].

The combined problem of partition and routing of QoS re-
quirements was also addressed. Optimal multicast tree con-
struction is a very complex problem even in simpler frameworks
(e.g., constrained Steiner tree [11]), thus the combined route se-
lection and resource allocation problem was solved only for uni-
cast connections. Optimal solutions were presented in [6] for
rate demands and rate-based delay requirements, and in [12] for
general (integer) delay requirements with convex cost functions.

Although these problems have been proved to be intractable,
efficient ε-approximations may be derived. The approximate
solutions areε-optimal in the sense that their cost is within a
factor of1 + ε of the optimal cost. The running time is polyno-
mial in 1/ε, that is, there is a tradeoff between the accuracy of
the solution and the computational effort needed to find it. An
approximation scheme for the combined routing and resource
allocation problem was introduced in [12]. That approximation
scheme required several limiting assumptions, including con-
vexity of the cost functions. A Fully Polynomial Approximation
Scheme (FPAS) for general (integer) costs was recently obtained
by [3].

A special case of practical interest was studied by [15]. That
study assumeddiscretecosts,3 meaning that each link offers
only a limited number of QoS guarantees (and costs) instead
of the complete spectrum of requirements. Under this assump-
tion, [15] presentedstrictly polynomial approximations for the
combined routing and resource allocation problem and for the
multicast resource allocation problem as well.

This paper presents efficient approximation schemes for gen-
eral integer cost functions and end-to-end delay requirements.
Previous approximation schemes ([12], [15], [3]) are all derived
from approximations to therestricted shortest pathproblem ob-
tained by [7] and are restricted only to eitheracyclicgraphs or
non-zerocosts. Our results apply to general (i.e., also cyclic)
graphs and allow for links with zero cost; in addition we present
the first polynomial time approximation scheme for the optimal
resource allocation problem on multicast trees with general in-
teger cost functions. Furthermore, our results improve upon the
previous ones in terms of time complexity, namely: they have
a better time complexity than the results of [3] for integer costs
and the results of [15] for discrete costs.

The rest of this paper is structured as follows. Sections II
to V discuss the combined path selection and resource alloca-
tion problem for unicast connections. Section II formulates the
model and problems and presents pseudo-polynomial solutions,
which are the basis for our approximations. In Section III we

1Optimal solutions for continuous functions are also discussed.
2[8] presents efficient solutions for a broader family of optimization problems,

which includes the one discussed in [10].
3We follow the term used by [15].

present approximation techniques which rely on tight lower and
upper bounds on the cost of an optimal solution. The problem
of efficiently finding such bounds is solved in Section IV and
the full approximation process is given in Section V. Section VI
applies similar approximation techniques to solve the resource
allocation problem on multicast trees. Finally, concluding re-
marks are given in Section VII.

II. PRELIMINARIES

In this section, we give a formal definition of the problem and
present simple dynamic programming pseudo polynomial solu-
tions. These pseudo polynomial algorithms are used as “build-
ing blocks” for the approximation algorithms presented in the
rest of the paper. Similar (and more detailed) solutions can be
found in previous works [12], [13], [15].

The network is represented as a graphG(V,E), where|V | =
n and |E| = m. There is a single source nodes and a single
target nodet. We denote anst-path byp, and its length (number
of hops) by|p|. We shall assume that all parameters (both delays
and costs) are integers. We will further assume that the minimal
cost on any link is1, however we shall relax these assumptions
in Section V-B.

A. Restricted Shortest Path

The Restricted Shortest Path Problem (see e.g., [7]) can be
viewed as a special case of our problem. Each linkl ∈ E offers
a single delay and cost, which are denoted bydl andcl respec-
tively. We define the cost of a path asc(p) ≡

∑
l∈p cl and the

delay of a path bydelay(p) ≡
∑

l∈p dl .
Problem RSP (Restricted Shortest Path):Given a network

G(V,E), a delay/cost pair for each link{dl, cl}l∈E , and an end-
to-end requirementD. Find the minimal cost path among all
paths which satisfydelay(p) ≤ D .

Algorithm RSP (Fig. 1) is a pseudo polynomial dynamic pro-
gramming algorithm that solves Problem RSP.

RSP (G(V,E), {dl, cl}l∈E , D, U ):
1 for all v 6= s
2 D(v, 0)←∞
3 D(s, 0)← 0
4 for i = 1, 2, . . . , U
5 for v ∈ V
6 D(v, i)← D(v, i− 1)
7 for l ∈ {(u, v) | c(u,v) ≤ i}
8 D(v, i)← min{D(v, i), dl +D(u, i− cl)}
9 if D(t, i) ≤ D

10 return the corresponding path
11 returnFAIL

Fig. 1. Algorithm RSP

The parameterU is an upper bound on the cost of the solution.
The algorithm returns the minimal cost path that satisfies the
delay requirement if the cost of this path is no greater thanU ,
otherwise it fails.
Complexity For eachi each link is examined at most once, thus
the overall complexity isO(mU). If a solution is found then
the complexity isO(mc∗), wherec∗ is the cost of the optimal
solution.
Note If some links have a zero cost then the updates in line 8
may not be performed in an arbitrary order. For acyclic graphs,



the “natural” partial order induced by the graph ensures correct-
ness, however establishing a correct update order for general
graphs requires a shortest path computation at each iteration of
the algorithm and adds to the complexity.

B. Optimal QoS Partition and Routing

We now generalize the results forintegercost functions. Each
link may offer different (integer) delay guarantees,dl, each as-
sociated with a (integer) costcl(dl). The cost of a pathp with a
given delay partition{dl}l∈p is defined asc(p) =

∑
l∈p cl(dl).

Problem OPQR (Optimal QoS Partition & Routing):Given
a network G(V,E), a delay/cost function for each link
{cl(d)}l∈E , and an end-to-end requirementD. Find the min-
imal cost pathp and partition{dl}l∈p that satisfies the end-to-
end delay requirementD.

We denote the optimal path byp∗ and the optimal partition
by d∗ = {d∗l }l∈p∗ with optimal costc∗.

The following dynamic programming algorithm (Fig. 2)
solves Problem OPQR. The general idea behind the algorithms
is to view each linkl as a set of links{l1, l2, . . . , lU} corre-
sponding to all possible costs on the link. The delay associated
with each of these links is the minimal delay which achieves the
specified cost (line 9).

OPQR (G(V,E), {cl(d)}l∈E , D, U ):
1 for all v 6= s
2 D(v, 0)←∞
3 D(s, 0)← 0
4 for i = 1, 2, . . . , U
5 for v ∈ V
6 D(v, i)← D(v, i− 1)
7 for l ∈ {(u, v) | v ∈ V }
8 for j = 1, a2, . . . , i
9 dl(j) = min{d | cl(d) ≤ j}

10 D(v, i)← min{D(v, i), dl(j) +D(u, i− j)}
11 if D(t, i) ≤ D
12 return the corresponding path and partition.
13 returnFAIL

aThe minimal link cost is assumed to be1.

Fig. 2. Algorithm OPQR

Complexity For each possible cost valuei each link is exam-
ined i times (in line 8),i.e., O(U2) examinations overall. In
each examination in line 9 we need to find the minimal delay
that has a cost no greater thanj which requiresO(logD) steps,
implying an overall complexity ofO(mU2 logD). If we save
the dl(j) values and compute it only for new values ofj then
repeated examinations can be done inO(1). At mostU new
computations (each requiringO(logD) are required per link.
The overall complexity would then beO(mU2 +mU logD) =
O(mU(U+logD)). If a solution is found then the overall com-
plexity isO(mc∗(c∗ + logD)), wherec∗ is the cost of the opti-
mal solution.
Note 1 In some cases the complexity of the computation in
line 9 can be done in less thanO(logD). For instance, if the
inverse functions{dl(c)}l∈E are available, (e.g. they have an
explicit analytic expression which has an inverse form) then it
can be computed inO(1) and thelogD can be eliminated from
the complexity.

Note 2 If the cost functions are (weakly) convex then Algo-
rithm OP-MP of [12] can be applied.4 The resulting complexity
isO(mU(logU + logD)).

III. SAMPLING AND SCALING

In this section we present approximation techniques based on
sampling and scaling. The two methods are used in succession
at a preliminary stage to produce an instance of Problem RSP
or Problem OPQR with smaller integer parameters. We then
find an approximated solution by calling the appropriate pseudo-
polynomial algorithm presented in the previous section. Since
the complexity of Algorithm RSP and Algorithm OPQR de-
pends on their integer input parameters, reducing these parame-
ter values improves the complexity.

On the other hand, both sampling and scaling introduce an
error in cost on every link, because they affect the granularity of
the parameters. There is a tradeoff between the accuracy of the
solution obtained and the complexity of the algorithms. We seek
anε-approximation, namely a solution with cost no greater than
a factor of(1 + ε) from the optimum. The value ofε is an input
to the algorithms and the complexities polynomially depend on
1/ε.

In this section, we assume that an upper bound and a lower
bound on the optimal solution are given. In the next section,
we show how to efficiently obtain these bounds. Note that the
tighter these bounds are the lower is the complexity of finding a
solution.

A. Logarithmic sampling

In this section we use logarithmic sampling on the cost func-
tions. The idea is not to check the cost functions for every
possible cost, as is done by Algorithm OPQR. Instead, we
check delays that correspond to specific costs on a logarithmic
scale. Specifically, we check delays which correspond to costs
of 1, (1 + ε), (1 + ε)2, . . . , U , whereU is an upper bound on
the maximal cost. We replace each link with a set of links each
corresponding to a specific delay (and cost), and then we solve
Problem RSP. Algorithm L-OPQR (Fig. 3) finds anε approxi-
mation to Problem OPQR.

L-OPQR (G(V,E), {cl(d)}l∈E , D, U, ε):
1 Iε = dlog1+ε Ue
2 for eachl ∈ E
3 for eachj = 0, 1, . . . , Iε

4 dlj ← min{d | cl(d) ≤ (1 + ε)j}
5 clj ← (1 + ε)j

6 Ê = {lj | l ∈ E, j = 0 . . . Iε}
7 Û = (1 + ε)U

8 p̂← RSP
(
Ĝ(V, Ê), {dlj , clj}lj∈Ê , D, Û

)
9 if p̂ = FAIL then returnFAIL

10 (else)p← {l | ∃lj ∈ p̂}
11 for eachl ∈ p
12 ̂l ← {j | lj ∈ p̂}
13 returnp, {dl̂l}l∈p

Fig. 3. Algorithm L-OPQR

4Without the additional assumptions of [12] (e.g., bounds on the cost of each
link).



Lines 1–7 select the delays on logarithmic scale costs, line 8
calls Algorithm RSP, and lines 10–13 compute the partition in
terms of the original problem.
Complexity Let m̂ = mIε = O(m logU

ε ). Initializing Ĝ re-
quiresO(m̂ logD). Calling Algorithm RSP requiresO(m̂U).
The overall complexity is thereforeO

(
m logU

ε (logD + U)
)

.

Note If Iε > U then logarithmic scaling does not im-
prove the complexity, and an exact solution can be found in
O(mU(logD + U)) by using Algorithm OPQR.

Theorem 1: If Algorithm L-OPQR returnsFAIL thenc∗ >
U . Otherwise the returned pathp and its corresponding partition
are a feasible solution to Problem OPQR with cost

c(p) ≤ (1 + ε) min{c∗, U},

namelyp is an1 + ε approximate solution.
Proof: For eachl ∈ p∗, let j∗l = dlog1+ε c

∗
l e.5 Obviously

c∗l ≤ (1 + ε)j
∗
l ≤ (1 + ε)c∗l . (1)

From the definition of line 4, and sincec∗l = cl(d∗l ) ≤ (1 +
ε)j
∗
l , we getdlj∗l ≤ d∗l . Thus

∑
l∈p∗ dlj∗l ≤ D, i.e., the path

{lj∗l }l∈p∗ is a feasible solution on̂G. By the same definition
(line 4), clj∗l ≤ (1 + ε)j

∗
l . Inserting this into (1) and summing

we get

ĉ∗ ≡
∑
l∈p∗

clj∗l ≤
∑
l∈p∗

(1 + ε)c∗l = (1 + ε)c∗. (2)

If U ≥ c∗ thenj∗l ≤ Iε and from (2)ĉ∗ ≤ (1 + ε)U = Û .
Therefore, the feasible path{lj∗l }l∈p∗ must be examined by the
call to Algorithm RSP, and thus, Algorithm L-OPQR will not
returnFAIL . Hence, Algorithm L-OPQR may returnFAIL only
if c∗ > U .

Algorithm RSP finds the minimal cost feasible path onĜ,
with cost at most̂U , thereforec(p) ≤ min{ĉ∗, Û}. UsingÛ =
(1+ε)U and (2) we getc(p) ≤ (1+ε) min{c∗, U}, as claimed.

B. Linear scaling

Here we present an approximation based on linear scaling of
the costs. Scaling is applied to all costs to produce an instance of
Problem OPQR with smaller costs. We then call Algorithm L-
OPQR to find the optimal solution.

We use the lower boundL to compute a scale factorS which
introduces an overall error no greater than a fraction ofε from
L. If the lower bound is valid (L ≤ c∗) then this ensures the
accuracy of the solution obtained. The tightness (ratio) of the
upper and lower bounds determines the complexity of the algo-
rithm. Algorithm S-OPQR (Fig. 4) uses scaling to find anε
approximation to Problem OPQR.
Complexity The complexity is dominated by the call to Algo-

rithm L-OPQR (line 5), which requiresO(m log Ũ
ε (logD+Ũ)).

Let α ≡ U/L. Then,Ũ = O(αn/ε) and the overall complexity
is

O
(m
ε

log
αn

ε

(
logD +

αn

ε

))
.

5Note that the assumptioncl ≥ 1 is needed here.

S-OPQR (G(V,E), {cl(d)}l∈E , D, U,L, ε):
1 S ← Lε

n+1

2 for eachl ∈ E
3 definec̃l(d) ≡ bcl(d)/Sc+ 1

4 Ũ ← dU/Se+ n

5 return L-OPQR
(
G̃(V,E), {c̃l(d)}l∈E , D, Ũ , ε

)
Fig. 4. Algorithm S-OPQR

Note SinceL is used only for scaling, it does not have to be a
valid lower bound for the algorithm to produce a solution. How-
ever it does affect the accuracy of the solution, namely we get
anε-approximation only ifL ≤ c∗.

Theorem 2: If Algorithm S-OPQR returnsFAIL thenc∗ >
U . Otherwise the pathp returned and its partition are a feasible
solution to Problem OPQR and

c(p) ≤ (1 + ε)(min{c∗, U}+ εL).

Thus, if L ≤ c∗ ≤ U then c(p) ≤ c∗(1 + ε)2, i.e., p is an
(1 + ε)2 ≈ 1 + 2ε approximate solution.

Proof: For eachl ∈ E we havecl(d) ≤ Sc̃l(d) ≤ cl(d) +
S. Summing for all links we get for any pathp

c(p) ≤ Sc̃(p) ≤ c(p) + nS. (3)

If U ≥ c∗ then

c̃(p∗) ≤ c∗

S
+ n ≤

⌈
U

S

⌉
+ n = Ũ .

This implies that ifU is indeed an upper bound onG then so
is Ũ on G̃ (namely, with cost functions{c̃l(d)}l∈E). Therefore,
if Algorithm S-OPQR returnsFAIL (i.e., Algorithm L-OPQR
returnedFAIL ) thenU < c∗. Let c̃∗ be the cost of the optimal
solution to Problem OPQR oñG. Sincep∗ is a feasible partition
on G̃ we must have

c̃∗ ≤ c̃(p∗) ≤ c∗

S
+ n. (4)

The pathp returned by Algorithm L-OPQR must satisfyc̃(p) ≤
(1 + ε) min{c̃∗, Ũ}. Inserting into (3) and (4) we get

c(p) ≤ Sc̃(p)
≤ S(1 + ε) min{c̃∗, Ũ}
≤ S(1 + ε) min{c̃(p∗), Ũ}

≤ S(1 + ε) min{c
∗

S
+ n, Ũ}

≤ (1 + ε)(min{c∗, U}+ (n+ 1)S)
≤ (1 + ε)(min{c∗, U}+ εL),

as claimed.
Remark 1: It is possible to replace the call to Algorithm L-

OPQR on line 5 with a call to Algorithm OPQR. The overall
complexity will then beO

(
mαn

ε

(
logD + αn

ε

))
, which may

be an improvement ifε is very small (log αn
ε > αn). If a path

p is returned by Algorithm S-OPQR then, in this case, it sat-
isfiesc(p) ≤ min{c∗, U} + εL. The proof is similar to that of
Theorem 2.



Remark 2: For convex cost functions it is possible to ap-
ply scaling to theexact algorithm MP-OP of [12]. That is,
MP-OP is called instead of Algorithm L-OPQR in line 5 of
Algorithm S-OPQR. The overall complexity in this case is
O
(
mαn

ε

(
logD + log αn

ε

))
,which is an improvement unless

D > αn/ε > 2αn.

IV. F INDING UPPER ANDLOWER BOUNDS

In this section we present algorithms for finding upper and
lower bounds on the solution to Problem OPQR. We seek tight
bounds,i.e., with α = U/L as small as possible. We can then
use these bounds with the approximation algorithms of the pre-
vious section.

A. General idea

We follow the method proposed by Hassin [7]. Suppose we
have a test procedure, TEST(λ), that checks whetherλ is a valid
upper bound. We can call TEST(λ) for all λ ∈ {1, 2, 4, 8, . . . }.
If for someλ∗, TEST(λ∗) returnsFAIL and TEST(2λ∗) succeeds
thenλ∗ ≤ c∗ ≤ 2λ∗. Clearly, since TEST(λ) returnsFAIL for
all λ < c∗, then if TEST(1) returnsFAIL such aλ∗ will be found
in O(log c∗) tests.

Now, suppose that all we have is anapproximatedtest proce-
dure in the following sense.

Definition 1: A test procedure, TEST(λ), is anf -approximated
test procedure if it satisfies the following:
1. if TEST(λ) returnsFAIL thenλ < c∗, otherwise
2. TEST(λ) returnsf(λ) andf(λ) ≥ c∗.
TEST(λ) either returns a valid upper boundf(λ) ≥ c∗ or FAIL .
If T EST(λ) returnsFAIL thenλ is not a valid upper bound (i.e.,
c∗ > λ, meaning thatλ is actually a lower bound). If TEST(λ)
returnsf(λ) then it is a valid upper bound, butλ may not be a
valid upper bound.

Note that the above definition is a generalization of Hassin’s
approximated test procedure. By settingf(x) = (1 + ε)x one
obtains Hassin’sε-approximation test procedure [7].

We can apply the above method and call TEST(λ) for all
λ ∈ {1, 2, 4, 8, . . . }. If for someλ∗, TEST(λ∗) returnsFAIL and
TEST(2λ∗) returnsf(2λ∗) thenλ∗ ≤ c∗ ≤ f(2λ∗). Again, if
TEST(1) returnsFAIL then such aλ∗ must be found inO(log c∗)
tests. Otherwise, if TEST(1) returnsf(1) then0 ≤ c∗ ≤ f(1).

If f(λ) is a monotonic increasing function ofλ and there
are some known (possibly trivial) lower and upper boundsL ≤
c∗ ≤ U then the following algorithm (Fig. 5) may be used.

Algorithm BOUND performs a binary search on a logarith-
mic scale. This can be viewed as a search forλ∗ on the group
{L, 2L, 4L, . . . , U}. The quality of the bounds we get (see
line 14) depends on the accuracy of test procedure, namely on
f(λ). Specifically, the returned bounds[L,U ] must satisfy

L ≤ c∗ ≤ U ≤ f(2L), i.e., α ≡ U

L
≤ f(2L)

L
.

If, for instance,f(λ) = λ then the bounds satisfyL ≤ c∗ ≤
U ≤ 2L, i.e., α ≤ 2.
Complexity The number of calls to TEST(λ) is of orderlog(u−
l) with the initial l, u, that is

O (log(logU − logL)) = O

(
log log

U

L

)
≡ O(log logα).

BOUND (TEST(), L, U ):
1 if TEST(L) does not returnFAIL then
2 return[L, f(L)]
3 if TEST(U) returnsFAIL then
4 return ERROR

5 f ← f(U)
6 l← logL
7 u← logU
8 whileu− l > 1
9 λ← 2(l+u)/2

10 if TEST(λ) returnsFAIL then
11 l← log λ
12 else
13 u← log λ
14 f ← f(λ)

15 return[2l, f ]

Fig. 5. Algorithm BOUND

Note The initial lower boundL is assumed to be valid. On
the other hand,U does not have to be a valid upper bound,
but TEST(U) must notFAIL (i.e., f(U) should be a valid up-
per bound). A valid upper bound could be chosen as the initial
U in which case TEST(U) would notFAIL , however, this would
be a pessimistic bound with relatively high complexity. It is bet-
ter to choose the smallest knownU for which TEST(U) does not
FAIL .

Altogether, we have proven the following theorem.
Theorem 3: Given anf -approximation TEST() procedure,

an upper bound,U , and a lower bound,L, such thatL ≤ c∗ ≤
f(U), Algorithm BOUND finds correct upper and lower bounds,
u andl, such that

u

l
≤ f(2l)

l
.

An obvious valid initial lower bound is1.6 A slightly bet-
ter bound isminl∈E cl(D), which is actually a lower bound on
the cost on any link. This bound can be improved by comput-
ing the length of the shortestst-path with{cl(D)}l∈E as link
lengths, since the cost of each linkl on any feasible partition is
at leastcl(D). A valid upper bound is

∑
l∈p cl(D/|p|) for some

arbitraryst-pathp, because{D/|p|}l∈p is a feasible partition.
Therefore, a valid upper bound is the length of the shortestst-
path with{cl(D/n)}l∈E as link lengths.

B. The test procedures

In this section, we present two test procedures that can be used
with Algorithm BOUND. We assume that the test procedures
are aware of the problem instance, i.e.,G(V,E), {cl(d)}l∈E , D.
For notation simplicity we omit the problem instance from the
test procedure description.

The first test (Procedure TEST1, Fig. 6) is based on Algo-
rithm S-OPQR. It is very accurate (f(λ) ≤ 4λ), however has
relatively high complexity.
Complexity Using the complexity expression for Algorithm S-
OPQR we get (α = 1, ε = 1)

O (m log n(logD + n)) .

Accuracy By Theorem 2 if TEST1 returnsFAIL thenc∗ > U ≡
λ; and if it returns a pathp thenc(p) ≤ (1 + ε)(U + εL) =

6Recall that this is assumed to be the minimal cost on any link.



ProcedureTEST1 (λ):
1 p←S-OPQR(G(V,E), {cl(d)}l∈E , D, λ, λ, 1)
2 If p = FAIL

3 returnFAIL

4 else
5 returnc(p)

Fig. 6. Procedure TEST1

(1 + 1)(λ + λ) = 4λ. Obviously,f(λ) ≡ c(p) is a valid upper
bound, and we havef(λ) ≤ 4λ.

The second test (Procedure TEST2, Fig. 7) is based on a “stan-
dard” shortest path computation. It is less accurate than TEST1,
but has better complexity. The idea is to bound the highest cost
incurred on any single link of the optimal solution.

ProcedureTEST2 (λ):
1 for eachl ∈ E
2 dl(λ) ≡ min{d | cl(d) ≤ λ}
3 p← ShorteststPath (G(V,E), {dl}l∈E)
4 if delay(p) > D
5 returnFAIL

6 else
7 returnc(p)

Fig. 7. Procedure TEST2

Complexity Computingdl(λ) requiresO(logD) for each link.
Computing the shortest path requiresO(m + n log n).7 The
overall complexity is thus

O(m logD + n log n).

Note If G is connected then TEST2(maxl∈E cl(D/n)) cannot
FAIL . Therefore,maxl∈E cl(D/n) can be used as an initial up-
per bound for Algorithm BOUND with TEST2. An even better
bound can be found by computingλ such thatG(V,E(λ)) has
an st-path, whereE(λ) is defined as{l|cl(D/n) ≤ λ}. Such
a λ can be found inO(m logm) by sorting the links and then
runningO(logm) connectivity tests.

Theorem 4: Procedure TEST2 is a valid test procedure with
f(λ) ≤ nλ.

Proof: If a feasible pathp is found by the call to
SHORTEST-PATH then by definitioncl ≤ λ for all l ∈ p, im-
plying an overall costc(p) ≤ nλ. Since{dl(λ)}l∈p is a fea-
sible partition we must havec∗ ≤ c(p) ≤ nλ. In other words
f(λ) ≤ λn.

Consider now the optimal solution to Problem OPQR. Ifλ ≥
c∗ then sincec∗ ≥ c∗l for everyl ∈ p∗, we have

dl(λ) ≤ dl(c∗) ≤ dl(c∗l ) = d∗l ∀l ∈ p∗.

Therefore,
∑
l∈p∗ dl(λ) ≤

∑
l∈p∗ d

∗
l ≤ D, namelyp is a feasi-

ble path w.r.t.{dl(λ)}l∈E and the algorithm cannot fail. Thus,
if the algorithm returnsFAIL thenλ < c∗.

V. PUTTING IT ALL TOGETHER

We can now present a fully polynomial approximation algo-
rithm to Problem OPQR.

7Using Dijkstra’s algorithm.

ε-OPQR (G(V,E), {cl(d)}l∈E , D, ε):
1 U1 ← maxl∈E cl(D/n)
2 L1 ← cost ofShorteststPath (G(V,E), {cl(D)}l∈E)
3 [L2, U2]← BOUND(TEST2, L1, U1)
4 [L3, U3]← BOUND(TEST1, L2, U2)
5 return S-OPQR(G(V,E), {cl(d)}l∈E , D, L3, U3, ε)

Fig. 8. Algorithmε-OPQR

Complexity L1 is a valid lower bound and TEST2(U1) can-
not return FAIL . Thus, L1, U1 are a valid input to Algo-
rithm BOUND in line 3. Computing both these bounds requires
O(m + n log n). Algorithm BOUND requiresO(log log β)
calls to Procedure TEST2, whereβ is the ratio of the ini-
tial bounds.8 Thus, the overall complexity up to line 3 is
O(log log β(m logD + n log n)).9

L2 and U2 are valid bounds onc∗ and therefore are valid
input to Algorithm BOUND. Since U2/L2 ≤ 2n the
call to Algorithm BOUND in line 4 requiresO(log log n)
calls to Procedure TEST1 and an overall complexity of
O (log log n(m log n(logD + n))).
L3, U3 are valid bounds onc∗ and therefore are valid input to Al-
gorithm S-OPQR.U3/L3 ≤ 8, hence the call to Algorithm S-
OPQR requires

O

(
m

ε
log

8n
ε

(
logD +

8n
ε

))
.

The overall complexity is therefore

O

(
(m logD + n log n) log log β+

m log n(logD + n) log log n+ m
ε log n

ε

(
logD + n

ε

))
=

O

(
m logD

(
log log β + log n log log n+

1
ε

log(n/ε)
)

+n log n (log log β +m log log n) + 1

ε2mn log(n/ε)
)

Note 1 For very small values ofε, replacinglog n
ε by n may

improve the complexity (see Remark 1 in Section III-B).
Note 2 The complexity can also be improved for the case of
convex cost functions (see Remark 2 in Section III-B).
CorrectnessAs explained before,U1 andL1 are valid bounds.
Using Theorem 3 and Theorem 4 we get thatU2 andL2 are also
valid bounds. Applying Theorem 3 again with TEST1, together
with Theorem 1 establish the algorithm correctness.

A. Discrete cost functions

In this section we discuss the application of our approxima-
tion techniques to the more restricted case ofdiscretecost func-
tions. This case, which was studied by [15], admits a strictly
polynomial approximation scheme, meaning that the complex-
ity does not depend on eitherlog log β or logD. We follow
[15] and use the termdiscreteto refer to cost functions with

8Note thatβ is bounded by the maximal cost of any single link.
9Even if U1 is replaced by the better bound suggested in the note in Sec-

tion IV-B the complexity of finding the initial bounds is still dominated by the
rest of the algorithm.



at mostq discrete (delay,cost) values, whereq is given as in-
put. Next, we derive an improved complexity for the solution of
Problem OPQR for discrete cost functions.

We first observe that computing the inverse cost function
(e.g., in line 9 of Algorithm OPQR) can be done inO(log q)
instead ofO(logD). This reduces the complexity of Algo-
rithm OPQR toO(mU(logU+log q)). Alternatively, each link
can be replaced byO(q) links corresponding to its offered ser-
vices. After this substitution, Algorithm RSP can be used with a
complexity ofO(mqU). Our second observation is that we can
reduce the number of calls to TEST2 by Algorithm BOUND. In-
stead of searching through the whole range of costs we can limit
the search to theO(mq) discrete cost values, which requires
only O(log(mq)) calls to TEST2. The initial sort requires ad-
ditionalO(mq log(mq)) operations, however using techniques
for searching in arrays with sorted columns [5], the additional
number of operations can be reduced toO(m log q). The over-
all complexity, assumingq = O( 1

ε log n
ε ),10 is

O
(

(m log q + n log n) log(mq)+

m log n(log q + n) log log n+ mqn
ε

)
.

This is a significant (aboven2) improvement over the

O(mqn
3 log(mq)
ε ) approximation obtained in [15].

B. Zero and non-integer costs

We shall now relax the assumption that the minimal cost on
every link is at least1. As noted in Section II-A, if there are
links that have a zero cost and the graph contains cycles then
a shortest-path computation is required in every iteration of the
exact pseudo-polynomial solution. This increases the complex-
ity of Algorithm RSP by a factor oflog n, and adds to the com-
plexity of all the approximations.

Both Algorithm OPQR and Algorithm L-OPQR assume a
minimal cost of1 on every link. On the other hand, these algo-
rithms are called only through Algorithm S-OPQR which as-
signs costs that cohere with this assumption. The rounding in
line 3 of Algorithm S-OPQR ensures that the minimal cost as-
signed on any link is at least1. The only requirement is that the
scaling factorS is greater than zero. The scaling factor would
be zero only if eitherL or ε is zero. If ε = 0 then we actu-
ally require an exact solution and therefore Algorithm S-OPQR
cannot be used. We can still use Algorithm OPQR, as is, for
acyclic graphs, or modify it (with increased complexity) to in-
clude a shortest-path computation in every iteration.

If L = 0 then the approximation scheme requires infinite
time anyway, since in this caseα = ∞. On the other hand, for
any positiveL, Algorithm S-OPQR works fine, with the same
complexity, even ifL � 1. Also, Algorithm BOUND only re-
quiresL > 0 hence Algorithmε-OPQR only requiresL1 > 0.
The case ofc∗ = 0 can be easily checked by calling Proce-
dure TEST2 withλ = 0. Note that in this case, any feasible path
returned by TEST2 is an (exact) optimal solution. Ifc∗ > 0 but
L1 = 0 then some assumption (e.g.L1 ≥ 1) must be made.
Except from its dependency onlog log β, Algorithm ε-OPQR

10This determines whether Algorithm OPQR or Algorithm RSP are used.

is totally independent of the cost values. Specifically, the costs
do not need to have integer values.

VI. M-OPQ

In this section we solve the multicast resource allocation ver-
sion of Problem OPQR. We assume that the multicast tree is
given and that the problem is to find the optimal resource allo-
cation (delay partition) on it.

We denote a multicast tree byT and the multicast target group
byM = {t1, t2, . . . }. We denote a path from the sources to a
nodev by pv. The cost of a tree is defined asc(T ) ≡

∑
l∈T cl.

The delay of a tree is defined as the maximal delay of a path
from the source to any member of the multicast group, namely
delay(T ) ≡ maxv∈M delay(pv ).

Problem M-OPQ (Multicast Optimal QoS Partition):Given
a treeT , a delay/costfunction for each link{cl(d)}l∈T , and
an end-to-end requirementD. Find the optimal partition
d = {dl}l∈T that satisfies the end-to-end delay requirement
delay(T ) ≤ D .

We present exact andε-approximate solutions which apply to
any integer cost functions. We assume all parameters (costs and
delays) are integers.

A. Exact solution

We solve Problem M-OPQ using the same techniques we used
for Problem OPQR. We start with Algorithm M-OPQ (Fig. 9)
which is an exact pseudo-polynomial solution. The rootlink of a
tree is denoted byx, the two11 links connected tox are denoted
by y andz and their corresponding sub-trees are denoted byT y

andT z. As before,n,m (= n− 1) denote the number of nodes
and links in the tree. The hight (depth) of the tree is denoted by
H.

Algorithm M-OPQ (Fig. 9) finds the optimal partition on the
whole tree by combining optimal partitions on the sub-trees.
W ,X,Y andZ are tables of sizeU which hold the best de-
lay achieved for each and every cost. Such a table is computed
for each sub-tree and for each link. The algorithm recursively
merges tables of sub-trees (and links) until it reaches the root of
the tree. Each call to Procedure MERGE (Fig. 9) finds the best
allocation of cost between two branching sub-trees or between
a sub-tree and its root link. In the latter case the delays must be
summed and Procedure MERGE is called with aΣ operator. In
the former case the overall delay is the maximal delay between
the two (parallel) branches and Procedure MERGEis called with
amax operator.
Complexity Each call to Procedure MERGE requiresO(U2).
There are two such calls for every node in the tree. Calculat-
ingX(c) in line 5 requiresO(U logD). The overall complexity
is thereforeO (nU(logD + U)). A distributed algorithm which
uses parallel calls to sub-trees (see [15] for detailed description)
has a time complexity ofO(HU(logD + U)).

B. Approximation

We can use Algorithm S-OPQR to find anε-approximation to
Problem M-OPQ. For this end, it is sufficient to replace the call

11Without loss of generality, we assume a binary tree. The tree can be made
binary by splitting each non-binary node withx children tox− 1 binary nodes.
This adds a constant factor to the complexity.



M-OPQ (T , {cl(d)}l∈T , D, U ):
1 Y ←M-OPQ(T y , . . . )
2 Z ←M-OPQ(T z , . . . )
3 W ←MERGE(Y ,Z, U,max)
4 for c = 1 . . . U
5 X(c)← min{d | cx(d) ≤ c}
6 X ←MERGE(X,W , U,Σ)
7 if X(U) > D
8 returnFAIL (exit recursion)

9 (else) return

{
X (all except root)
min{c |X(c) ≤ D} and the cor-
responding partition.

(root only)

ProcedureM ERGE (A(c),B(c), U, op):
1 for c = 0 . . . U
2 D(c) = min1≤x≤c op{A(x),B(c− x)}
3 returnD

Fig. 9. Algorithm M-OPQ

to Algorithm L-OPQR in line 5 of Algorithm S-OPQR with
a call to Algorithm M-OPQ. Algorithm SM-OPQ (Fig. 10) is
the modified version.

SM-OPQ (T , {cl(d)}l∈T , D, U, L, ε):
1 S ← Lε

n+1

2 for eachl ∈ T
3 definec̃l(d) ≡ bcl(d)/Sc+ 1

4 Ũ ← dU/Se+ n

5 return M-OPQ
(
T̃ , {c̃l(d)}l∈T , D, Ũ , ε

)
Fig. 10. Algorithm SM-OPQ

Complexity The complexity is dominated by the call to Algo-
rithm M-OPQ (line 5), which requiresO(nŨ(logD + Ũ)),
whereŨ = O(αn/ε), as in Algorithm S-OPQR. Thus, the
overall complexity is

O
(
n
αn

ε

(
logD +

αn

ε

))
= O

(
αn2

ε

(
logD +

αn

ε

))
.

The overall complexity for the distributed case is

O
(
H
αn

ε

(
logD +

αn

ε

))
.

Note As for Algorithm S-OPQR,L does not have to be a valid
lower bound, but it affects the accuracy of the solution.

Theorem 5: If Algorithm SM-OPQ returnsFAIL thenc∗ >
U . Otherwise the partitiond(T ) returned is a feasible solution
to Problem M-OPQ and

c(d(T )) ≤ min{c∗, U}+ εL.
The proof is similar to that of Theorem 2.
We can find lower and upper bounds to Problem M-OPQ us-

ing Algorithm BOUND and apply Algorithmε-OPQR with a
few modifications (see Fig. 12). First, the initial bounds are

U1 = max
l∈T

cl(D/H), L1 =
∑
l∈T

cl(D);

second, we replace the call to Algorithm S-OPQR in Proce-
dure TEST1 with a call to Algorithm SM-OPQ; and third, we
use the following Procedure TEST2M (Fig. 11) instead of Pro-
cedure TEST2.

TEST2M (λ):
1 for eachl ∈ T
2 dl(λ) ≡ min{d | cl(d) ≤ λ}
3 if delay(T ) ≤ D then
4 returnHλ
5 else
6 returnFAIL

Fig. 11. Algorithm TEST2M

ComplexityO(n logD); andO(H logD) for a distributed im-
plementation.

The fully polynomial approximation algorithm to Problem M-
OPQ is presented in Fig. 12.

ε-M-OPQ (T , {cl(d)}l∈T , D, ε):
1 U1 ← maxl∈T cl(D/H)
2 L1 ←

∑
l∈T cl(D)

3 [L2, U2]← BOUND(TEST2M, L1, U1)
4 [L3, U3]← BOUND(TEST1, L2, U2)
5 return SM-OPQ(T , {cl(d)}l∈T , D, L3, U3, ε)

Fig. 12. Algorithmε-M-OPQ

Complexity Combining the complexity expressions of Algo-
rithm SM-OPQ and the modified test procedures we get the
overall complexity of finding anε approximation to Problem M-
OPQ:

O
(
n logD log log β+

n2(logD + n) log logH + n2

ε (logD + n
ε )
)
,

where

β =
max
l∈T

cl(D/H)∑
l∈T

cl(D) .

For the distributed case the complexity is

O
(
H logD log log β+

nH(logD + n) log logH + nH
ε

(
logD + n

ε

) )
.

CorrectnessSimilar to the unicast case.

VII. C ONCLUSIONS

In this paper we studied efficient approximations to optimal
routing and resource allocation in the context of performance
dependent costs.

We established fully polynomial approximation schemes for
the following problems:
Problem OPQRThe combined optimal routing and partition
problem for unicast connections.
Problem M-OPQ Optimal partition of end-to-end QoS require-
ments on a multicast tree, including a distributed implementa-
tion.
We also presented improved results for the two important special
cases of convex cost functions and discrete cost functions.

We presented the first fully polynomial approximation
scheme (FPAS) for Problem OPQR that is not limited to either
acyclic networks or links with non-zero costs. Our approxima-
tions are valid for general costs, and in particular to non-convex



cost functions. In addition, we presented the first FPAS for Prob-
lem M-OPQ that applies to general cost functions.

Our results significantly improve upon previous results, in ev-
ery context of cost functions that has been investigated. Specifi-
cally:
General costsThe approximation scheme of [3] achieves an
overall complexity ofO(Xmn

ε log log(nCmax)), whereCmax

is a trivial upper bound on the cost of any link andX =
min{D, logCmax

ε + logD, nε + logD}. Our approximation
scheme provides a significant improvement in terms of com-
putational complexity. The exact comparison involves a cum-
bersome algebra and is thus omitted; as an indication to the ex-
tent of the improvement, we note that our approximation out-
performs that of [3] by a factor of more than eitherlog log β or
n/ε, depending on the relative order of magnitude of the input
parameters.
Convex costsFor Problem OPQR, efficient approximations for
convex cost functions were studied in [12]. However, that ap-
proximation requires several more assumptions on the cost func-
tions, e.g. that the maximal cost on any link is bounded. Those
assumptions were reasonable in the context studied in [12],
namely uncertainty of network parameters, but they are too re-
strictive for the general case considered here. In contrast, our re-
sults do not rely on those assumptions. On the other hand, when
only QoSpartitioning is considered (i.e., the routing is given),
the convexity assumption allows forexactpolynomial solutions
for both unicast and multicast [13]; moreover, the (exact) solu-
tion of [13] for Problem M-OPQ outperforms our approximation
also in terms of complexity.
Discrete costsWe improved the results of [15] for discrete cost
functions (see Section V-A). Our approximation has a signif-
icantly better (aboven2) time complexity for both unicast and
multicast connections.

Future research should focus on the open problem of multi-
cast routing in this framework. Future work should also con-
sider the application of our methods to specific cost functions,
in particular those that arise in practical QoS applications. Such
an investigation would potentially allow for more efficient ap-
proximations. We also believe that simple cases (e.g. uniform
or linear cost functions) should simplify the task of multicast
routing.
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