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Abstract—When forwarding packets in the Internet, Au-
tonomous Systems (ASes) frequently choose the shortest path
in their network to the next-hop AS in the BGP path, a
strategy known as hot-potato routing. As a result, paths in the
Internet are suboptimal from a global perspective. For peering
ASes who exchange traffic without payments, path trading –
complementary deviations from hot-potato routing – appears to
be a desirable solution to deal with these inefficiencies. In recent
years, path trading approaches have been suggested as means
for interdomain traffic engineering between neighboring ASes,
as well as between multiple ASes to achieve global efficiency.
Surprisingly, little is known on the computational complexity of
finding path trading solutions, or the conditions which guarantee
the optimality or even approximability of a path trading protocol.

In this paper we explore the computational feasibility of
computing path trading solutions between ASes. We first show
that finding a path trading solution between a pair of ASes
is NP-complete, and that path-trading solutions are even NP-
hard to approximate. We continue to explore the feasibility of
implementing policies between multiple ASes and show that, even
if the bilateral path trading problem is tractable for every AS
pair in the set of trading ASes, path trading between multiple
ASes is NP-hard, and NP-hard to approximate as well.

Despite the above negative results, we show a pseudo-
polynomial algorithm to compute path trading solutions. Thus,
if the range of the instances is bounded, we show one can
compute solutions efficiently for peering ASes. We evaluate the
path trading algorithm on pairs of ASes using real network
topologies. Specifically, we use real PoP-level maps of ASes in
the Internet to show that path trading can substantially mitigate
the inefficiencies associated with hot-potato routing.

I. INTRODUCTION

The Internet is a distributed multi-tier routing system, as it
forms a network where each node is in itself an autonomous
network. While the Border Gateway Protocol (BGP) serves
as the binding contract for forwarding traffic between the
tens of thousands of autonomously-managed networks, each
such Autonomous System (AS) manages its network resources
independently using interior routing protocols (such as OSPF,
IS-IS, or RIP) that determine the path through which the
packet travels from its ingress to egress points in the AS.
Source to destination routes in the Internet are therefore a
concatenation of intradomain paths chosen at the discretion of
the ASes committed to forward the packet.

Preliminary results shown in this paper were presented at the NetEcon 2008
workshop [13].

*corresponding author.

Motivated to minimize the bandwidth resources consumed
by moving packets to the next AS in the BGP route, ASes
frequently engage in hot-potato routing - shortest path routing,
based on configurable link weights, within the AS to the next-
hop AS. As a result of this selfish behavior, routes in the
Internet are suboptimal from a global perspective.

As an example, consider a case in which two ISPs ASi

and ASj connect at two different points x and y, and there
is some interdomain path in which traffic is forwarded from
ASi to ASj . Suppose that for ASi routing through x is slightly
more efficient than routing through y, though for ASj , it is
considerably more efficient to carry traffic from y to the next-
hop AS in the BGP path as opposed to x. Currently, under
hot-potato routing, ASi would forward its traffic through x
rather than y.

In cases where monetary transfer between ASes occurs, as
it does in customer-provider relationships, these inefficiencies
can be mitigated through the use of payments. In our example
above, ASj could pay ASi to forward traffic through y rather
than x. However, large ISPs who are responsible for carrying
a majority of the Internet traffic, often engage in peering
relationships in which there is no monetary transfer [9]. Thus,
when two ISPs are peers, in order for one ISP to provide
incentives for another ISP to deviate from hot-potato routing,
it must deviate from hot-potato in return in a manner which
will benefit its peer. A considerable number of coordination
protocols aiming to reduce the inefficiencies associated with
hot-potato routing have recently been suggested [18], [6], [2],
[14], [19], [4]. We refer to such complementary deviations
from hot-potato routing as path trading, as an AS deviates
from a hot-potato path in return for its peer’s deviation, from
which both ASes aim to benefit.

Since ASes have multiple ingress and egress points, optimal
path-trading between peering ASes is a complex optimization
task. While large emphasis has been placed on designing
protocols that will allow ASes to path-trade without revealing
sensitive information like their inner-AS topology, surprisingly
little attention has been placed thus far on the computational
feasibility of obtaining cooperative traffic engineering solu-
tions. While the related problem of optimal establishment
of peering points between ASes has been shown to be NP-
complete [3], no such results are known for path trading.

This leads to the following questions:
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1) Can path trading solutions between peering ASes be
computed efficiently?

2) Can path trading solutions be computed on a global
scale, i.e. between sets of ASes?

3) Assuming the answer to either of the above is negative,
what assumptions on the input guarantee path trading
solutions to be efficiently computed?

The goal of this paper is to address the above questions and
provide an understanding of the power and limitations of path
trading. We show both negative and positive results. We survey
our results informally below (precise definitions are provided
in the appropriate sections).

We first show that finding a path trading solution among
two peering ASes is NP-complete. Furthermore, we show that
it is NP-hard to approximate the optimal path trading solution
within any factor. Intuitively, this sharp hardness originates
from the individual rationality constraint: the requirement that
neither ISP is worse off due to the path trading solution. This
result corroborates the observations made in [11] and [17]
which point to individual rationality as the crux in their
discussion on the difficulty in obtaining path trading solutions
in practice.

While trading between peering ASes is computationally
hard, one may argue that by using heuristics, or under some
assumptions, path trading solutions can be computed between
pairs of ASes. Under this philosophy, the natural question is
then (2) above: given path trading solutions between every
pair of ASes, can a path-trading solution be computed among
a set of ASes? Path trading between sets of ASes for traffic
engineering is the focus of [10], [7], [5], [20]. We show in
section IV that even under this assumption, computing path
trading solutions between sets of ASes is NP-hard, and that
it is NP-hard to approximate the optimal solution within any
factor.

The above negative results imply that in order to design
path trading protocols among ISPs, certain assumptions must
be placed on the input. In section V we present a pseudo-
polynomial algorithm for computing optimal path trading
solutions, which relies on the assumption that the integer
range of the possible path trading alternatives is not large. We
then test our algorithm on real ISP topologies obtained from
Internet measurements, to witness the benefits of path-trading
on real network data.

We emphasize that the main goal in this work is to study the
computational aspects of path trading. While implementation
details play a significant role in path trading protocols and we
discuss them briefly in section V, our investigation is focused
on exploring the algorithmic barriers.

A. Paper Organization

We begin by presenting our model of a multi-tier routing
system in section II, which attempts to capture the dynamics
of intradomain and interdomain routing in the Internet. In
section III we present impossibility results for path trading
between two peering ASes, and in section IV we present
analogous results for path trading between multiple ASes. We

describe our algorithm for path trading between pairs of ASes
in section V which returns the optimal path trading outcome
under assumptions discussed, as well as heuristic-based ap-
proaches. Section VI contains results from experimentation we
conducted on real AS topologies. We conclude with a short
discussion in section VII.

B. Related Work

The path-trading approach was first suggested in [18] who
identified its potential to benefit neighboring ISPs in optimiz-
ing their traffic flow. In [6] Mahajan et al. explore the benefits
that mutual deviations from hot-potato routing can have for
peering ASes, by using a heuristic-based approach which
finds solutions which both ASes can benefit from. Their work
provides the first evidence that path-trading can be deployed
and serve as an attractive alternative to hot-potato routing.
Follow up work by [14] improves over the heuristic-based
bargaining approach presented by Mahajan et al. and suggests
implementing the well-known Nash Bargaining solution via
methods of convex optimization. To do this, one must make the
assumption that the set of possible solutions in convex (while it
is in reality not only not convex, but finite). Path trading has
also been suggested to be performed on a global scale, i.e.
agreements between multiple ASes on their interdomain paths
in a manner that benefits all participating ASes [10], [7], [5],
[20]. Cooperative approaches have been extended to explore
the benefits of coordinated congestion control for multipath
routing by Key et al. in [4]. Through rigorous analysis, they
manage to establish theoretical guarantees on the benefits of
coordinated congestion control, thus complementing previous
experimental results. More recently, the inefficiency of routing
on the intradomain level has been addressed in the context of
P2P networks in [19], where the focus is in designing effective
architectures for traffic control of Internet applications using
cooperation between ASes. The problem of hot-potato routing
and inefficiency of P2P systems are closely related, and path
trading solutions can be applied in such settings as well.
Johari and Tsitsiklis [3] studied a related problem of optimal
establishment of peering points between ASes. Motivated by
their analytical study of the inefficiency of hot-potato routing
in various canonical network topologies, they show that deter-
mining the optimal placement of peering points between ASes
is NP-complete.

II. THE MODEL

We define a two-tier routing model in the following manner.
On the interdomain level is the Internet AS graph denoted
G = (N,L) where N = {AS1, . . . , ASn} represents the set
of ASes and L represents the set of pairs of ASes in N that
communicate through an interdomain protocol (announce BGP
routes to one another). Each node ASi = (Vi, Ei) in N is
in itself a network, modeled as undirected weighted graph1.

1While any representation of the internal AS structure applies here, we are
motivated by the Point of Presence (PoP) level, modeled as an undirected
weighted graph, where the weights represent the cost which ASes associate
with each link as used by intra-AS routing protocols such as OSPF and IS-IS.
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We use δ(w, x) to denote the shortest path distance between
x,w ∈ Vi. 2

Two ASes ASi, ASj ∈ N are considered to be connected
on the interdomain level if and only if there are at least two
nodes xi ∈ Vi and xj ∈ Vj which can forward traffic to
one another. In this case δ(xi, xj) = 0. We use Ii to denote
the set of ingress nodes in ASi. We will abuse notation and
write δ(xi, ASj) to refer to the shortest distance from a node
xi ∈ ASi to ASj , i.e. δ(xi, ASj) = minxj∈Ij δ(xi, xj).

To capture the amount of traffic that goes through an ingress
node, we use fij(w,ASk) to denote the amount of traffic that
enters w ∈ Ii going to ASk through ASj .3 For two peering
ASes, ASi and ASj , the cost incurred by ASi of routing
from xi ∈ Ii to ASj through xj ∈ Ij can be quantified by
fij(xi, ASk) · δ(xi, xj).

When ASi and ASj are peers, an interdomain routing
protocol in ASi can be written as a function ϕi : Ii → Ij

which, for each xi ∈ Ii, chooses a node in Ij to forward its
traffic to. The hot-potato routing function, denoted ϕ∗

i simply
chooses the closest border node in ASj :

ϕ∗
i (xi) := argminxj∈Ij

δ(xi, xj)

Striving to minimize the consumption of their resources,
unless given an alternative incentive, ASes practice hot-potato
routing. Indeed, there is strong evidence that such a policy is
exercised [16].

III. PATH TRADING BETWEEN TWO PEERING ASES

The main result in this section shows that finding path
trading solutions is NP-complete, and that approximating the
optimal path trading solution, within any factor, is NP-hard.
To prove this, let us first formally define the notion of path
trading between two peering ASes.

Two ASes are said to be path trading if at least one AS
rejects its hot-potato strategy in favor for some alternative
routing strategy. For ASi routing to its peer ASj , the (non-
positive) value of routing traffic from a node xi ∈ Ii to a
border node xj ∈ Ij instead of x∗ = ϕ∗

i (xi) is:

vi(xi, xj) :=
∑

ASk

fij(xi, ASk) ·
(
δ(xi, x

∗) − δ(xi, xj)
)

This deviation determines a value for ASj :

vj(xi, xj) :=
∑

ASk

fij(xi, ASk) ·
(
δ(x∗, ASk) − δ(xj , ASk)

)
.

A path trade between ASi and ASj is defined by the routing
strategies ϕi and ϕj . Each such path trade defines a utility for
ASi:

2Note that this shortest distance can be calculated according to any set of
rules, e.g., based on additional annotations on the graph edges, and is not
limited to minimum hop or minimum weight path.

3if no interdomain paths of the form 〈AS0 . . . ASi, ASj , ASk . . . ASn〉
exist, then trivially fij(xi, ASk) = 0.

ui(ϕi,ϕj) :=
∑

x∈Ij

vi(x,ϕj(x)) +
∑

x∈Ii

vi(x,ϕi(x))

and similarly a utility uj for ASj . In the above sum, note
that the first term is non-negative and that the second term is
non-positive.

All literature which suggests path trading and its variants,
assumes ASes will cooperate in path trading if the imple-
mented routing strategies make neither of them worse off. This
individual rationality requirement translates to finding non-
trivial routing strategies ϕi and ϕj s.t. both utilities ui and
uj are non-negative. We therefore say that a pair of strategies
ϕi,ϕj is a path trading solution if these strategies induce non-
negative utilities to both ASes. Note that this is the weakest
requirement one can impose. We show that even for this
requirement, finding path trading solutions is computationally
infeasible.

Theorem 1: Finding a path trading solution is NP-complete.
Proof: The problem is clearly in NP. We reduce from

zero subset sum where one is given a set S of positive and
negative integers as input and is to determine whether some
subset T ⊆ S exists s.t.

∑
a∈T a = 0.

Given a set of integers S = {a1, . . . , ar} denote S− =
{a ∈ S|a < 0} and S+ = {a ∈ S|a > 0}. We construct two
ASes, ASi and ASj ; for every value ai ∈ S− we construct a
node vai in ASi, and construct a node uaj in ASj for every
value aj ∈ S+. In each AS we construct exactly two nodes
which serve as the connectors between the ASes, {xi,yi} in
ASi and {xj , yj} in ASj , where xi connects to yj and yi

connects to xj . For each node vai in ASi we set δ(vi, xi) = 0
and δ(vi, yi) = 1; similarly, in ASj , for each node uaj we set
δ(uaj , xj) = 0 and δ(uaj , yj) = 1.

There is only a single node udi in ASi that traffic is routed
to from ASj , and similarly, there is such a node udj in ASj .
For each uaj in ASj the flow is fji(uaj , udi) = aj , and in the
opposite direction fij(vai , udj ) = |ai| for each vai in ASi.

First, let T ⊆ S be a non empty subset of integers that sums
to 0, and let T− and T+ be the negative and positive integers
in T . For each uai s.t. ai ∈ T− we can reroute the traffic from
xi to yi, which will have a negative value of

∑
a∈T−

a to ASi

and positive value of |
∑

a∈T−
a| for ASj . Similarly, routing

all uaj ∈ T+ to yj will have negative value of −
∑

a∈T+
a

to ASj and positive value of
∑

a∈T+
a to ASi. Since T is a

solution to zero subset sum, −
∑

a∈T−
a =

∑
a∈T+

a, and the
solution is thus individually rational.

Conversely, given an individually rational path trading so-
lution, let Ti be the subset of vertices in ASi that route to
yi rather than xi, and let Tj be the analogous subset in ASj .
Since the solution is individually rational to ASj we have that:

∑

uai∈Ti

fij(uai , udj )
(
δ(yj , udj ) − δ(xj , udj )

)
−

∑

uaj ∈Tj

fji(uaj , udi)
(
δ(uaj , xj) − δ(uaj , yj)

)
≥ 0
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xjxi

yi yj

u1

u2

u3

v1

v2

v3

v4

ASi ASj

Fig. 1. An illustration of the construction used to show the reduction from
zero subset sum to path trading. This illustration is the product of a set S
with |S−| = 3 and |S+| = 4.

which implies |
∑

uai∈Ti
ai| ≥

∑
uaj ∈Tj

aj .
Similarly, the individual rationality to ASi implies that∑

uaj ∈Tj
aj ≥ |

∑
uai∈Ti

ai|. We therefore conclude that
|
∑

uai∈Ti
ai| =

∑
uaj ∈Tj

aj , and thus that taking the
corresponding integers to nodes Ti and Tj give a solution to
zero subset sum. !

The optimization version of the above problem can be
defined as finding a path trading solution which is individually
rational and maximizes the sum of the utilities of the ASes.
Since finding individually rational solutions is NP-complete,
this optimization problem will necessarily be NP-hard. Intu-
itively, one may hope that there is room for approximation.
That is, while the problem is NP-hard there might still exist a
polynomial-time algorithm which guarantees a solution that is
some factor of the optimal solution. The theorem below shows
that there is no hope in approximation either.

Theorem 2: There is no polynomial time algorithm which
approximates the optimal path trading solution within any
factor, unless P = NP .

Proof: Using a similar construction to the one above,
we will show that approximating within any factor implies
solving subset-sum where we are given a set of integers
S = {a1, . . . , an}, a target K, and the objective is to find
a subset S′ ⊆ S s.t.

∑
ai∈S′ ai = K. Given an instance to

subset sum we construct two ASes, ASi, ASj with connector
nodes xi, yi ∈ ASi, and xj , yj ∈ ASj , s.t. (xi, yj) and (yi, xj)
are connected.

We create a single node in ASj , denoted z, with δ(z, xj) =
0 and δ(z, yj) = 1. For each integer a ∈ S we create a node
ua in ASi s.t. δ(ua, xi) = 0 and δ(ua, yi) = 1 with flow
fij(ua, z) = 2a, and we also create a node t in ASi s.t.
δ(t, xi) = 0 and δ(t, yi) = 2K+1

2K and fij(t, z) = 0. The
flow from ASj to ASi is fji(z, t) = 2K, and fji(z, u) = 0
for all u &= t.

The above construction creates an instance of
routing deviations that can be summarized as

(4,-1)

(-2,3)

(1,-2)

ASk

ASi

ASj

Fig. 2. An illustration of trading with mediators. Here the weighted pair on
the edges indicates that values of the pair-wise path trade for the nodes on
its ends. The pair (1,−2), for example, indicates that ASk gains utility of 1
from path trading with ASi, which in turn receives utility of −2 from this
path trade.

(2a1,−2a1), . . . , (2an,−2an), (−2K, 2K + 1), where
in each pair the first value is ASj’s value and the second
value is ASi’s value. Now observe that any non-trivial
solution must incorporate (−2K, 2K + 1) in order to be
individually rational to ASi. In order to be individually
rational to ASj we must choose a subset of routes that sum
exactly to 2K. Thus, the maximal value obtainable is 1. A
solution to subset sum implies a value of 1 to the path trading
problem, and no solution implies a value of 0. Therefore,
the path trading problem cannot be approximated within any
factor unless P = NP . !

The above results have profound implications on path trad-
ing. One may conclude that computing path trading solutions
must be conditioned on assumptions on the instances. In
section V we present a pseudo-polynomial algorithm for com-
puting optimal path trading solutions, based on the assumption
that the integer range of the possible solutions is not large.

IV. PATH TRADING WITH MEDIATORS AND SETS OF ASES

Having shown in Section III that finding path trading solu-
tions between pairs of ASes is NP-hard and inapproximable,
it is trivially the case for sets of ASes as well. However, one
may argue that in many cases the number of ingress nodes
of an AS is relatively small, and that considering all possible
path trading solutions, while exponential in the total number of
ingress points, is still computable. The natural question then is
whether path-trading policies can be implemented on a global
scale, assuming that solutions between pairs of ASes can be
efficiently computed.

In the example illustrated in figure 2, we consider three
ASes where each pair has a single path trading alternative.
Each path trade yields a cost to one AS, and a benefit for the
other (denoted as a weighted pair on edges which indicates the
value of the path trade to the of the ASes on its ends). In this
example, the path trading solutions between the AS pairs are
trivial to compute, since there is only one possibility between
each pair. While no single pair can trade on its own, the three
can mutually trade, and benefit. We can think of each AS as
a mediator between its neighbors, as it allows them to path
trade.
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The above example naturally extends to finding sets of
ASes that can together trade on the network and form a
routing syndicate. Assuming that every pair of ASes shares a
small number of possible path trades which can be efficiently
computed, all possible path trades between ASes can be
encoded on a multigraph G = (N, L̄) where N represents the
set of all ASes in the AS graph, and L̄ is the set of possible
path trades between every pair of ASes. For each potential
path trade between ASi and ASj , we have an edge # ∈ L̄ and
a weighted pair w!(ASi, ASj) = (w!(ASi), w!(ASj)) which
represents the value of ASi and ASj from path trading. W.l.og.
we can assume that in each such pair one of the values is
positive and the other is negative.

Similar to path trading, the minimal requirement from a
routing syndicate solution is that it is individually rational.
Finding an individually rational routing syndicate reduces to
finding a non-empty subset of edges L′ (which determines a
subset of vertices N ′) s.t.

∑
!∈L′ w!(ASi) ≥ 0 for all ASi ∈

N ′. We now show that this task is computationally infeasible.
Theorem 3: Finding an individually rational routing syndi-

cate is NP-complete.
Proof: We reduce from the knapsack problem to show

the problem is NP-hard, as it is clearly in NP. In knapsack
there are n items, each with a cost and a value, and we are
given a budget B and a parameter K. Our objective is to
choose a set of items s.t. their sum is at least K and the sum
of their cost does not exceed the budget. Given an instance
of knapsack, we will construct a graph G = (N,L) in the
following manner. Given the budget B and parameter K in
knapsack, we construct two nodes ASB and ASK with an edge
between them with the weight w(ASK , ASB) = (−K,B).
Each item i ∈ {1, . . . , n} with cost ci and value vi in the
knapsack problem will correspond with a node ASi in G that is
connected to ASK with weight w(ASK , ASi) = (vi,−ε) and
connected to ASB with with weight w(ASi, ASB) = (ε,−ci).
We illustrate this construction in Figure 3.

If there is a subset of items S′ in knapsack s.t.∑
i∈S′ vi ≥ K and

∑
i∈S′ ci ≤ B there is a routing

syndicate which consists of {ASi}i∈S′ and {ASB , ASK}
that is individually rational. Conversely, given an individually
rational routing syndicate solution, note that it must
consist of ASB , ASK , and some subset {ASi}i∈S′⊆[n],
as otherwise the solution cannot be individually rational.
Furthermore, observe that an edge (ASi, ASK) ∈ S′ implies
(ASi, ASB) ∈ S′. Thus,

∑
i∈S′ vi =

∑
!∈S′ w!(ASK) ≥ K,

and
∑

i∈S′ ci =
∑

!∈S′ w!(ASB) ≤ B, and the set of items
which corresponds to ASes in S′ in the routing syndicate is
a solution to knapsack. !

The above theorem shows that even when we consider a
single path trade between every two ASes in the network,
path trading in sets is hard. Again, the natural question is
whether it can be approximated. The most natural measure
of the quality of a routing syndicate is the social welfare,
i.e. the the total value for its participant. Thus, finding the
optimal individually rational routing syndicate can be stated

AS B

AS1 AS2 ASn

(-K,B)

!
V

1

!
--C

1

V n
!

!
V

2

!
--C

2

--C
n 

,!

Fig. 3. An illustration of the construction used for the reduction from
knapsack to show that finding optimal routing syndicates is NP-hard.

as the following optimization problem:

Maximize ∑

ASi∈N ′

∑

!∈L′

w!(ASi)

Subject to:
∑

!∈L′

w!(ASi) ≥ 0 ∀ASi ∈ N ′

We now show that the problem of finding an optimal routing
syndicate cannot be approximated within any factor either.

Theorem 4: The optimal individually rational routing syn-
dicate cannot be approximated in polynomial time unless
P = NP .

Proof: We will use a similar idea from the previous
section, and reduce from subset-sum. Given an instance
to subset-sum, we construct n + 3 ASes. For each
integer i ∈ S we construct an AS, denoted ASi. We
also construct three ASes: ASx and ASy , and ASK .
Each ASi is connected to ASx with the weighted pair
w(ASx, ASi) = (2ai,−ε), and connected to ASy with the
weighted pair w(ASi, ASy) = (ε,−2ai). We connect ASx

to ASK with the weighted pair w(ASx, ASK) = (−2K, ε)
and connect ASK to ASy with the weighted pair
w(ASK , ASy) = (−ε, 2K + 1). We illustrate this
construction in the figure below. Observe that due to
individual rationality, taking an edge (ASx, ASi) implies
taking the edge (ASi, ASy), for all i ∈ [n] ∪ {K}. Similar
arguments as shown in the proof of Theorem (2) show that
approximating the optimal routing syndicate solution within
any factor implies solving subset-sum. !

V. A PSEUDO-POLYNOMIAL ALGORITHM FOR PATH

TRADING

The results from section III show that computing path
trading solutions between a pair of ASes is computationally
infeasible and that the optimal path trading solution cannot
be approximated either. The next step is therefore to explore
what reasonable assumptions one can make that will allow
computing path trading solutions. In this section we give a
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(2a1,-!)

(-2K,!)

ASy

ASK

ASx

AS1

AS2

ASn

(!,-2a1,)

(!,-2an,)(2an,!)

(-!,2K+1)

(2a2,-!) (!,-2a2,)

Fig. 4. An illustration of the construction used for showing the inapprox-
imability of optimal individually rational routing syndicates.

pseudo-polynomial algorithm which finds the optimal path
trading solution (if one exists). The assumption here is that
the range of possible values of the path trading alternatives
is bounded. At the end of this section we describe a few
approaches that use the algorithm to create heuristic solutions
in cases where the possible range of the solutions is large.

A. Computing Path Trading Solutions

Our goal is to construct routing strategies ϕi,ϕj that will
be individually rational and maximize the sum of the trading
ASes’ utilities.4 To simplify the exposition, we abstract away
the computation of shortest path distances in the description
of the algorithm. For ASi, a deviation from hot-potato routing
is a route r = (xi, xj), for xi ∈ Ii and xj ∈ Ij with the value
vi(r) = vi(xi, xj), as defined in Section III. All possible route
deviations from hot-potato in ASi can therefore be written as
the set of routes Ri, and all such possible deviations in ASj as
Rj . We will denote all possible deviations as R = Ri∪Rj =
{r1 . . . rn}. Assuming path trading solutions exist, we wish to
find the solution R′ which maximizes:

∑

r∈R′

vi(r) +
∑

r∈R′

vj(r)

subject to the constraints:
∑

r∈R′

vi(r) ≥ 0,
∑

r∈R′

vj(r) ≥ 0.

While the inapproximability result in section III was shown
for this objective function, we can use a dynamic programming
procedure to compute optimal outcomes, assuming that the
range of possible values is bounded.

The Algorithm: For rM ∈ argmaxr∈Rvi(r) and rm ∈
argminr∈Rvi(r), let M = n · vi(rM ) and m = n · vi(rm).
Observe that vi(r) ≥ 0 if r ∈ Rj , and that vi(r) ≤ 0 if
r ∈ Ri. For each # ∈ [n] and v ∈ {m, . . . , 0, . . . , M}, let S!,v

be the subset of {r1, . . . , r!} for which
∑

r∈S!,v
vi(r) = v,

and its value for ASj is maximal:

4Our algorithm also allows maximizing other criteria like the product.

S!,v ∈ argmax{T⊆[!]:
∑

r∈T vi(r)=v}

∑

r∈T

vj(r).

If S!,v includes two routes from the same ingress node we
say it is illegal (as this would be an illegal output). We define
the value Vj(S!,v) to be:

Vj(S!,v) =
{

−∞ S!,v = ∅ or S!,v is illegal∑
r∈S!,v

vj(r) otherwise (1)

Using the above notation, we present the path-trading
algorithm below.

Pseudo-Polynomial Algorithm for Path Trading

Initialize: Vj(S1,vi(r1)) ←− vj(r1)
S ←− ∅

Vj(S1,0) ←− 0,
Vj(S1,v) ←− −∞ ∀v &= vi(r1), 0;

while # ≤ n
for all v ∈ {m, . . . , M}:
if v ≤ vi(r!)
v′ ←− v − vi(r!)

Vj(S!,v) ←− max{Vj(S!−1,v), Vj(S!−1,v′) + vj(r!)}
else Vj(S!,v) ←− Vj(S!−1,v)

for all v ≤ {0, . . . , M}
if Vj(Sn,v) ≥ 0
S ←− S

⋃
{v}

return argmaxv∈SVj(Sn,v) + v

The algorithm above considers all possible values for ASi’s
utility, and at each stage #, finds the optimal subset of
{r1, . . . , r!} in terms of ASj’s utility, for each possible value
that ASi may take. The iterative procedure terminates after
O((M − m) · n2) with the optimal values for ASj , for each
possible utility for ASi. We then choose the outcome that
maximizes the sum of the ASes utilities, under the individual
rationality constraint.

B. Heuristic-Based Approaches

In cases where the range {m . . . ,M} is large, there are
various heuristics that ASes may apply in order to efficiently
compute path trading solutions, using the above algorithm.

1) Discard high-cost routes: intuitively routes that have
extremely high costs, are likely to be left out of the so-
lution, and removing them from the subset of considered
routes can significantly reduce the range.

2) Partition set of routes: one can partition the set R
into subsets of routes, based on their values, and run
the algorithm on each such subset separately. Note
that when combining individually rational solutions, the
result remains individually rational.

3) Simplify shortest path metric: by compromising on
the shortest path metric used, the subset of available
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alternatives can be significantly reduced. For example,
rather than using a complex δ(·) function, a heuristic
based on unweighted shortest paths can be applied, and
the benefits and costs will be expressed in terms of
number of hops saved.

C. A Note on Disclosure of ASes’ Sensitive Information and
Implementation

ASes are often considered to be private in all that regards
their network topology. It suffices for ASes to exchange
opaque preferences on ingress nodes, as suggested by Mahajan
et al. in [6], by simply mapping their costs and benefits in our
case into some real interval [−r, r]. Such a scheme allows path
trading between ASes with different objectives (the δ distance
metric in our case), as well as prevent disclosure of their
topologies or optimization criteria. Note that under the opaque
preferences scheme, ASes can obtain individually rational path
trading solutions, though we cannot maximize the sum of the
ASes utilities. As suggested by Mahajan et al. maximizing
the social welfare should perhaps be restricted to “friendly
ASes” who are willing to agree on an identical mapping.
Also noted by Mahajan et al. is that an attempt to design
a truthful mechanism which elicits the ASes’ values fails
here due to Myerson-Satterthwaite’s impossibility result for
bilateral trading [8], which asserts that in general, the trade will
not be budget-balanced (i.e. achieving truthfulness requires a
third party to sponsor the trade). In conclusion, individually
rational solutions can be obtained using the above algorithm
and implemented through the discussed work above.

VI. EVALUATION

A. Methods

To evaluate path trading on pairs of peer ASes we tested our
results on the PoP level in the Internet AS graph. We used the
DIMES [12] IP level mapping of week 25 of 2007 which
provides an IP level graph which includes over 600,000 links.
Each such link includes an IP pair and a matching AS pair to
which the IPs belong to. On this graph we created a PoP level
mapping of each AS. Using the PoP generating algorithm [1]
we obtained the mappings of IP addresses to their respective
PoPs; we then used the IP level map once again, this time to
establish inter-AS connections on the PoP level. We conducted
this procedure for 70 ASes which are among the top 100
most connected ASes in the Internet AS graph (there was not
enough coverage on the IP level to construct PoP mappings
for some of the ASes in the top 100 list). Rocketfuel [15] is
yet another available source for the mappings of the Internet
on a PoP level, though we found the mappings of the DIMES
project to have greater coverage. We show the distribution of
the number of PoPs found in each AS in Fig. 5(left), and plot
the number of PoPs against the AS degree in Fig. 5(right). In
general, the number of PoPs an AS has increases with respect
to its degree. This is of course expected since ASes with higher
AS connectivity must maintain more PoPs to connect to their
customers and peers. Still, one can note that there are ASes
with AS degree in the 1000 range, which have more PoPs than

ASes with twice their degree. In the range of ASes with degree
below 500 there is greater variation in the ratio between AS
degree and number of PoPs in the AS. Note that this may be
due to inaccuracies in the data which may originate from poor
coverage in a certain AS or inaccuracies introduced by the PoP
generating algorithm. In table I we show some statistics of the
topologies of these PoP level graphs, all with respect to the
subgraph of the 70 ASes.

Our maps include the AS topologies alone, without delay
measurements nor any weights on the links. We therefore used
the measure of minimum hop distance, to estimate the cost of
a path. Our maps also do not include detail of the demand
matrix between the ASes. For this, we used the assumption
that the demand between peering ASes is symmetric. We
used the assumption that the probability of entering the AS
through a specific ingress border node is uniformly distributed
among the ASes’ ingress nodes. Again, this assumption is
not necessarily true, as we can expect different measures of
traffic coming in through PoPs which represent large cities,
for example, as oppose to one representing smaller ones.
With these assumptions we applied the dynamic programming
procedure as specified above.

Our assumptions indeed introduce inaccuracies, however,
using the highest degree ASes in the Internet map, we can
expect that the amount of traffic which flows between two
peering ASes in one direction, is balanced by the amount of
traffic which travel in the opposite direction. This assumption
of symmetry is common in such experiments also used in [6],
[14]. Also, the intention of our experiments is to show that
ASes can find incentive to conduct path trading, as we consider
real intra-AS topology and inter-AS links.

B. Results

The results presented here are of application of the solution
which maximizes the sum of the ASes’ utilities, as discussed
throughout the paper. We first investigate the number of
hops which can be saved as a function of the total number
of path trades conducted, as presented in Fig. 6(right), and
in Fig. 6(left) we plot a histogram of the number of hops
saved normalized by the number of path trades. As one may
expect the number of hops potentially saved with path trading
increases with respect to the number of possible path trades.
Note that there is a small fraction of ASes which can conduct
many path trades, though the total hops they save is small. This
typically occurs in ASes that connect to their peers through a
single PoP, and more specifically a one-to-many connection.
These ASes can then save a significant number of hops to
their peers without loss, though as they connect to many peers
through a single PoP, hot-potato routing does not greatly affect
such ASes, and their benefit from path trading is relatively
small. This observation is fortified in our following discussion
of the relationship between hops saved and PoP degree. In the
economic market of the Internet, one may expect such ASes
to leverage this fact and charge monetary payments for their
services.
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Fig. 5. Statistics of the PoP level graphs. On the left, the distribution of the number of PoPs found in the 70 ASes for which we conducted are experiment
is shown. On the right, the number of PoPs is plotted as a function of the AS degree in the Internet AS graph.

Statistic AS degree (sub graph) number of PoPs PoP degree
median 9 8 15

mean 15.57 12.67 51.01

TABLE I
STATISTICS OF THE INTRA-AS POP GRAPH TOPOLOGIES.

We also studied the relationship between the benefit from
path trading and the ASes’ PoP degree - the number of PoPs
in different ASes an AS is connected to. In Fig. 7(right) we
plot the number of hops which can be saved as a function of
the ASes’ PoP degree, and in Fig. 7(left) we plot a histogram
of the number of hops saved normalized by the PoP degree.
We have seen above that there were ASes which participated
in relatively many path trades, though saved little or no hops
in return. By plotting the number of hops saved as a function
of the PoP degree we can see that there are very few high-
PoP-degree ASes who benefit little from path trading. This
accents the importance of rich inter-AS PoP level connectivity
for benefiting from path trading.

Although there is evidentially a general increase in the
number of hops saved, it is interesting to see that the two ASes
which benefit the most from path trading are not necessarily
the ones with the highest inter-AS PoP connectivity (one is
not even among the top 10 most connected ASes). This is
further testament to the fact that intra-AS topologies affect the
number of hops which can be saved through path trading. For
example, ASes with star topologies, or with a small number of
border nodes, are examples where benefits from path trading
solutions are less likely to be found.

VII. DISCUSSION

In this paper we studied the computational feasibility of
finding path trading solutions between ASes, and examined
their potential contribution to reducing the inefficiency caused
due to hot-potato routing. We have shown that path trading
between pairs of ASes is NP-hard and NP-hard to approximate
within any factor. Analogous results were shown for path
trading between sets of ASes, even in the case where each pair
of ASes in the set shares a single path trading solution. Our
impossibility results show that finding path trading solutions

is hard due to the individual rationality constraint, which is the
basic requirement from any reasonable path trading protocol.

On the constructive end, we presented a pseudo-polynomial
algorithm for obtaining path trading solutions, which can be
computed in time proportional to the range of the ASes’ values
from the possible path trading solutions. To test whether path
trading can provide appropriate incentives for networks with
real-world topologies, we applied our algorithm for pairwise
path trading on the PoP level intra-AS graphs in the Internet
and have shown it can substantially reduce the number of
intra-AS hops used for routing. Our results suggest that indeed
there is correlation between intra-AS topologies and potential
benefits from path trading.

This work leaves open questions that can be addressed both
experimentally and theoretically. On the experimental front
including link delays to the PoP level maps would allow better
prediction to the benefits which ASes can expect as a result
of path trading. Also, additional PoP mappings of ASes will
enable analyzing path trading on a larger scale.

On the theoretical end, the impossibility results imply there
is great value in understanding the assumptions which allow
for efficient computation of path trading solutions. Since
our impossibility results seem independent of the intra-AS
topology, assumptions on the shortest-path functions used for
intradomain paths can be explored.
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