Approximating the number of Network Motifs

Mira Gonen!* and Yuval ShavittZ**

! Bar Ilan University, Ramat Gan, Israel
2 Tel-Aviv University, Ramat Aviv, Israel

Abstract. World Wide Web, the Internet, coupled biological and chem-
ical systems, neural networks, and social interacting species, are only a
few examples of systems composed by a large number of highly intercon-
nected dynamical units. These networks contain characteristic patterns,
termed network motifs, which occur far more often than in randomized
networks with the same degree sequence. Several algorithms have been
suggested for counting or detecting the number of occurrences of net-
work motifs in the form of trees and bounded treewidth subgraphs of
size O(logn), and of size at most 7 for some motifs.

In addition, local motif counting, namely, counting the number of motifs
a node is part of, was recently suggested as a method to classify nodes
in the network. The promise is that the distribution of motifs a node
participate in is an indication of its function in the network. Therefore,
local counting network motifs provides a major challenge. However, no
such practical algorithm exists, besides for local counting of triangles.
We present several algorithms with time complexity O (m_’—
that, for the first time, approximate for every vertex the number of occur-
rences of the motif the vertex is part of, for k-length cycles and k-length
cycles with a chord, where k = O(logn), and algorithms with time com-
plexity O (% +|E* +|E| -nlog n) that approximate for every
vertex the number of non-induced occurrences of the motif the vertex is
part of for all motifs of size four. In addition, we show algorithms that
approximate the total number of occurrences of these network motifs,
when no efficient algorithm exists. Some of our algorithms use the color
coding technique.

1 Introduction

1.1 Background and Motivation

World Wide Web, the Internet, coupled biological and chemical systems, neural
networks, and social interacting species, are only a few examples of systems
composed by a large number of highly interconnected dynamical units. The first
approach to capture the global properties of such systems is to model them as

* Email: gonenm1@math.biu.ac.il. This work was done while the author was at Tel
Aviv University.
** Email: shavitt@eng.tau.ac.il.

graphs whose nodes represent the dynamical units, and whose links stand for
the interactions between them. Such networks have been extensively studied by
exploring their global topological features such as power-law degree distribution,
the existence of dense-core and small diameter [20,1,17,31,47,48,16,8,7,21, 40,
32,11,9,37,45,43,44,23,15,38,42]. However, two networks which have similar
global features, such as similar degree sequence, can have significant differences in
structure, which can be captured by examining local structures they include: e.g.,
one of them may include a specific subgraph many more times than the other.
Therefore these small subgraphs, termed network motifs, were suggested to be
elementary building blocks that carry out key functions in the network. Milo
et al. [34] found motifs in networks from biochemistry, neurobiology, ecology,
and the World Wide Web. Moreover, Hales and Arteconi [25] presented results
from a motif analysis of networks produced by peer-to-peer protocols. They
showed that the motif profiles of such networks closely match protein structure
networks. Thus efficiently detecting and counting the number of network motifs
is a major challenge. As a result novel computational tools have been developed
for counting subgraphs in a network and discovering network motifs.

There are quite a few works that deal with finding subgraphs of a certain
kind and of counting their number. One of the most elegant techniques devised
is color-coding, introduced in [4], and further applied in [5,6, 3,2, 18,41]. Color
coding is an innovative combinatorial approach that was introduced to detect
simple paths, trees and bounded treewidth subgraphs in unlabeled graphs. Color
coding is based on assigning random colors to the vertices of an input graph.
Then, only the subgraphs where each vertex has a unique color (termed colorful
subgraphs) are efficiently counted using dynamic programming, in time poly-
nomial with n, the size of the input graph. Alon et al.showed that repeating
this procedure sufficiently many times (polynomial with n, provided that the
subgraph we are looking for is of size O(logn)), it is guaranteed that a specific
occurrence of the query subgraph will be detected with high probability. The
color coding technique is a building block in some of the algorithms presented in
this paper. Arvind and Raman [6] used color-coding and a technique from [28] to
design a randomized algorithm for approximately counting the number of sub-
graphs in a given graph G which are isomorphic to a bounded treewidth graph
H. The running time of the algorithm is k°®*) . pTO() where n and k are the
number of vertices in G and H, respectively, and b is the treewidth of H. Alon
and Gutner [3] used color-coding and balanced families of perfect hash functions
to obtain a deterministic algorithm for counting simple paths or cycles of size k
in time 20(kloglog k) O() ~Alon et al. [2] improved these results in terms of the
dependence on k.

Przulj et al. [36] described how to count all induced' subgraphs with up
to 5 vertices in a PPI (Protein-Protein Interaction) network. Hormozdiari et
al. [26] developed faster techniques for counting induced subgraphs of size up to

! Note that Go is an induced subgraph of a graph G if and only if for each pair of
vertices vo and wo in Go and their corresponding vertices v and w in G there is an
edge between vg and wp in Gy if and only if there is an edge between v and w in G.

6, and Grochow and Kellis [24] developed such techniques for size up to 7. The
running time of these techniques all increase exponentially with the size of the
motif. Kashtan et al. [29] showed an algorithm for detecting induced network
motifs that sample the network. This algorithm detect induced occurrences of
small motifs (motifs with k& < 7 vertices). Wernicke et al. [46] claimed that
Kashtan et al.’s algorithm suffers from a sampling bias and scales poorly with
increasing subgraph size. Thus, Wernicke [46] presented an improved algorithm
for network motif detection which overcomes these drawbacks. Scott et al. [39]
focused on the subgraph detection problem. Dost et al. [18] showed how to solve
the subgraph detection problem for subgraphs of size O(logn), provided that the
query subgraph is either a simple path, a tree, or a bounded treewidth subgraph.
Duke et al. [19] gave an algorithm which provides the number of induced copies
of certain subgraphs, with a bounded error. Their algorithm has running time of
O(n'/ o8l ™. M (n)), where M (n) is the time needed to square an n by n matrix
with 0, 1-entries over the integers. Itzhack et al. [27] presented an algorithm based
on network decomposition via node removal for counting k-size network motifs in
large networks, where k is 3 or 4. Their algorithm detects all motifs containing
a given node by measuring all its incoming and outgoing neighbors of degree
k — 1, and then remove this node. Their algorithm has a constant memory cost,
a CPU cost that is linear with the number of counted motifs, and is faster than
previous full enumeration algorithms.

Bianconi and Capocci [12] showed an analytic expression for the number of
cycles of a certain size as a function of the system size in the Barabdsi-Albert
network. Bianconi and Marsili [13] evaluated the average number of cycles in
random scale-free networks. They showed that the most frequent size of a cycle in
a scale-free network is of the order of the network’s size. Moreover, they indicated
that small length cycles are more frequent when the second moment of the degree
distribution diverges. Marinari et al. [33] analyzed the problem of discovering
long cycles in random graphs. They proposed and tested two algorithms for this
task. The first one is based on a message passing procedure, and the second
follows a Monte Carlo Markov chain strategy. Bianconi and Marsili [14] counted
the average number of cliques in random scale-free networks when the network
is large. They showed that unlike in Erdos Renyi graphs, cliques appear also
when the average degree is finite. In addition, the authors proved that in random
scale-free networks the clique number diverges with the system size.

Gonen et al. [?] introduced a sublinear algorithm for approximating the num-
ber of constant size stars. Their algorithm is based on querying parts of the
graph. They showed that their result is tight up to polylogarithmic factors in n
and the dependence in € (the counting error) by giving a matching lower bound.
They also showed negative results for sublinear counting of length-3 paths and
triangles.

A new systematic measure of a network’s local topology was recently sug-
gested by Przulj [35]. They term this measure ”graphlet distribution” of a ver-
tex. Namely, they count for each vertex the number of all motifs of size at most
five the vertex is part of. Gordon et al. [22] discussed local motif counting as a

method to classify nodes in the network. The promise is that the distribution of
motifs a node participate in is an indication of its function in the network, thus
nodes can be divided into functional classes. Van Kerrebroeck and Marinari [30]
suggested the number of cycles a vertex participate in as a method to quantify
the role of vertices in the network. Becchetti et al. [10] have recently shown that
the distribution of the local number of triangles and the related clustering co-
efficient can be used to detect the presence of spamming activity in large scale
Web graphs, as well as to provide useful features for the analysis of biochemical
networks or the assessment of content quality in social networks. However, no
practical algorithm (namely with a running time below O(n*) where k is the
graphlet size) for local counting of other motifs exists. Therefore, efficient local
motif counting is a major challenge.

1.2 Owur Contributions

ko El-log L
We present several algorithms with time complexity O (Se)"m LE‘ log) that,
€

for the first time, approximate for every vertex the number of non-induced oc-
currences of the motif the vertex is part of, for k-length cycles, k-length cycles
with a chord, where k = O(logn). We observe that while Alon et al. [2] counted
the total number of paths of length O(logn) in a graph, their technique is based
on counting for each vertex the number of paths that start at the vertex and
then summing up for the entire network. Thus, their algorithm can be adapted
for counting motifs adjacent to a node. For details see [?]. We also provide al-

| E|-log L
gorithms with time complexity O (% + |E|> + |E| - nlog n) that, for the
first time, approximate for every vertex the number of non-induced occurrences

of the motif the vertex is part of for all motifs of size of at most four. In addition,

kop. | Bl log L
we show O (%) algorithms that, for the first time, approximate the

total number of non-induced occurrences of O(logn)-length cycles with a chord.
Moreover, we improve the time complexity of approximating the total number of
non-induced occurrences of “tailed” triangles and 4-cliques upon existing algo-
rithms. Some of our algorithms use the color coding technique of Alon et al. [4],
and the techniques to use them [2].

Organization: In Section 2 we give notations and definitions. In Section 3
we introduce motifs counting approximation algorithms for O(log n)-size motifs.
In Section 4 we present motifs counting algorithms for all four-size motifs. We
summarize our conclusions in Section 5.

2 Preliminaries

Let G = (V,E) be an undirected graph with n vertices. We assume that G
is represented by an adjacency list. For a vertex v let N(v) denote the set of
neighbors of v and let deg(v) denote the degree of v. A motif H is said to be
isomorphic to a subgraph H' in G if there is a bijection between the vertices of
H and the vertices of H' such that for every edge between two vertices v and u of

H there is an edge between the vertices v' and v’ in H' that correspond to v and
u respectively. Such a subgraph H’ is considered to be a non-induced occurrence
of H in G. For a vertex v we say that v is adjacent to H if v is a vertex of H.
Denote by [k] the set {1,...,k}. Denote by col(v) the color of vertex v.

Let H be a motif with k vertices, and let G = (V, E) be a graph where
|V| = n. Assign a color to each vertex of V' from the color set [k]. The colors are
assigned to each vertex independently and uniformly at random. A copy of H
in G is said to be colorful if each vertex on it is colored by a distinct color.

Consider a problem f and let # f denote the number of distinct solutions of

1.

Definition 1. ((e,d)-approzimation) An algorithm A for a counting problem
[is a (,8)-approximation if it takes an input instance and two real values €,
and produces an output y such that

Pri(l—e) - #f <y<(l+e) #f]>1-26.

3 Algorithms for Counting Motifs of size O(logn)

Given a graph G = (V, E) and a vertex v, we describe how to approximately
count for every vertex v the number of non-induced occurrences of k-length
cycles and k-length cycles with a chord that are adjacent to v, for k = O(logn).
In addition, for each such motif H we present an algorithm for approximating
the number of non-induced subgraphs of G that are isomorphic to H when
no efficient algorithm exists. Most of our approximation algorithms apply the
color coding technique of Alon et al. [4]. Note that we allow overlaps between
the motifs we count, i.e. two occurrences of H, namely H' and H” may share
vertices; in fact the vertex sets of H and H” may be identical. We consider H’
and H" distinct occurrences of H provided that the edge sets of H' and H” are
not identical.

3.1 Counting Cycles

rTN

In this section assume that H is a simple cycle of length k. N/

We present an algorithm to approximately count for every vertex v/t_h\e num-
ber of subgraphs of G which are isomorphic to H and adjacent to v. ‘_/.L

Let ¢t = log(1/4), and let s = ?QL,:!. Assume that we have a k-coloring of G,
i.e., each vertex is randomly and independently colored with a color in [k]. For
each pair of vertices v, 2 and each color subset S of the color set [k] let C;(v, x, S)
be the number of colorful paths between v and z using colors in S at the ith
coloring, and let C'Y;(v, S) be the number of colorful cycles adjacent to v using
colors in S at the ith coloring.

Consider the following algorithm. The algorithm takes as input: a graph
G = (V,E), a vertex v € V, the requested cycle length k, an approximation
factor €, and an error probability §. The algorithm uses a procedure to compute
the number of colorful paths between v and any other vertex.

Algorithm 1 (A (e, d)-approximation algorithm for counting simple cycles of
length & adjacent to a vertex v)

1. Forj=1tot
(a) Fori=1tos
i. Color each vertex of G independently and uniformly at random with
one of the k colors.
ii. For allx € V Ci(v,z,[k]) = count-path(v, z, k).
iii. Let CYi(v,[K]) = 5 2 e nw) Ci(v,u, [k]).
w. Let XY = CY;(v,[k]).
(b) Let Y} = L X
2. Let Z¥ be the medzcm of Y, .., Y,
3. Return ZV - k¥ /K.

Algorithm 2 count-path(v,z,k)(counting simple paths of length k& — 1 be-
tween v and x)

1. For all S C [k] s.t S={{}, and for allu eV

1ifu =z and col;(u) = ¢;
0 otherwise.

Citur,5) = {

2. Forq=2tok
(a) For all S C[k] s.t |S|=gq

Ci(v,2,8) = > Ci(u,x,5\ {cols(v)}).
u€EN (v)
Our main theorem is the following:

Theorem 1 Let G = (V, E) be an undirected graph, and let H be a simple cycle
of length k. Then for every vertex v Algorithm 1 is a (e, 0)-approzimation for

the number of copies of H in G that are adjacent to v, with time complezity
0 ((2e)k-n~|E|log(1/6))
€2 :

For proving Theorem 1 we first prove the following lemma:
Lemma 1 For allv € V CY;(v,[k]) can be computed in O(2% - n - |E|) time.

Proof: A vertex v is adjacent to a colorful cycle of length k if and only if it
is an endpoint ot: a\colorful path of length £ — 1, which has one of v’s neighbor

as an endpoint. \ _gfu Therefore, we first compute for every edge (u,v) € E the
number of colorful paths of length k& — 1 between u and v. Since u is a neighbor
of v, we get a cycle of length k. The running time for computing CY (v, [k]) for
all v is then

O(> | D deg(v) | 2| =0@2"-n-|E]).

u€V \veEN(u)

O

Proof of Theorem 1. The correctness of the approximation returned by
Algorithm 1 is proved using the same techniques as in [2, Sec. 2]. Lemma 1
implies the correctness of the computation of CY;(v,[k]). The time complexity

of Algorithm 1 is O (w) by Lemma 1, and by showing that the

number of colorings used by the algorithm is O (M). This completes the
proof. O

3.2 Counting k-length Cycles with a chord
k=t
/7 N\
In this section assume that H is a simple cycle of length k with a chord /
We present an algorithm to approximately compute the number of subgraphs of
G which are isomorphic to H, and, for every vertex v, the number of subgraphs
of G which are isomorphic to H and adjacent to v.

We first approximate number of colorful subgraphs of G which are isomorphic
to H, where H is a k-length cycle with a chord. Let ¢t = log(1/4), let s = ﬁ;—lij,
and let count-path be the procedure defined in Section 3.1 . Assume that we
have a k-coloring of G, i.e., each vertex is randomly and independently colored
with a color in [k]. Let C;(v,u,S) be the number of colorful paths between v
and u in the ith coloring, using the colors in S. Let ¢ the distance between
the endpoint of the chord u,v on the cycle, and let A% = {(S1,52)|S1,S52 C
[k], S1\ {col(v), col(u)} NS\ {col(v),col(u)} = ¢, |S1] =€+1,|S2| =k —£+1}.

Consider the following algorithm. The algorithm takes as input: a graph
G = (V, E), an approximation factor €, and an error probability 4.

Algorithm 3 (A (e, d)-approximation algorithm for counting simple cycles of
length k& with a chord)

1. Forj=1tot
(a) Fori=1tos
i. Color each vertex of G independently and uniformly at random with
one of the k colors.
it. For all (u,v) € E, S C [| compute C;(v,u,S)
111, LetX ZquE Z 22(51,32)€A£ Ci(U,U,Sl)'Ci(U,U,SQ).
(b) Let Yy = 2=,
2. Let Z be the median of Y1, ..., Y.
3. Return Z - k¥ /K.

Our main theorem is the following:

Theorem 2 Let G = (V, E) be an undirected graph, and let H be a simple cycle
of length k with a chord. Then Algorithm 3 is a (€,0)-approximation for the

number of copies of H in G, with time complexity O (WM)

For proving Theorem 2 we first prove the following lemma:
Lemma 2 X; can be computed with time complezity O(|E| - n - 2F).

Proof: For computing X; we compute for each edge (u,v) € E the number
of colorful paths of length ¢ between u and v using a color-set S; in the ith
k-coloring- C;(u, v, S1), and the number of colorful paths of length k — ¢ between
u and v using a color-set Sy in the ith k-coloring- C;(u,v,S2), such that col(v)
and col(u) are the only colors in the intersection of S; and Sa. The number of
colorful subgraphs of G which are isomorphic to H that are counted in the ith
k-coloring of G is then

Z i: Z Ci(u,v,S1) - Ci(u,v,S2),

(u,v)EE €=2 (S1,S2)€ AL,

where Af, = {(S1,52)|S1,S2 C [k],S1 \ {col(v), col(u)} N S\ {col(v), col(u)} =
¢,|51| = £+ 1,|S2] = k— £+ 1}. The time complexity of computing X;: By
the proof of Lemma 1 the time complexity of computing C;(u,v,S) for every
pair of vertices u, v and any color-set S is O(|E| - n - 2¥). In addition we have to
compute for every (u,v) € E and every 2 < £ < k — 2 |A%, |. The running time
for computing this operation is then O(|E| 25;22 (Zfl)) = O(|E| - 2%). Thus the
total running time of computing X; is O(|E| - n - 2%). O

Proof of Theorem 2. The correctness of the approximation returned by Al-
gorithm 3 follow the technique of Alon et al. [2]. Lemma 2 implies the cor-
rectness of the computation of X;. The time complexity of Algorithm 3 is

O (w) by Lemma 2 and by showing that the number of color-

€

ings used by the algorithm is O (W). This completes the proof. O

We now approximate for every v € V the number of colorful subgraphs
of G which are isomorphic to H and are adjacent to v. Let ¢t = log(1/J), let
§ = 2—’;:, Assume that we have a k-coloring of G, i.e., each vertex is randomly
and independently colored with a color in [k]. Let P;(v,u,w, S) be the number
of colorful paths from u to w that are adjacent to v in the ith coloring, using the
colors in S. Recall that C;(v, u,.S) is the number of colorful paths from v to u in
the ith coloring, using the colors in S. Let Af}f’(S) = {(51, 52)|S1, 52 C [k],|S1| =
z+1,]S2] =b—2z+1,51US2 = 5,51\ {col(u)|u € V'}NSa\{col(u)|u € V'} = ¢}.
Consider the following algorithm. The algorithm takes as input: a graph G =
(V, E), a vertex v, an approximation factor €, and an error probability 4.

Algorithm 4 (A (e, d)-approximation algorithm for counting simple cycles of
length k& with a chord that are adjacent to v)

1. Forg=1tot
(a) Fori=1tos
i. Color each vertex of G independently and uniformly at random with
one of the k colors.

ii. XY =0.
iii. For every edge (u,w) € E :
w. Forall S C[k] st|S|=0+1
/—
Pi('U, u,w, S) = Zzzll 2(51752)6145’[(5) Ci(’U,U}, Sl) . Ci(’U, u, 52)

v. Let

k—2
:X,Zj+ Z Z Z Pi(v,u,w,S3)~Ci(u,w,S4)

(uv)EE €=2 (35 5,)c ALK ([K])

+ Z Z Z Pi(v,u,w, Ss) - C;(u,w, Sy)

(u0)EE £=2 (55,5,)€ AR 5% ([K])
k/2

+ Z Z Z Ci(U,U,SS)'Ci(vauaS4) (1)

uEN (v) €=2 (85, 8,)€ ALF ([K])

v T X
(b) Let vy = SimXE

2. Let ZV be the median of Y7V, ..., Y}".
3. Return ZV - k* /K.

Our main theorem is the following:

Theorem 3 Let G = (V,E) be an undirected graph, and let H be a simple
cycle of length k with a chord. Then, for every v € V, Algorithm 4 is a (e, 9)-
approzimation for the number of copies of H in G that are adjacent to v, with

. . k
time complezity O (w)'

For proving Theorem 3 we first prove the following lemma:
Lemma 3 X! can be computed with time complezity O(|E|-n - e*).

Proof: Let (u,w) be the chord. The number of copies of H that are adjacent
to v depends on the position of v. There are two cases: one for which v is on a

77N
(2

path between u and w and is not an endpoint of the chord [’:;, and one for

7 \J

which v is an endpoint of the chord =’ In the first case we first count all the
colorful paths v is part of of length ¢ between u and w, for all 2 < ¢ < k — 2.
We do that by counting all the colorful paths of length z between v and w and
multiply it by the number of colorful paths of length £— z between v and u, where
B-Z
7 \
Ub\/fﬂ

1 <z</{—-1. (Wlo.g assume that ¢ # k — ¢). \k—,//z Thus for all S C [k]

st |S|=¢+1 P(v,u,w,S) = Zi;ll > (s1.80)eazt(s) Cilv,w, S1) - Ci(v, u, S2).
Therefore the total number of copies of H that are adjacent to v in the first case
is the number of ¢-length colorful paths between u and w that are adjacent to v,
multiplied by the number of k£ — ¢-length colorful paths between v and w, with
disjoint set of colors (except for the colors of u and w):

Z Pi(v,u,w, S3) - C;(u,w, Sq).
(S5,55)€ALE ([K)

This should be computed for all 2 < ¢ < k—2 and all (u, w) € E. The second case
is computed as follows. We count the number of ¢-length colorful paths between
w and v and multiply it by the number of (k — £)-length colorful paths between u
and v, using disjoint set of colors besides the colors of u and v. This is done for all
2 < ¢ < k/2. Computing the running time: according to the proof of Lemma 1,
the time complexity for computing C;(v,w, S) for every color-set S and every
pair of vertices v, w is O(2¥-n-|E|). The running time of computing P; (v, u,w, S)
for fixed vertices v, u, w, and every color-set S (assuming C;(v,w, S) is already
computed) is

o(EE0) 0) o0 o

Therefore the time complexity of computing the first case is

o> > 3| +0@" n-|E)=03" n-|E|). (3)

veV (u,w)eEE

The time complexity of the second case (besides computing C; (v, w, S)) is

o>y > f:(’;) = O(|E| - 2).

veEV weN (v) £=1

Thus the total time complexity is O(|E| - n - 3F). O

Proof of Theorem 3. The correctness of the approximation returned by Al-
gorithm 4 is proved in the same manner as in the proof of Theorem 2. Lemma 3
implies the correctness of the computation of X?. The time complexity of Algo-

rithm 4 is O (WM) by Lemma 3 and by showing that the number

of colorings used by the algorithm is O (M). This completes the proof.

a

4 Algorithms for Counting all four-size Motifs

Given a graph G = (V, E) and a vertex v, we describe how to approximately
count for every vertex v the number of non-induced occurrences of each possible

motif H appearing in Pinter et al. [22] that are adjacent to v. In addition, for
each motif H that appears in Pinter et al. [22] we present an algorithm for
approximating the number of non-induced subgraphs of G that are isomorphic
to H when no efficient algorithm exists. Note that we allow overlaps between
the motifs, as in the previous section.

4.1 Counting ”Tailed Triangles”

In this section assume that H is a triangle with a "tail” of length one. E We
present an algorithm that approximates the number of subgraphs of G which are
isomorphic to H, and, for every vertex v, approximates the number of subgraphs
of G which are isomorphic to H and adjacent to v.

We first approximate the later. There are three cases: one for which v is an
endpoint of the path and adjacent to the triangle Eb , second for which v is not
an endpoint of the path and adjacent to the triangle E , and third for which

v is an endpoint of the path but not adjacent to the triangleY . Let TR (v)
be the approximation of the total number of triangles in GG that are adjacent to
v, according to Algorithm 1. Let G, = (V,,, E,), where V,, = V' \ {v}, and E, is
the induced set of edges received by removing all edges adjacent to v. Consider
the following algorithm. The algorithm takes as input: a graph G = (V, E), a
vertex v, an approximation factor €, and an error probability §. Let T'Lg(v) be
the number of "tailed triangles” in G returned by the algorithm .

Algorithm 5 (A (e, §)-approximation algorithm for counting simple ”tailed tri-
angles” adjacent to v)

TLG (’U) =0
TRg(v) = result of Algorithm 1 (G, k=3, ¢, 6).

TLg(v) =TLg(w) +TRg(v) - (IN(w)| —2).

For allw € N(v):

(a) Compute N(v) NN (u):

i. Go over all the vertices in the adjacency list of v and the adjacency
list of u, and add each vertex to a list. (Thus a vertex can appear
several times in the list).

7. For each vertex in the list count the number of times it appears in
the list. If it appears twice then add the vertex to a list £(u,v).

(b) For all w € ¢(u,v) TLg(v) = TLg(v) + degw — 2 + degu — 2.

5. Compute G, by going over the whole adjacency list and removing v any time
is appears in the list.

6. For allu € N(v) TRq,(u)= result of Algorithm 1 (Gy,u, k=3, ¢, 9).

TLg(v) =TLa(v) + X yenw) TRa, (u).

8. Return T Lg(v).

o~

=

Theorem 4 Let G = (V, E) be an undirected graph, and let H be a triangle
with a “tail” of length one. Then, for every verter v, the number of copies of
G that are isomorphic to H and adjacent to v can be (e, 0)-approzimated, with

time complexity O (M) _

Proof:

In the first case i we get that the number of subgraphs of G which are
isomorphic to H and adjacent to v is

TRa(v) - (IN(v)] - 2).

v
In the second case E we get that the number of subgraphs of G which are
isomorphic to H and adjacent to v is

Z Z (degw — 2+ degu — 2).

u€EN (v) weN (v)NN (u)

In the third case i, we get that the number of subgraphs of G which are
isomorphic to H and adjacent to v is

> TRe,(u).

u€N (v)

Thus the total number of subgraphs of G which are isomorphic to H and adjacent
to v is

TRe(v)-(|N(v)|-2)+ Z Z (degw — 2 + degu — 2)+ Z TRg,(u).

uEN (v) weN (v)NN (u) u€EN (v)

Let 7, be the approximated value for the number of subgraphs of G which
are isomorphic to H and are adjacent to v in the first and third cases. Let r,
be the exact number. In a similar manner to that of Theorem 1 7, is an (e, J)-
approximation to the number of subgraphs of G which are isomorphic to H and
are adjacent to v in the first and third cases. For the second case Algorithm 5
gives an exact solution. Let a, be the number of subgraphs of G which are
isomorphic to H and are adjacent to v contributed by this case. We need to
show that 7, + a, is an (e, §)-approximation for the total number of subgraphs
of G which are isomorphic to H and are adjacent to v:

Pr[fy + ay € [(1 = €)(rv + av), (1 + €)(ry + av)]]
> Pr[fy, +ay €[(1 —€)ry + ay, (1 + €)1y +ay]] > 1 — 26. (4)
This completes the proof of the correctness of the algorithm.

Assuming that the degree of every vertex is known, the time complexity of
finding the total number of subgraphs of G which are isomorphic to H and

adjacent to v is the time of computing the number of triangles that are adjacent
to v, for every v, plus the time of computing G, for every vertex v, plus the time
of computing N(v) N N (u) for every u € N(v), for every vertex v, plus the time
of computing the number of triangles that are adjacent to u for every vertex

u € N(v), for every vertex v. By Theorem 1 the time complexity of computing
n|E| 102g(1/5))

the number of triangles that are adjacent to v for every v is O("
The time complexity of computing G, for every vertex v is O(n - |E|). The time
complexity for computing N (v) N N (u) for every u € N(v), for every v € V, is

O Z Z degu +degv | =0 Z Z n

veV ueN (v) veV ueN (v)

O<n~2degv> =O(|E] - n). (5)

veV

Thus the total time complexity is
- |E|log(1 - |E|log(1
o (BN Y o) - o (- ERLS)),

O

We now count the number of subgraphs of G which are isomorphic to H,
where H is a tailed traingle. According to the above number of subgraphs of G
which are isomorphic to H is

> TRa(v)- (IN(v)| - 2).

veV

Assuming that for every v degwv is known, by Theorem 4 the time complexity is
O(M). Therefore we immediately get the following theorem:

Theorem 5 Let G = (V, E) be an undirected graph, and let H be a triangle with
a "tail” of length one. Then, the number of copies of G that are isomorphic to
H can be (e, 9)-approzimated, with time complexity O(w) .

4.2 Counting 4-Cliques

In this section assume that H is a clique of size four. X We present an algo-
rithm that ezactly computes the number of subgraphs of G which are isomorphic
to H, and, for every vertex v, the number of subgraphs of G which are isomorphic
to H and adjacent to v.

We first compute, for every vertex v, the number of subgraphs of G which
v
are isomorphic to H and adjacent to v. z . We run the following algorithm:
Let Cl(v) be the number of four-cliques in the graph that are adjacent to v. The
algorithm takes as input: a graph G = (V| E), a vertex v.

Algorithm 6 (Algorithm for counting 4-cliques that are adjacent to v)
1. Clv) =0

2. For every vertex u € N(v):
(a) Compute N(v) N N(u):

i. Go over all the vertices in the adjacency list of v and the adjacency
list of u, and add each vertex to a list. (Thus a verter can appear
several times in the list).

1. For each vertex in the list count the number of times it appears in
the list. If it appears twice then add the vertex to a list £(u,v).

iti. Sort the list £(u,v) according to the names of the vertices.
(b) For all w € £(u,v) go over the adjacency list of w and for each vertex

t # v,u in this adjacency list check if t € L(u,v). If t € L(u,v) then
Cl(v) :=Cl(v) +1
3. Return Cl(v)/6.
Theorem 6 Let G = (V,E) be an undirected graph, and let H be a clique of
size four. Then for all v € V' Algorithm 6 counts the number of copies of H in
G that are adjacent to v, with time complexity O(|E| - nlogn + |E|?)

Proof: The correctness of Algorithm 6 is trivial. Using similar computation to
that in the proof of Theorem 4 we get that the time complexity of Algorithm 6
is

Z Z degu + degv

veV ueN (v)

+0 > Y N wllog(INw)NN@))+ > degw

veV ueN (v) weN (v)NN (u)

=O(|E|-nlogn)+ O Z Z Z degw

vEV ueN (v) weN (v)NN (u)

O(JE| -nlogn)+ O Z Z Zdegw

vEV ueN (v) weV
O(|E| - nlogn) + O(|E[?). (6)
O
We now count the number of subgraphs of G which are isomorphic to H,

where H is a four-clique. Let Cl be the total number of four-cliques in the
graph. Then computing Cl immediately follows by the previous algorithm:

1
=3 > Clw)

veV

Theorem 7 Let G = (V, E) be an undirected graph, and let H be a clique of size
four. Then the number of copies of H in G can be computed with time complexity
O(|E| -nlogn + |E|?) .

4.3 Counting Small Trees

In this section assume that H is a tree of size four that is consisted of a vertex
and three of its neighbors. We present an algorithm that ezactly computes, for
every vertex v, the number of subgraphs of G which are isomorphic to H and
adjacent to v. There are two cases: one for which v is an endpoint of all edges

of the treek., and one for which v is an endpoint of only one edgek. In
the first clse we get (|N§”)|). In the second case for every u € N(v) we count
all subsets of size 2 of N(u) (not including v). Therefore this case contributes
ZueN(@) (deg(g)fl) subgraphs of G which are isomorphic to H and are adjacent
to v. Thus the total number number of subgraphs of G which are isomorphic to
H and are adjacent to v is

(deg;v))+ S (deg(t;)—l).

u€EN (v)

Assuming that the degree of every vertex is known, the time complexity is

> (O(1) + O(deg(v))) = O(|E| +n).

veV
Thus we immediately get the following theorem:

Theorem 8 Let G = (V, E) be an undirected graph, and let H be a tree of size
four that is consisted of a vertex and three of its neighbors. Then, for every vertex
v, the number of subgraphs of G which are isomorphic to H and are adjacent to
v can be found with time complexity O(|E| + n).

Note that the total number of subgraphs of G which are isomorphic to H
can be easily counted using the first case, for all v, with time complexity O(n).

5 Conclusions
(3¢)*-n-|E|-log 1)

In this work we presented algorithms with time complexity O (—
that, for the first time, approximate for every vertex the number of non-induced
occurrences of the motif the vertex is part of, for k-length cycles and k-length

cycles with a chord, where k = O(logn). We also designed algorithms with time
complexity O (nlEl%g% +|E]?2 + |E| -nlog n) that, for the first time, approx-
imate for every vertex the number of non-induced occurrences of the motif the
vertex is part of, for all motifs of size of at most four. In addition, we showed al-
gorithms that approximate the total number of non-induced occurrences of these
network motifs, when no efficient algorithm exists. Approximating the number
of non-induced occurrences of the motif a vertex is part of, for other motifs of
size O(logn) is left for future work.

Acknowledgment: we thank Dana Ron for many hours of fruitful discussions,
and the anonymous reviewers for their help in improving this manuascript. This
work was support by a center of excellence on “Network Topology: structure and
dynamics” grant (No. 1685/07) by the Israeli Science Foundation.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

R. Albert and A.-L. Barabési. Topology of evolving networks: Local events and
universality. 85(24):5234-5237, 2000.

N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C. Sahinalp. Biomolecular
network motif counting and discovery by color coding. Bioinformatics, 1:1-9, 2008.
N. Alon and S. Gutner. Balanced families of perfect hash functions and their
applications. In Proceedings of the 34th International Colloguium on Automata,
Languages and Programming (ICALP), pages 435-446, 2007.

N. Alon, R. Yuster, and U. Zwick. Color coding. Journal of the ACM, 42:844-856,
1995.

N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles.
Algorithmica, 17:209-223, 1997.

V. Arvind and V. Raman. Approximation algorithms for some parameterized
counting problems. In Proceedings of the 13th International Symposium on Algo-
rithms and Computation (ISAAC), pages 453-464, 2002.

S. Bar, M. Gonen, and A. Wool. An incremental super-linear preferential Internet
topology model. In Proc. 5th , LNCS 3015, pages 53-62, Antibes Juan-les-Pins,
France, 2004.

S. Bar, M. Gonen, and A. Wool. A geographic directed preferential Internet topol-
ogy model. In Proc. 18th, pages 325-328, Atlanta, GA, 2005.

P. Barford, A. Bestavros, J. Byers, and M. Crovella. On the marginal utility of
network topology measurements. In Proc., pages 5-17, San Francisco, California,
USA, 2001.

L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient semi-streaming algo-
rithms for local triangle counting in massive graphs. In Proceeding of the 14th
ACM SIGKDD international conference on Knowledge discovery and data mining
(KDD), pages 1624, 2008.

G. Bianconi and A. L. Barabdsi. Competition and multiscaling in evolving net-
works. Furophysics Letters, 54(4):436-442, 2001.

G. Bianconi and A. Capocci. Number of loops of size h in growing scale-free
networks. Physical Review Letters, 90:078701, 2003.

G. Bianconi and M. Marsili. Loops of any size and hamilton cycles in random
scale-free networks. Journal of Statistical Mechanics, page P06005, 2005.

G. Bianconi and M. Marsili. Number of cliques in random scale-free network
ensembles. Physica D, 224:1-6, 2006.

R.X. Brunet and I.M. Sokolov. Evolving networks with disadvantaged long-range
connections. Physical Review E, 66:026118, 2002.

T. Bu and D. Towsley. On distinguishing between Internet power-law generators.
In Proc. IEEE INFOCOM’02, pages 638-647, New-York, NY, USA, 2002.

Q. Chen, H. Chang, R. Govindan, S. Jamin, S. Shenker, and W. Willinger. The
origin of power laws in Internet topologies revisited. In Proc. IEEE INFOCOM’02,
pages 608-617, New-York, NY, USA, 2002.

B. Dost, T. Shlomi, N. Gupta, E. Ruppin, V. Bafna, and R. Sharan. QNet: A tool
for querying protein interaction networks. In Proceedings of the 11th Annual In-
ternational Conference Research in Computational Molecular Biology (RECOMB),
pages 1-15, 2007.

R. Duke, H. Lefmann, and V. Rédl. A fast approximation algorithm for computing
the frequencies of subgraphs in a given graph. SIAM Journal on Computing,
24(3):598-620, 1995.

20

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

C. Faloutsos, M. Faloutsos, and P. Faloutsos. On power-law relationships of the
Internet topology. In Proc. of ACM SIGCOMM’99, pages 251-260, Cambridge,
Massachusetts, USA, 1999.

Dima Feldman and Yuval Shavitt. Automatic large scale generation of internet
pop level maps. In IEEE GLOBECOM, 2008.

M. Gordon, E. A. Livneh, R. Y. Pinter, and E. Rubin. Elucidating protein func-
tion using graphlet degree vectors in protein-protein interactions networks. under
review.

R. Govindan and H. Tangmunarunki. Heuristics for Internet map discovery. In
Proc. IEEE INFOCOM’00, pages 1371-1380, Tel-Aviv, Israel, 2000.

J. Grochow and M. Kellis. Network motif discovery using subgraph enumeration
and symmetry-breaking. In Proceedings of the 11th Annual International Con-
ference Research in Computational Molecular Biology (RECOMB), pages 92-06,
2007.

D. Hales and S. Arteconi. Motifs in evolving cooperative networks look like protein
structure networks. Special Issue of ECCS’07 in The Journal of Networks and
Heterogeneous Media, 3(2):239-249, 2008.

F. Hormozdiari, P. Berenbrink, N. Przulj, and S.C. Sahinalp. Not all scale-free
networks are born equal: The role of the seed graph in ppi network evolution.
PLoS: Computational Biology, 3(7):e118, 2007.

R. Itzhack, Y. Mogilevski, and Y. Louzoun. An optimal algorithm for counting
network motifs. Physica A, 381:482—-490, 2007.

R. Karp and M. Luby. Monte-carlo algorithms for enumeration and reliability
problems. In Proceedings of the Twenty-Fourth Annual Symposium on Foundations
of Computer Science (FOCS), pages 56—64, 1983.

N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon. Efficient sampling algorithm for
estimating subgraph concentrations and detecting network motifs. Bioinformatics,
20(11):1746-1758, 2004.

V. Van Kerrebroeck and E. Marinari. Ranking by loops: a new approach to cate-
gorization. Physical Review Letters, 101:098701, 2008.

A. Lakhina, J. W. Byers, M. Crovella, and P. Xie. Sampling biases in IP topology
measurments. In Proc. IEEE INFOCOM’03, pages 332-341, New-York, NY, USA,
2003.

X. Li and G. Chen. A local-world evolving network model. Physica A, 328:274-286,
2003.

E. Marinari, G. Semerjian, and V. Van Kerrebroeck. Finding long cycles in graphs.
Physical Review E, 75(6):066708, June 2007.

R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Net-
work motifs: Simple building blocks of complex networks. Science, 298:824-827,
2002.

N. Przulj. Biological network comparison using graphlet degree distribution. Bioin-
formatics, 23(2):e177-€183, 2007.

N. Przulj, D. G. Corneil, and I. Jurisica. Modeling interactome: Scale-free or
geometric? Bioinformatics, 20(18):3508-3515, 2004.

H. Reittu and I. Norros. On the power law random graph model of the Internet.
Performance Evaluation, 55, 2004.

G. Sagie and A. Wool. A clustering approach for exploring the Internet structure.
In Proc. 23rd, pages 149-152, Herzlia, Israel, 2004.

J. Scott, T. Ideker, R. Karp, and R. Sharan. Efficient algorithms for detecting
signaling pathways in protein interaction networks. In Proceedings of the 9th An-

40.

41.

42.

43.

44.

45.

46.

47.

48.

nual International Conference Research in Computational Molecular Biology (RE-
COMB), pages 1-13, 2005.

Yuval Shavitt and Eran Shir. DIMES: Let the internet measure itself. ACM
SIGCOMM Computer Communication Review, 35:71-74, October 2005.

T. Shlomi, D. Segal, and E. Ruppin. QPath: a method for querying pathways in a
protein-protein interaction network. Bioinformatics, 7:199, 2006.

G. Siganos, S.L. Tauro, and M. Faloutsos. Jellyfish: A conceptual model for the as
Internet topology. Journal of Communications and Networks, 8:339-350, 2006.

L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katz. Characterizing the
Internet hierarchy from multiple vantage points. In Proc. IEEE INFOCOM’02,
pages 618-627, New-York, NY, USA, 2002.

H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W. Willinger. Net-
work topology generators: Degree based vs. structural. In Proc., pages 147-159,
New York, USA, 2002.

L. Tauro, C. Palmer, G. Siganos, and M. Faloutsos. A simple conceptual model for
Internet topology. In Proc. IEEE Global Internet, pages 1667-1671, San Antonio,
TX, 2001.

S. Wernicke. Efficient detection of network motifs. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 3(4):347-359, October 2006.

W. Willinger, R. Govindan, S. Jamin, V. Paxson, and S. Shenker. Scaling phenom-
ena in the Internet: Critically examining criticality. Proceedings of the National
Academy of Sciences of the United States of America, 99:2573-2580, 2002.

J. Winick and S. Jamin. Inet-3.0: Internet topology generator. Technical Report
UM-CSE-TR-456-02, Department of EECS, University of Michigan, 2002.

