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Abstract—The topology of the Internet has been extensively studied
in recent years, driving a need for increasingly complex measurement
infrastructures. These measurements have produced detailed topologies
with steadily increasing temporal resolution, but concerns exist about
the ability of active measurements to measure the true Internet topology.
Difficulties in ensuring the accuracy of every individual measurement
when millions of measurements are made daily, and concerns about
the bias that might result from measurements along the tree of routes
from each vantage point to the wider reaches of the Internet must be
addressed. However, early discussions of these concerns were based mostly
on synthetic data, oversimplified models or data with limited or biased
observer distributions.

In this paper, we show the importance that extensive sampling from a
broad and well spread set of vantage points has on the resulting topology
and bias. The majority of this paper is devoted to a first look at the
importance of the distribution quality. We show that diversity in the
locations and types of vantage points is required for obtaining an unbiased
topology. We analyze the effect that broad distribution has over the
convergence of various autonomous systems topology characteristics, and
show that although diverse and broad distribution is not required for all
inspected properties, it is required for some. Finally, claims against bias
in active traceroute sampling are revisited, and we empirically show that
diverse and broad distribution can question their conclusions.

I. INTRODUCTION

The study of the topological structure of the Internet, ranging from
the finest IP-level to the coarsest Autonomous-Systems (AS) level, is
the driving force of several measurements effort in recent years.

Internet topology mapping is commonly performed by using ei-
ther passive or active measurements. RouteViews [1] is the major
passive measurement project; it relies on the collection of BGP
announcements and updates from a few tens of vantage points (VPs).
Most other topology measurement projects rely on active probing,
mostly using dedicated instrumentation boxes (e.g., Archipelago [2])
or utilize PlanetLab servers [3] (e.g., iPlane [4] and RocketFuel [5]).
A third approach is to use software agents. DIMES [6] deploys a large
number of software agents and maintains an active community of
participants. Ono [7] uses the BitTorrent P2P network for performing
active measurements amongst peers that installed their plugin.

Using dedicated hardware boxes as a measurement infrastructure
often limits the number of possible VPs. Using PlanetLab allows an
increase in the number of VPs, but PlanetLab servers are mainly
located in academic networks. Both approaches create a relatively
stable and consistent output that is more easily analyzed. Community-
based projects benefit from contributions of a large and widespread
community, but often produce intermittent results that are more
challenging to analyze. Currently, there are three major opera-
tional distributed active topology discovery infrastructures, namely
Archipelago (Ark), iPlane, DIMES. Ono, which is not a pure topology
discovery infrastructure, was shown to be very useful in finding
hidden links of the AS-level topology. The data used in this paper is
obtained from DIMES and iPlane. Both are highly distributed active
measurement infrastructures with hundreds of measurement points.

This paper studies the effects that a broad set of VPs have on
the quality of the observed topology, showing both the importance

of the number of VPs and of the diversity in the location and the
type of the ASes that host VPs for topology discovery. While some
question the possibility of cleaning up data from a community-based
infrastructure [8], we describe several simple filtering techniques and
show that given a sufficiently diverse and broad distribution of VPs (in
terms of geography, type, and quantity), it is possible to obtain data
of comparable quality to infrastructures that have been deployed in a
controlled manner. We then use the filtered data to explore the benefits
of having a broad distribution in order to reevaluate some recent bias
claims. Moreover, we analyze various properties of the Autonomous
Systems (AS) graph, and show that broad distribution can further
assist in reducing the bias of the results. We employ convergence-
testing techniques [9], and show that some graph properties require
more than 40 different VPs in order to converge to a value that
represents the measured topology. Such a high number of VPs is
more than most existing work uses as dataset.

II. RELATED WORK

There is much research devoted to the analysis of the Internet
topology measurement data, whereas only a few papers perform
an in-depth analysis of the measurement infrastructures themselves.
Barford et al. [10] studied the utility of adding VP for topology
discovery, and showed that beyond the second VP, the utility quickly
diminishes. However, Shavitt and Shir [6] later showed that although
the utility indeed diminishes, the data from adding hundreds and
thousands of VPs have a substantial effect on the resulting topology.

Following this observation, it became well accepted that attempting
to infer the Internet topology from a few VPs leads to incomplete
[6], [11], [12] and, even more important, biased topologies [6], [8],
[13]. However, a common problem with previous work is their usage
of either synthetic networks or real data that is either inaccurate or
insufficiently understood for the tasks it is used [14]. As such, the
commonly used power-law model for generating synthetic AS-level
graphs [15] has been shown to be attributed both to the measurement
process itself [16] and to the incorrect analysis of the data used [14].

Creating AS-level topologies from BGP data was shown [17], [18]
to miss a substantial amount of AS-links if data is taken from a few
VPs or for insufficiently long time. For example, Oliveira et al. [18]
showed that BGP data can miss 10–20% of the tier-1 and tier-2 AS-
links, and 85% or more AS-links of large content provider networks.

Mahadevan et al. [19] performed a comparative analysis of the AS
topology using three different data collection methods – traceroutes
(using Skitter), BGP (RouteViews) and IRR (WHOIS). The authors
showed that topologies created from active traceroutes and passively
collected BGP announcements are similar but differ substantially
from the user-maintained WHOIS topology.

The ability of active topology measurements to map the Internet
topology in general and the AS-level topology in particular was also
shown to raise some difficulties in uncovering missing links [7],
performing frequent probing [12] and mapping IP-level traceroutes
to AS-level topology [20], [21], [7], [22].
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Chen et al. [7] claimed that it is possible to extend the known AS
topology by deploying VPs in P2P networks, and find links that were
unseen by BGP data. However, the authors aggregate data collected
for almost a year, making the assumption that AS-links are only added
to the topology during this time frame. Although the authors apply
various methods for cleaning their data from possibly false links,
small measurement mistakes get accumulated. Even when using the
extensive heuristics presented by the authors for removing false links,
such false data is hard to identify when the number of measurement
per VP is small. Although this very broad distribution (with VPs in
over 3,700 different ASes) contributes many previously unseen links,
when compared with an aggregated DIMES AS-level topology over
the same time frame, but with a much narrower set of 300 VPs, we
found that the overall number of links is similar (roughly 140,000 AS-
links), but each topology misses roughly 60,000 links that the other
topology finds. This shows that a simple increase in the number of
VPs does not guarantee better coverage.

Beverly et al. [12] studied methods for enabling high frequency
probing of the Internet topology by reducing the number of probes
per VP and by changing the way destinations are assigned to VPs.
Although the authors show that the utility of adding VPs slowly
decreases, their focus is strictly on the interface-level and AS-level
topology size, i.e., the number of discovered entities. Furthermore,
the paper uses data from Ark, making it limited in both the number
of VPs (reaching only 38 VPs), and in the types of ASes that host
these VPs. In this paper we perform a much larger-scale study of the
effect that the number of VPs and the broadness of their locations
has on the AS-level topology and its properties.

Oliveira et al. [23] created an evolutional model of the AS topology
and provided an evaluation of the proposed model using different
data sources. The authors used BGP as the basis for their analysis
and extended it with Internet Routing Registry (IRR) data and active
probing including Skitter, DIMES and iPlane. They conclude that
although active traceroute probing is an important source for topology
information, it has a problem of broadness (covering all sampled
topology) and freshness (updating the destinations list). A longer
ten year study of the Internet evolutions was later performed [24],
however it uses only BGP data.

Krishnamurthy and Willinger [14] recently raised several concerns
about the quality of measurement-based research, focusing on a
fundamental question of whether the measurements and their anal-
ysis actually support the resulting claims. Following some of their
insights, this paper attempts to improve the understanding of large-
scale measurement data, its quality, and its limitations, mainly in the
context of the AS-level topology analysis.

III. MEASUREMENT SETUP

As previously noted, increasing the number of VPs is a challenging
task for all Internet measurement projects, either due to the need of
purchasing and deploying new specialized machines, or convincing
users to install an agent on their PCs. We wish to study empirically if
and to what extent using a large number of VPs affects the observed
topology.

To this end, we use traceroute data from DIMES collected during
the month of August 2009. Due to its community-based design,
DIMES may exhibit changing behaviors, depending on the activity
of its community. However, some of the analysis here appears in the
conference version of this paper [25], where we used only one week
of data from early 2008, and the results of both datasets are quite
similar. The following section briefly highlights some of the important
aspects of DIMES and provides understanding of how to detect and
filter out unwanted behavior, leading towards a more accurate data
analysis.

A. Infrastructure Overview

DIMES performs measurements using hundreds of software agents
installed on users’ PCs. Agents perform measurements by following
a script that is sent to them from a central server. An agent can
perform traceroute and ping measurements using either ICMP or UDP
packets, with a default of two measurements per minute, inducing
minimal bandwidth overhead. Upon completion of a script, an agent
submits the results and requests a new script to perform. By default,
an active agent performs approximately 10,000 weekly traceroute
measurements.

The measurement scripts aim to cover the entire IP prefix space,
mostly focusing in AS and Point-of-Presence (PoP) topologies.
DIMES collects the list of prefixes from the RouteViews project,
providing roughly 400k prefixes. Using each prefix, a set of IP
destinations is constructed. A typical script includes traceroute and
ping commands to 60 destination IP addresses.

We note that although DIMES agents run on Windows, Linux
and Mac, the measurement algorithms are implemented using raw-
socket API, and do not change between different OSes. Although this
method makes installation a bit complicated, it is essential in order to
allow uniform execution of the measurements, regardless of the OS
the agent operates on and without relying on a specific OS behavior.

Raw measurement data that is reported back to the server is
filtered in order to remove trivial measurement artifacts that can
later cause analysis mistakes. Traceroutes that exhibit some known
problems [26], namely routing loops and the appearance of the
destination address in the middle of the traceroute, are discarded
from analysis. These measurements account for less than 0.1% of the
total number of traceroutes performed. However, there still remains a
substantial amount of non-trivial measurement artifacts that can lead
to biased results. Therefore, additional filtering is applied as described
next.

B. Data Filtering

In the context of DIMES measurements, we define a VP as an
AS that homes one or more agents. The set of VPs (denoted by
V ) changes over time due to the churn in the agent population, and
laptop-based agent mobility. Therefore, there is a need to correctly
identify from where measurements are performed at a given point
of time, and filter out agents that exhibit some abnormal behavior
and may contribute bias. This can be achieved by using the AS from
which the agent reports the results of the measurements. However,
a mobile agent can perform measurements from one AS, and report
them later from a different AS. This contributes a mis-identification
mistake which is difficult to quantify.

Therefore, the identification of the AS that hosts the measurement
is done by following each of the traceroutes until reaching a hop
with a routable IP address that can be resolved into a valid AS. This
method is not error proof since the routers in the hosting AS might
be non-responsive and the first routable IP address might belong to
a peering AS. In this case, the agent will be assigned the peering
AS instead of the hosting AS. When multiple peering is used by the
hosting AS, the agent might be assigned to several ASes, depends on
the peering policies of its hosting AS, e.g., per-destination selection
of egress point and load-balancing strategies.

To reduce VP identification mistakes, we limit the search to the
first four hops in the path, hence ASes with multiple non-responsive
hops will not induce mistake.

Approximately 52% of the agents that are resolved to an AS
appear to be homed in more than one AS and 20% of the agents are
homed in more than 5 ASes. However, most of the measurements
of an agent are performed from one VP and the rest of the VPs
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appear to have only a few measurements, usually less than ten out of
several thousands. This can either be a sign of mis-identification,
or alternatively, the result of a laptop-based agent that perform
measurements from multiple ASes. The latter, however, commonly
results in a larger number of measurements per VP, since even laptop-
based agent are usually homed in only a few ASes.

Accounting for these possibly mis-identified VPs, we filter out all
the measurements for which tr(ai, vpj) < T , i.e., agent ai measured
from VP vpj less than T traceroutes. Applying this filter with T =
200, reduces the number of agents that have more than 5 different
VPs to less than 0.55% of the agents and leaves no agent that have
more than 10 different VPs. Filtering with T = 500 yields less than
0.4% of the agents with more than 5 VPs. Since there is a trade-off
between the accuracy of VP identification and loss of data due to
over-filtering, we select T = 200 and estimate the extent of mis-
identification errors.

The VP identification error of an agent is estimated as the per-
centage of measurements it performed from VPs suspected as mis-
identified out of the overall number of its measurements. More for-
mally, consider tr(ai, vpj) to be the number of traceroutes performed
by agent ai from VP vpj ∈ V , and the indicator xj which marks a
possibly mis-identified VP:

∀j ∈ {1..|V |}, xj =
{

1 tr (ai, vpj) < T
0 otherwise

The VP identification error is thus given by:

err (aj) = 100 ·
∑
j xj · tr(ai, vpj)∑
j tr(ai, vpj)

Using T = 200, Fig. 1 plots the cumulative distribution of the
error estimation (right) and the mis-identification error as a function
of the total number of measurements per agent. Most agents (73%)
have no mis-identification error and only 7 agents (less than 1%)
have 100% error estimation. Out of these, only 2 have more than
5,000 measurements, making these an indication of error since their
measurements span across multiple (mis-identified) ASes, for each
at most 200 measurements are performed. The overall error, i.e., the
percentage of all measurements that are suspected as mis-identified
out of the total measurements performed by all agents, is 0.23%
(marked by the red line in the right plot), indicating that only a few
agents (less than 4%) contribute most of the mis-identification, as can
also be seen by the few marks above the zero line in the left plot.
In the remainder of the paper, we use only measurements for which
tr(ai, vpj) ≤ T, T = 200, and refer to it as the filtered data.
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Fig. 1: Estimation of error in the identification of VPs
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Fig. 2: Average number of agents and measurements per VP degree.
Filtered data includes only agents from VPs where tr(ai, vpj) ≥ 200

For each vpi we extract the number of measuring agents,
agents(vpi) and the number of total traceroute measurements per-
formed from it, tr(vpi). Using the degree ki of its hosting AS in the
undirected AS graph, i.e., number of links to neighboring ASes, we
calculate the average number of traceroute measurements per degree:

tr(k) =

∑
i∈{ki=k}

tr(vpi)

|{i|ki = k}|
and average number of agents per AS degree:

agents(k) =

∑
i∈{ki=k}

agents(vpi)

|{i|ki = k}|

We repeat this calculation for the filtered set, and find trf (k) and
agentsf (k).

Fig. 2 (left) shows that VPs with higher degree tend to have
more agents. Using degrees extracted from RouteViews produced
the same results, indicating that this is not a sampling bias caused
by measurement artifacts [27], i.e., the high degree is not the result
of having more agents but rather an indication that large ASes tend
to “host” more agents. Additionally, Fig. 2 (right) shows no direct
relationship between the number of measurements and the VP degree,
showing that there is a good distribution of measuring agents across
the different ASes.

C. Measurement Time-frame

Using a community-based project mandates the existence of a
certain churn in VPs [28]. Therefore, we need to find the best time-
period length during which measurements are collected. We therefore
quantify the churn in the VPs during consecutive time-frames. First,
Fig. 3a shows the total number VPs using increasing number of
accumulated weeks from January until October 2009. The figure
exhibits a steady increase in the number of VPs, showing that overall
the number of new VPs suppresses the number of lost VPs. Fig. 3b
shows the percentage of consistent VPs during consecutive periods
of weeks, fortnights, and months. The figure shows that (a) for most
time-frames, there are over 85% consistent VPs, (b) the set of VPs
are less consistent during the first months of 2009 and more stable
after July, and (c) weekly analysis exhibits a more consist set of VPs
than monthly. This is since most of the inconsistency of the VP group
over time comes from agents that register for a short period of time



4

(or laptops taken on trips to uncommon locations) and not due to
agents that stop working for a week or two, which is also seen from
the constant increase in Fig. 3a. Thus, looking at longer time period
does the opposite of smoothening the data.

10 15 20 25 30 35 40
Last accumulated week index

100

150

200

250

300

350

To
ta

l n
um

be
r o

f V
Ps

(a) Accumulated

10 15 20 25 30 35 40
Week index

75

80

85

90

95

100

Pe
rc

en
t o

f c
on

si
st

en
t V

Ps

Weekly
Bi-Weekly
Monthly

(b) Consistency

Fig. 3: VP churn during 2009 showing that (a) accumulating weeks
results in a steady increase of the the VP count, and (b) VPs exhibit
less churn on shorter time frames

These observations lead us to use data collected for a complete
month during August 2009, where the churn is low. This helps obtain
a set of relatively consistent VPs, allowing easier analysis of the large
dataset. Moreover, using a complete month, increases the probability
that there is a good coverage of the underlying topology, meaning
that most ASes and AS-links are observed by more than one agent.

IV. VANTAGE POINTS DISTRIBUTION ANALYSIS

This section provides an in depth analysis of the various aspects
related to the distribution of VPs and its effect on the resulting
topology features.

A. Diminishing Returns

We now have the data needed to revisit the diminishing returns
claim by examining how the observed topology changes as data from
more VPs is added. Evaluating the effect of adding VPs is done by
first building the local AS topology as observed from each of the
VPs, i.e., the AS topology measured by agents when they are hosted
in each VP.

TABLE I: The top-10 VPs sorted by ascending number of discovered
AS-links per VP

AS-links Degree ASN Name
36236 243 25229 Volia Ukraine
29552 166 286 KPN Netherlands
25565 4 33660 Comcast
24570 959 209 Qwest
23902 69 2116 Ventelo Networks
23009 695 3320 Deutsche Telekom
20416 12 25521 Industrial Media Network
18974 102 15435 Kabelfoon
18823 383 7922 Comcast IBONE
17816 39 19262 Verizon

Creating the AS-level topology from IP-level traceroutes provided
from DIMES is achieved by performing AS resolution for each hop in
all paths. We perform AS resolution by first applying longest-prefix-
matching on BGP tables obtained from the RouteViews archive (using
the same week being studied). This resolves approximately 98% of
the IP addresses. The remaining 2% are queried against two WhoIs
databases, namely RIPE and RADB. This resolves additional 1.5%
of the IP addresses. The remaining 0.5% unresolved IP addresses are
discarded and do not contribute ASes and AS-links to the topology.

In order to create an accurate topology, we use the list of Internet
exchange points (IXPs) provided by PCH [29]. Whenever a traceroute
contains an IP address that is resolved to an IXP prefix we create a
direct link between the preceding and following ASes.

To further reduce the probability of including false links in our
inferred topology, we do not include IP addresses that are resolved
to AS sets or Multiple Origin ASes (MOAS) [20], [21], and treat them
as unresolved. Furthermore, when constructing the complete DIMES
AS topology, we only include ASes and links that exist in the local
topologies of the filtered set of VPs, V f (we drop the f notation
since all further analysis uses only the filtered data). We believe that
these steps help cope with most of the issues with translating IP
traceroute measurements to AS level topologies [20], [21], [7], [22],
and the possibly accumulated error does not significantly change the
topology nor the results of our analysis.
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Fig. 4: Vantage point statistics sorted by ascending number of
discovered AS-links per VP

We denote by tr(vpi), n(vpi) and m(vpi) the number of tracer-
outes performed, ASes and links in the local topology of vpi,
respectively. We then sort the set V in a non-increasing order of
m(vpi). Fig. 4 depicts these values for each vpi in the sort order,
showing a high correlation between the number of measurements
and the size of the topology. The top 10 ASes in this sort order are
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provided in Table I. This correlation, however, breaks at the tail of
the ordered list.

We use this sort order in the following sections in order to quantify
the effect of VP aggregation on various topology parameters. We
point out that VPs that discover the largest local topologies are
mostly located in Europe and the United States. Out of the top ten
VPs, 7 are in the Europe and 3 are in USA (Qwest, Comcast and
Verizon). Only the 13th VP is the first in a different geographical
region (Israel) and the 30th is in Australia. This means that “remote”
regions that are outside the areas used by other instrumented active
measurement projects (e.g., Ark), and are likely to introduce new
contributions to the AS topology, are considered only later in this
sorted VP list. Table I shows that ASes with large degrees as well
as ASes with medium and small degrees are represented in the top
10 largest topologies, indicating that our order is not slanted towards
high degree ASes.
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Fig. 5: Number of ASes and AS-links in the aggregated topology

B. Aggregation of Local Topologies

Once we have the sorted set V we build a set of aggregated AS
topologies, Agg. An aggregated topology aggi includes the ASes
and links from the set of local topologies, aggi = ∪ij=1vpj . Fig. 5a
depicts the size of the aggregated topology as a function of the
number of VPs and Fig. 5b depicts the contribution of each VP to the
aggregate growth. The number of ASes almost reaches its final value
after aggregating only a few VPs. We note that the full set of ASes
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is actually quite easy to obtain from BGP messages without the need
for large-scale measurement effort. The number of AS-links, on the
other hand, which is much harder to obtain using passive collection
efforts [17], gradually increases even when going over 80 VPs. Note
that some VPs do not contribute new ASes or links and have thus
no mark in Fig. 5b due to the semi-log scale.

The figure questions the diminishing returns argument in two ways.
First, for AS-links, the return diminishes much slower than was
observed in the past. Second, the tail of the distribution is indeed
thick. This is especially interesting given the fact that in general
as we add more VPs we get those with fewer measurements (see
Fig. 4) due to the sort order. Therefore, the tail of the distribution in
Fig. 5, where the number of measurements is in the few thousands,
is actually a lower bound on the possible VP contribution.

To further understand the contribution of VPs in the tail, we collect
all AS links that were added in each step of the aggregation and the
set of ASes adjacent to these links. In this set, we find the maximal
AS degree, and the maximal degree difference between ASes of an
added link. The maximal degree shows whether the VP detects links
in or to the core of the Internet. High degree difference indicates
that the VP manages to detect “radial” links (meaning customer-
provider [30], [31] links towards the core) and low degree difference
indicates that the VP manages to detect only new “tangential” links
(meaning peer-to-peer links). Fig. 6 shows that even VPs in the tail
manage to discover new links towards the core. However, starting
from roughly the 110th VP, it is possible to see VPs that contribute
only “tangential” links.

We further study how merging observed topologies from distrib-
uted VPs affects several graph characteristics that are commonly used
in graphs analysis. Following Latapy and Magnien [9], we examine
the convergence trend of each analyzed property to the value of the
overall AS graph by analyzing the graph characteristics of each AS
graph aggi, 1 ≤ i ≤ |VP |. Each graph property is plotted to show
how the values extracted from the AS graphs aggi converge to the
final value of the property which is calculated on the complete AS
graph using V . We show that while some properties converge to
the overall value using only a few VPs, others converge slowly and
require many VPs to reach the vicinity of the value of the complete
topology.

We start by analyzing the node degree distribution which is the
probability that a randomly selected node is of degree k. Let n(k) be
the number of nodes with degree k in a graph containing n nodes, the
node degree distribution is: P (k) = n(k)/n. The degree distribution



6

0 20 40 60 80 100 120 140 160
Vantage points

3.0

3.5

4.0

4.5

5.0

5.5

6.0
Av

er
ag

e 
de

gr
ee

(a) Average AS Degree

0 20 40 60 80 100 120 140 160
Vantage points

2.10

2.15

2.20

2.25

2.30

2.35

2.40

2.45

PD
F 

ex
po

ne
nt

 �

(b) PDF Exponent

0 20 40 60 80 100 120 140 160
Vantage points

1000

2000

3000

4000

5000

6000

7000

8000

D
eg

re
e

kPLmax

kmax

(c) Maximal Degree

0 20 40 60 80 100 120 140 160
Vantage points

10

20

30

40

50

60

70

Co
re

 in
de

x 
/ N

um
be

r o
f A

Se
s Core size

kmax

(d) k-core

0 20 40 60 80 100 120 140 160
Vantage points

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

M
ax

 b
et

w
ee

nn
es

s 
ce

nt
ra

lit
y

(e) Betweenness Centrality

0 20 40 60 80 100 120 140 160
Vantage points

0.75

0.76

0.77

0.78

0.79

0.80

0.81

Av
er

ag
e 

cl
us

te
rin

g 
co

ef
fic

ie
nt

(f) Clustering Coefficient

Fig. 7: Topology characteristics analysis of aggregated AS graphs. The horizontal line marks the value calculated on the complete AS graph

has became one of the most frequently analyzed Internet topology
characteristics [19] since the work of Faloutsos et al. [15] that showed
that the degree distribution of Internet topologies follows a power-
law, meaning P (k) ∼ k−γ , where γ is a positive exponent. We use
the closely related Zipf [32] distribution, n(k) ∼ k−α, and calculate
γ = 1/α+ 1.

Fig. 7a and Fig. 7b show that the average degree and PDF exponent
monotonically converge, reaching the vicinity (within 10%) of the
overall value after roughly 40 VPs, and 120 VPs to reach within 1%
of the overall value. Interestingly, the exponent value we get using
all VPs (γ = 2.14) is quite similar to the one reported by Faloutsos
et al. [15] who used a single VP ten years ago (γ ' 2.20).

Fig. 7c shows that the maximum degree converges even faster, in-
dicating that the first few VPs accurately map the highest degree AS,
namely Level3 (AS-3356). We also plot a theoretical maximum node
degree in a power-law degree distribution, kPLmax = n1/(γ−1) [33].
The theoretical maximum degree starts by converging nicely to the
true maximal degree. If we had only about 10 VPs we would believe
that the formula works well for the Internet AS graph. However,
as we keep adding more VPs, kPLmax climb very fast and eventually
reaches a value, which is almost double the true maximal degree.
A similar deviation from the strict power-law model, observed in
[34], was attributed to the mixture of customer-provider links and
peering links, having the first follow the model whereas the latter do
not. Indeed, as is seen in Fig. 6, the first VPs detect mostly radial
customer-provider links whereas VPs farther in the list detect more
peer-to-peer links, causing the observed deviation from the power-law
model. Overall, these findings further strengthen the recent claims
against the accuracy of the power-law model for Internet topology
[14], [16].

k-Pruning [35] is a method for decomposing graphs into shells,
having each node being mapped to a shell based on its connectivity.
Nodes in the first shell are those who have only one link leading to
the ‘center’ of the graph. Nodes in the kth shell have k-connectivity

towards the center. The nucleus (or core) is the shell with the highest
index, kmax. Fig. 7d plots the value of kmax and the number of
ASes in the core, when applying k-shell analysis on the aggregated
AS graphs.

The nucleus index, shown in Fig. 7d, converges to 10% of its
overall value (kmax = 31) after over 60 VPs. Additionally, the
number of ASes in the nucleus is dynamic as we add more VPs.
The drops we see in the number of ASes in the core is due to
the separation of the core into two shells at the points where kmax
increases, as more links are added. These changes occur even when
the number of VPs is well over 100.
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Fig. 8: AS membership in the nucleus of the aggregated AS graphs

In order to further understand the dynamics of the core, we looked
at the ASes that are in the core and their connectivity. Fig. 8 depicts
the core ASes in each aggregated topology. Each horizontal line
represent the membership of a specific AS (not all AS numbers are
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shown for brevity of the plot) in the aggregations by a dot where
the AS was a core member of aggi. The right y-axis shows the
overall number of ASes (number of dots in each aggi) in the core,
which is illustrated by the line. The figure shows that the true core is
comprised of about 43 ASes that are present in all the aggregations
after roughly 90 VPs, and additional 20 or so join and leave the
core almost simultaneously. The simultaneous departure is the result
of detecting more links in the core, which in turn increases the
connectivity between the real core ASes and causes them to separate
into a new higher shell. This can also be seen in Fig. 7d, by observing
that each drop in the number of ASes in the core after the 60th
aggregation, is perfectly aligned with the increase in the core index
(kmax). We also observed that the average degree of the ASes in
the true core graph (i.e., not their overall degree, but their degree
after the pruning process) is roughly 40, indicating that the core is
dense, with almost a full mesh structure. However, when the core
becomes larger with more than 60 ASes, the average degree does
change, making the core sparse. Another important observation is
that in the first 16 aggregations, there are about 20 VPsthat are not
seen afterwards, indicating that they are mistakingly included in the
core due to insufficient aggregation.

Given that the core extracted using k-pruning captures a global
view of the Internet top-level providers [35], it holds both tier-1 and
tier-2 ASes, hence even if finding most tier-1 links can be done only
BGP data [18], it takes a much more comprehensive probing to find
the complete Internet core. This indicates that finding links in the
Internet core, which captures a broader concept than tier-1 ASes, is
not as easy as is believed.

Betweenness centrality (bc) is commonly used for measuring the
centrality of a node or a link. Node betweenness measures the number
of shortest paths passing through a node as an estimate to the potential
traffic load on this node assuming uniformly distributed traffic which
follows shortest paths [19]. We calculate the maximal betweenness
over all ASes in each Aggj as a measure for possible congested
nodes in the graph. In order to compare topologies with different
sizes, we normalize the average betweenness by the maximal possible
betweenness value, nj(nj − 1). Fig. 7e shows that bc converges
within 10% of the overall value after roughly 20 VPs. Since bc is a
measure of load, adding links almost always decreases the average
load on ASes (except pathologies like the Braess paradox), thus the
monotonic descent. Since high-degree ASes are more “central” than
low-degree ASes, we expect that tier-1 ASes will have the maximal
betweenness values. Indeed, Level3 (AS3356), a tier-1 AS, is the AS
with the maximal bc for all resulting graphs.

Clustering Coefficient (cc) of a graph measures the local cliquish-
ness of a node neighborhood [36]. Simply put, clustering coefficient
estimates how close a given node and its immediate neighbors are
from being a clique. A graph average clustering coefficient is used
to estimate how close a graph is to a small-world network, such
that graphs with higher average clustering coefficient can be better
modeled by a small-world network. Fig. 7f shows that the cc is
surprisingly estimated to within 2% of the final value after only 3
VPs and stays within this narrow distance from the final value while
jugging up and down. The value reported here, which is roughly 0.76,
is quite different from what was reported for topologies collected in
the Skitter project (0.46) and WHOIS repositories (0.49) [19].

In the conference version of this paper [25] we presented most of
the analysis of this subsection but for a single week in early 2008.
While the topologies (both per VP and the aggregates) are now larger
by almost 60%, the convergence properties are similar.

C. Sampling Bias

Several studies [27], [37], [38] analyze the bias that the commonly
used traceroute sampling method potentially introduces into the
inferred topology. In [27] the router-level topology inferred using
traceroute sampling was shown to be biased by the distance between
the measuring VP and the probed interface. This claim was partially
confronted by showing [37] that that various traceroute exploration
strategies can produce topologies with minimal bias.

We expect that achieving a broad distribution of VPs, alongside
with the relatively low diameter of the AS-level topology, should
result in a good sampling process of the underlying topology so that
it will exhibit less bias that result from the distance between VPs and
observed ASes.

Measuring the distance between VPs to ASes is done by searching
for the shortest valley-free path between each VP and the ASes it
observes. A valley-free path follows a strict hierarchical structure
– an uphill segment of zero or more customer-provider or sibling
links, followed by zero or one peer-to-peer link, followed by a
downhill segment of zero or more provider-customer or sibling links.
For this end, we customized the shortest-path Dijkstra algorithm
to obey the valley-free routing rules. Calculating a valley-free path
requires the inference of the type-of-relationship between adjacent
ASes (customer-provider, peers or siblings) in the AS graph. The rela-
tionships are inferred using the near-deterministic type-of-relationship
algorithm [31].

First, for each AS we find all the VPs that include it in their
observed topology (referred to as “observing VPs”), and calculate the
number of hops from the AS to each of them. Fig. 9 shows the average
number of observing VPs calculated over all ASes with a given
degree obtained from DIMES and RouteViews AS-level topologies.
As expected, the figure shows that low-degree ASes are observed
from much fewer VPs than high-degree ASes. This is attributed to the
fact that small degree ASes are harder to detect and probe. However,
there are a few ASes that have high degree (mostly in RouteViews)
and are observed by only few VPs, but these are quite rare.
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Fig. 9: Number of observing VPs per AS degree

Table II shows the distribution of the number of ASes per distance
to the nearest observing VP. The table shows that most ASes are 1 to
3 hops away from the nearest VP, 191 ASes serve as VPs (thus are
zero hops away), and a small fraction of ASes (just over a hundred)
have VPs that are 4 or 5 hops away. The average distance is 1.9 hops
with a standard deviation of 0.62, and the median is 2 hops, showing
that the set of VPs are well spread.
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TABLE II: Distances from AS to nearest vantage point

Distance to nearest VP 0 1 2 3 4 5
Number of ASes 191 4727 17482 4695 106 2

Fig. 10 shows the average distance over all ASes with a given
degree (using DIMES and RouteViews) to the nearest VP. The
standard deviation surrounding the average is less than 1 hop. While it
is possible to see a correlation between the distance and AS degrees,
the reason for this is not sampling bias but rather probabilistic
distribution of agents. As seen in Fig. 2 the probability that an agent
is located in a given AS is roughly proportional to the degree of the
AS. When using degrees from the RouteViews AS graph, the bias is
even less noticed, since there are high-degree ASes that are relatively
far away (2 hops) from the nearest VP.
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Fig. 10: Number of hops to nearest VP per AS degree

D. Diversity Bias

We further wish to study the effect of VPs distribution by examin-
ing how the diversity of the types of ASes from which measurements
are performed affects the observed topology.

For this analysis we use the AS-level topology obtained from the
iPlane Atlas [39]. Since iPlane uses PlanetLab and traceroute servers,
the identification of VPs is precise, and was provided to us from the
iPlane team.

The iPlane Atlas is a compact way of representing the AS-level
topology measured by iPlane, so that it can be easily pushed to
end-users for path prediction applications in peer-to-peer networks.
The Atlas contains a large set of 31,611 ASes, which is almost
all of the 32,326 ASes seen by RouteViews, as opposed to the
27,203 seen by DIMES. However, the connectivity is measured by
collecting traceroutes of only a few days, hence is expected to be
somewhat lower than in DIMES. However, as we later show, the
smaller topology is attributed mostly to bias in the type of measuring
VP rather than the duration of measurements.

We first study the geographical distribution of DIMES and iPlane’s
VPs. Finding the country of a VP was done by querying the
commercial MaxMind database with the IP addresses of the DIMES
agents and iPlane’s sources. A few VPs were resolved to more than
one geographic location and were removed from this analysis. We
note that the technique for constructing MaxMind database is not
publicly known. However, although it was shown [40] to have some
mistakes in city resolution, it is very accurate in the country level,
which we use in the following analysis.

In DIMES, the largest number of VPs are in the USA (40.8%),
followed by UK (8%), Russian Federation (7.3%), Germany (6.5%)
and Canada (5.8%). Other VPs are spread over the entire globe,
including most of the European countries, some countries in the
Middle East, the Far East, Australia, South America and South Africa.
There are no VPs in Central Africa and the Arab countries in the
middle east. iPlane VPs are also mostly located in the USA (43.3%).
Like DIMES, there are no VPs in Central Africa and the Arab
countries. This analysis shows that both projects cover a relatively
large geographical area, which should assist in locating ASes in
remote locations.

We compare the VPs of iPlane and DIMES by examining their
AS types. The AS type is determined using data from Dimitropoulos
et al. [41] that uses a machine learning approach to classify an AS
as a large ISP (t1), a small ISP (t2), an academic network (edu), an
Internet exchange point (ix), a network information center (nic) which
holds important network infrastructure, or a customer (comp) of either
the small or large ISPs. We manually classified additional ASes, such
as those having a description that contains the word “university” that
were missing from the inferred set. In total we used 18,639 classified
ASes, which do not cover all the ASes in the datasets but are sufficient
for this analysis. ASes with unknown types are ignored, and both
infrastructures have a similar number of unclassified ASes.

TABLE III: Vantage point types of iPlane and DIMES

t1 t2 edu comp ix nic unknown
iPlane 17 104 117 22 3 5 46
DIMES 29 106 10 11 2 1 47

Table III provides the number of VPs for each AS type. It
shows that iPlane uses much more academic VPs than DIMES. This
is mainly the contribution of the PlantLab servers that are used
for iPlane distribution, whereas only a few were used in DIMES,
mainly to achieve high geographical diversity, such as the Far East,
Africa and South America. DIMES has more VPs in tier-1 ISPs
and the majority of VPs reside in tier-2 ASes, which align with its
community-based distribution.

TABLE IV: Number of ASes per type for which DIMES degrees are
larger than iPlane (D > P ), smaller (D < P ) and equal (D = P )

t1 t2 edu comp ix nic unknown
D > P 26 2392 309 2436 20 70 4239
D < P 17 1198 153 1679 4 49 2410
D = P 1 974 283 3760 4 54 5349

For each AS that exists in both AS-level topologies (26,261 ASes
out of 31,611 ASes in iPlane and 27,203 ASes in DIMES), we
calculated the ratio between the iPlane measured degree and DIMES
measured degree. Table IV shows the number of ASes for each type
when DIMES degrees are larger than iPlane’s (D > P ), smaller
(D < P ) and equal (D = P ).

The table shows that although the projects agree on the degrees
of almost 10,500 ASes, DIMES exhibits overall higher degrees,
especially for tier-2 networks, IXPs, and most surprisingly academic
(edu) networks. However, looking at Table V, which shows the
average AS degree per type, reveals that iPlane has a higher average
degree for academic networks. Further examining these ASes, we find
that for the academic networks that haver higher degree in DIMES,
the average ratio between DIMES and iPlane degrees is 2.4. However,
for the fewer academic networks that have higher iPlane degree, the
average ratio between iPlane and DIMES degrees is 4.2. This shows
that while DIMES has an overall better probing of the academic
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networks, as it has for the majority of the observed ASes, iPlane has
a significantly better view of some of these networks.
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Fig. 11: Comparison of iPlane and DIMES degrees for tier-1, tier-2
and academic networks (edu)

These observations are further depicted in Fig. 11, which shows a
scatter plot of iPlane degree vs. DIMES degree for tier-1, tier-2 and
academic ASes. The figure shows that for the vast majority of tier-1
and tier-2 ASes both topologies degrees are similar, while for some
academic networks iPlane measures significantly higher degrees than
DIMES.

The two infrastructures agree on the degree of only a single tier-
1 AS (AS372 Korea Telecom, degree 372). However, the average
degree of tier-1 ASes is very high (more than 600 for both projects),
hence the chances to agree are low. Moreover, although the average
ratio of degrees (DIMES/iPlane) for tier-1 ASes is 2.04, the standard
deviation is 6.7, showing that the degrees are relatively similar but
the variance is high.

TABLE V: Average AS degrees using RouteViews, DIMES and
iPlane per AS type

t1 t2 edu comp ix nic unknown
RouteViews 606.2 9.9 3.0 2.3 6.4 4.7 5.1
DIMES 864.5 15.0 4.3 3.0 75.2 5.5 9.0
iPlane 656.0 15.1 5.6 2.7 18.2 8.1 6.3

Table V compares average AS degrees per AS type of the DIMES,
iPlane, and RouteViews AS graphs. RouteViews passively collects
BGP messages and is considered a reliable source for the AS
topology, although it can miss links between ASes that do not
participate in BGP, which is more common in tier-2 ASes [17].
Table V provides the average AS degree per type using data collected
during August 2009 and the iPlane Atlas. It shows that for all
AS types RouteViews has the lowest average degrees. As stated
before, iPlane observes higher average degree in academic networks
networks, whereas DIMES has higher degrees in tier-1 and IXPs.
These differences are attributed to bias that each project holds towards
its VP types. The observation that DIMES has much higher degree for
IXPs is mostly attributed to incorrect inference of their connectivity,
whereas the iPlane Atlas employs more accurate connectivity analysis
[39] for IXPs. Interestingly, the average degree of tier-2 ASes is
almost identical in DIMES and iPlane, while both are 50% more
than RouteViews. This can possibly be attributed to the difference in
the probing method (active vs. passive) and placement of VPs.

TABLE VI: Average VP degree per type, calculated over origin ASes
of iPlane, DIMES and both

VPs Avg. Degree t1 t2 edu comp ix nic
iPlane iPlane 1004 51.1 19 6 20 3.6

DIMES 1510 88.4 9.5 8.7 324.6 5.8
DIMES iPlane 834.4 84.8 7.6 10 39.5 37

DIMES 1155.5 141.3 21.3 13 787 44
Both iPlane 1068.1 84.5 8.2 - 38 -

DIMES 1637.7 292.8 23 - 841 -

Finally, we evaluate how the presence of a VP within an AS affects
its observed connectivity to other ASes. Table VI provides the average
VP degree per type, calculated over VPs of iPlane, DIMES and both.
Strengthening the above observations, DIMES has higher average
degrees for almost all VPs except academic networks, which are
the primary distribution method of iPlane. Interestingly, DIMES has
higher degrees in tier-1 ASes that are not part of its VP set. We
attribute this mostly to the relatively easy probing of tier-1 ASes,
as many traceroutes pass through them [35], therefore enabling easy
probing even from the “outside”.

E. Discussion

The above analysis illustrates several important results. First, it
shows that although increasing the number of VPs can help reducing
sampling bias, it still does not guarantee unbiased results. Although
both iPlane and DIMES have a very broad distribution, the types of
ASes in which their VPs are located generate a topology that is biased
towards these types. Most obvious are the academic networks which
are probed significantly better in iPlane than in DIMES. Overcoming
this bias cannot be achieved by simply increasing the number of VPs
but rather a broad diversity in types is required.

Second, the analysis strengthens the assumption that measuring
from within a network is important for discovering more of its links,
mainly for low-tier ASes, as these are harder to probe than tier-1
ASes. However, it also exposes that using a large spread of VPs, that
perform many measurements for a sufficient period, can still result
in extensive coverage of networks, even from the “outside” of the
network.

Finally, we found that in tier-2 ASes both iPlane and DIMES
have significantly higher degrees than RouteViews. We attribute
this to several key features of Internet measurement efforts. First,
DIMES and iPlane have significantly more VPs than RouteViews,
especially in these lower level ASes, enabling better probing. Second,
RouteViews mostly measures from the core of the Internet while
iPlane and even to a greater extent DIMES, measure from the far
reaches of the Internet. Due to the valley-free routing policy, certain
types of peer-to-peer links are only visible from the customers of the
peering ASes [11], [34]. Thus, the location of VPs in these ASes is
required in order to gain a good coverage and have a more complete
view of the Internet topology. Finally, RouteViews uses passive
collection of BGP messages, hence it is only capable of capturing
links that are published in BGP. In recent years, there is an increasing
usage of private peering between ASes [42], [43], making these links
visible only to active probing. Although active measurements are
more challenging to analyze, the benefits of improved probing of
networks is significant.

V. CONCLUSION

This paper presents an analysis of the significance of the distri-
bution of vantage points (VPs) in an active Internet measurement
infrastructure. We showed that diverse and broad distribution can
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help overcome sampling bias and uncover hidden parts of the Inter-
net topology. However, even broadly distributed infrastructures still
exhibit some bias towards the type of ASes from which measurements
are performed, further stressing the need for a diversity of VP types
and geographic locations. To this end, community based infrastruc-
tures are well suited since their growth potential is theoretically
unlimited. Looking at various commonly analyzed graph properties,
we showed that some require more than 40 VPs to converge, but
surprisingly several others converge with only a few VPs.
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