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Optimal Partition of QoS Requirements with Discrete
Cost Functions

Danny Raz, Member, IEEEand Yuval Shavitt, Member, IEEE

Abstract—The future Internet is expected to support applica-
tions with quality of service (QoS) requirements. To this end, sev-
eral mechanisms are suggested in the IETF; the most promising
among them is DiffServ. An important problem in this framework
is how to partition the QoS requirements of an application along a
selected path. The problem which is, in general, NP-complete, was
solved for continuous convex cost functions by Lorenz and Orda.
This paper concentrates on discrete cost functions, which better
model the existing and upcoming mechanisms in the Internet. We
present efficient exact and approximated solutions for various con-
ditions of the problem. We also show that although the more com-
plex problem of QoS sensitive routing with discrete cost functions
is hard, it has a fully polynomial approximation scheme.

Index Terms—Approximation algorithms, differentiated ser-
vices (DiffServ), dynamic programming, multicast, quality of
service (QoS), restricted shortest path (RSP).

I. INTRODUCTION

T HE FUTURE Internet is expected to support applications
with quality of service (QoS) requirements. To this end,

mechanisms are required to support signaling for connection
establishment that include QoS routing and resource allocation.
A promising application that is currently being deployed and
needs QoS support is IP telephony [4]. To support IP telephony,
one needs to guarantee the overall end-to-end delay, in order to
allow acceptable service level to the end user.

DiffServ [1], [15] is a technology that is suggested to be used
to enable the QoS support over the Internet for applications with
QoS constraints like IP telephony. In this framework, routers at
the edge of the network mark packets to provide them with a des-
ignated priority level or service class. Each type of service has,
in our case, a bound on the delay inflicted on packets through
the network. Service providers may publish different prices per
type of service. An IP telephony call will typically traverse mul-
tiple networks, each with its own service classes and pricing
scheme. In this environment, we need to find a route that sat-
isfies the end-to-end delay bound requirement, and a partition
of the end-to-end requirement along the selected route such that
the cost of using the route is minimized. Note that, in many
cases, the routing is given by some general best-effort under-
lying routing protocol such as BGP, and the application may
only optimize its cost via partition.
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The QoS routing problem is to find a minimal cost path (or
a multicast tree) in the network that can support the connection
QoS requirements (such as delay). Along the selected path, re-
sources (bandwidth, buffer space) should be optimally allocated
to support the required QoS at a minimal cost. The latter can be
formulized as an optimization problem for the partition of the
end-to-end QoS requirements to local requirements along a path
(or a multicast tree).

In general, the partition problem is intractable. The special
case where the link cost functions, i.e., the function that de-
scribes the cost of allocating a QoS parameter on a link, are con-
tinuous convex cost functions was addressed recently by several
works. Kodialam and Low [10] dealt with multicast trees for the
strongly convex case. Lorenz and Orda [13] presented polyno-
mial algorithms both for trees and paths for weakly convex cost
functions and addressed the QoS routing problem [12].

This paper concentrates on discrete cost functions, and
presents efficient exact and approximated solutions for various
cases. We first show that even the simplest possible discrete
case, i.e., two level cost functions, is still intractable. We give
an efficient dynamic programming solution for the special case
where the QoS parameter domain is integer, but not necessarily
convex. We present a sublinear algorithm for the homogeneous
convex case—the case where all the cost functions are iden-
tical. Both solutions are demonstrated to be easily distributed
with low communication and storage complexity. The same
techniques are also used to establish similar algorithms for the
multicast problem.

For the general discrete cost functions case, we show a simple
reduction of the QoS partition and the QoS routing problems
to the restricted shortest path problem [8]. Using this reduc-
tion, one can easily derive an-approximation algorithm both
for the QoS partition and routing problems in the unicast case.
However, this reduction does not apply to the multicast case.
Thus, we present a different fully polynomial approximation al-
gorithm for the QoS partition problem that works both for the
unicast and multicast cases. Namely, we prove that for any ap-
proximation parameter, our approximation algorithm finds a
solution with cost not greater than times the optimal cost,
both for paths and trees. Moreover, we show that our approxi-
mation can also solve a more general class of nondiscrete cost
functions.

The discrete model used in this work lends itself more
easily for practical purposes than its continuous counterpart.
For example, as discussed above, in the Internet,DiffServ
is suggested as a framework for QoS provisioning [1], [15].
In DiffServ, each packet can be classified to one of finitely
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Fig. 1. An example of the use of DiffServ for IP telephony (based on [11]).

many service classes. Each administrative domain,1 termed
differentiated services (DS) domain in [1], determines internally
its service classes and defines the QoS associated with each
class. This is being published as part of a service level agree-
ment (SLA) which associates a cost to each service class. The
administration of the DS domain is responsible for ensuring that
adequate resources are provisioned and/or reserved to support
the SLA’s offered by the domain. For example, an ISP can offer
three levels of service above best-effort: gold, silver, and bronze.
For any ingress–egress pair, the SLA guarantees a specific delay
bound for each service level. The guarantee is achieved by using
priority mechanisms, and class based routing in the DS domain.

Consider an application like IP telephony, that requires a delay
bound of say 120 ms and traverses three DS domains (see Fig.
1). We need to partition the delay bound requirement among the
three DS domains that comprise the path, in a way that results
in a minimal cost. The cost and the delay bound for each service
level at each DS domain appear below the domain in Fig. 1. A
naive approach will partition the delay equally among the three
domains. This results, in this example, with a cost of 80 units.
An optimal partition, with a cost of only 65 units, is to select the
low level service from the backbone (with 90 ms delay bound)
and the highest level service (with 15 ms delay bound) in each of
the regional ISPs. Even in this simple example, there are multiple
choices for the partition. A service provider that can choose the
cheapest one has an obvious advantage.

The support of QoS has been the subject of excessive re-
search. The specific aspect of resource allocation in this con-
text has also been excessively studied, in particular, a similar
framework was studied by [14], [5], [13], [10]. The reader is re-
ferred to [3] for a survey on QoS multicast routing algorithms,
although from a slightly different perspective.

The rest of the paper is organized as follows. In the next sec-
tion we detail our model and define families of discrete cost
functions. In Section III we prove that the QoS partition problem
is NP-hard. The paper then focuses on the unicast case: in Sec-
tion IV, we solve the problem for the special case of integer
functions; and in the next section we give an approximation al-
gorithm for general discrete cost functions. In Section VI we
extend these results to the multicast case. In Section VII we de-
scribe an approximation algorithm for the QoS routing problem,
and in Section VIII we show that our approximation results also
hold for nondiscrete cost functions.

1An administrative domain is a subnetwork that is administrated by a single
organization, e.g., an ISP or a corporate network.

II. M ODEL

A network is represented by a graph , each link
is associated with a discrete cost function , that

assigns a real positive value to each QoS parameter value. To
simplify the discussion, we sometimes refer to the QoS param-
eter as delay.

In the unicast case, a pathof length between two end
nodes is given, and the QoS requirement is additive. Given a
bound, , on the end-to-end QoS requirement, the QoS partition
problem is to find a vector , s.t.,

, and is minimal. Note that, the case of bottle-
neck QoS requirement is trivial [13], and the multiplicative case
can be easily reduced to the additive case by using the logarithm
of the requirement [2], [13].

In the multicast case, a multicast treeis given. The tree
has nodes one of which is designated as the root. The QoS
partition problem is to find a vector , s.t.,

, for all paths, , from the root to the leaves, and
is minimal.

The QoS partition problem is called homogeneous if all the
links have the same cost function.

A. Discrete Cost Functions

A general discrete cost function associates a cost with each
discrete level of QoS. In the most general case, there may be
infinitely many discrete QoS levels. We concentrate on the case
where link has QoS levels, . In such a case,

. Note that the representation of the
discrete cost functions causes the input size to depend on the
possible number of QoS levels, Q.

A convenient way to visualize a cost function is to consider
a step function where the cost of a QoS parameteris the cost
of the biggest discretely defined QoS parameter (see
Fig. 2). However, technically the function is defined only for
the discrete points , and it is easy to see that an optimum par-
tition is always at these points, since sliding rightwards on a step
increases the QoS parameter without decreasing the cost.

Next we define some special cases of cost functions.
Definition 1: A cost function is calledintegerif it is defined

only on a finite number of points .
Definition 2: A cost function is calledfully integer if it is

defined on a finite number of consecutive points starting at 1
(or 0) .

Note that, by scaling, any discrete finite cost function (defined
on the rationals) can be translated into an integer function. How-
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Fig. 2. A discrete cost function, and its representation as a step function.

ever, this may increase the cost of representing a set of functions
exponentially, and thus translate a polynomial solution for an in-
teger function to a pseudopolynomial solution.

Definition 3: A cost function is calledconvexif for every
three points we have

Definition 4: A cost function is calledstrongly convexif
for every three points we have

The above definition requires that an intermediate pointis
below the straight line connecting any two points one to its left
( ) and one to its right ( ).

III. H ARDNESSRESULTS

In this section we prove that, in general, the QoS partition
problem is NP-complete even if the discrete functions are
convex. In particular, we show that even if the cost functions
are the simplest nontrivial possible, containing only one-step
functions, but different for every link, the problem is in-
tractable. A similar but weaker (since it considers a wider class
of problems) proof was given in [9].

Lemma 1: Let the cost function for link be2

then determining whether the optimal solution to the QoS par-
tition with limit for a path of length is is equivalent to
solving thesubset sumproblem [6, problem SP13] with a set of
items and a bound .

2In our notation,c is defined in the pointsq = 0, q = a , andc (0) = a ,
c (a ) = 0.

Proof: It is easy to show by comparing the problem def-
initions that the optimal cost of the above QoS partition with
limit for a path of length is if and only if there exists a
subset , with .

We will show in Section V that although the problem is NP-
complete,goodapproximationalgorithmscan be used to solve it.

IV. EXACT SOLUTIONS

In this section, we solve the QoS partition problem for integer
cost functions. We first present a polynomial dynamic program-
ming algorithm for the general case, and then give a sublinear
solution for the homogeneous case.

A. The General Case

In this section we use dynamic programming to solve the QoS
partition problem for a collection of integer cost functions. The
only requirement is that all these functions can be defined on
the same integer scale with no significant increase in their rep-
resentation. We do not impose any other requirements on the
functions, in particular, they need not be convex.

Let be the optimal cost of partitioning the QoS
requirement along the path . Clearly, can
be calculated by the following recursive formula

(1)

The minimal cost for the partition of requirementalong a path
is thus given by calculating .

Theorem 1: The complexity of calculating the QoS partition
in the case of general integer cost functions is , and
the memory requirement is . The proof appears in [9,
Section 3.3].

B. Convex Cost Functions

For the case where the cost functions are fully integer and
(weakly) convex, one can apply the algorithm by Lorenz and
Orda [13] to find a solution in . Note that
every monotone function, and thus every convex function, has
at most different values for .

In this section, we consider the case where the cost functions
are fully integer and convex, but require them all to be identical.
We give an optimal algorithm with constant time complexity,
i.e., . To this end, we first prove the following lemmas.

Lemma 2: The optimal QoS partition in the homogeneous
fully integer strongly convex case results in all the QoS param-
eters taken from at most two successive values.

Proof: Suppose to the contrary that the lemma does not
hold. Then the optimal partition contains, at least, two QoS
values,3 , s.t. . By applying Definition 4 twice
we get

3Note that for fully integer functionsq = i.
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Corollary 1: In the optimal QoS partition in the homoge-
neous fully integer strongly convex case at least one link is al-
located .

Similarly, we can prove the lemma for the weakly convex
case:

Lemma 3: There exists an optimal QoS partition in the ho-
mogeneous fully integer convex case where all the QoS param-
eters are taken from at most two successive values.

Corollary 2: There exists an optimal QoS partition in the
homogeneous fully integer convex case where at least one link
is allocated .

An optimal QoS partition is calculated as follows.
. The number of links that allocatedis given by finding

the maximal that solves the inequation .
Since is a fully integer function (assume normalized to the
integers) we have and thus .

links are allocated at .

C. Distributed Implementation

The dynamic program for the general integer cost functions
(Section IV-A) can be easily distributed. Nodealong the path
can calculate for , based on the values
passed to it from node . When the calculation reaches the
end node, it selects its optimal value, and passes back the op-
timal portion left for the path’s prefix. This process continues
until it reaches the originator. The total number of messages is
only , while the bit complexity is . The storage re-
quirement at each node is . Note that the reservation is
done in the reverse direction, thus the origin can start transmis-
sion after a two-way handshake. A formal description of the
more complex multicast case is given in Section VI-B.

The homogeneous case of Section IV-B can be calculated at
the source node since the cost functions are known and equal.
Once the two QoS parameter values that should be used are
determined, a reservation message with a counter stating how
many reservations should be made for each value can propagate
along the path toward the destination.

D. Discrete Cost

All the results in this section can be applied to the dual case,
where the cost is discrete and one wishes to find the best delay
a certain cost can buy. This simple extension is omitted.

V. APPROXIMATIONS

In this section we give a fully polynomial approximation
scheme for the QoS partition problem with general discrete cost
functions. We assume here that the cost values are all integers.
In this case we can rephrase the problem as follows.

Definition 5: (The QoS partition problem with general dis-
crete cost functions.) Given sets of
objects, with specific delays and costs,
and , and a delay bound , find
a subset containing objects, each from a different set, such
that their total delay is bounded by, and the total cost is min-
imized.

Fig. 3. The reduction of the QoS partition problem for general discrete cost
functions to the restricted shortest path problem.

We assume that the cost function is nonincreasing, i.e., for all
, . Denote by , the maximum cost

of any element in the set , and by the delay associated
with this element. Let be the maximum
cost overall links. Clearly , otherwise there is
no feasible solution. We denote by the over all number of
elements, that is: , where is the number of
elements in the set .

It was already observed by Lorenz and Orda [12] that there is
a straightforward reduction from the QoS partition problem with
general discrete cost functions to the restricted shortest path
problem. Thus one can derive a fully polynomial approxima-
tion scheme for the QoS routing problem using Hassin’s results
[8]. For completeness, we state and prove the following claim
in our notation.

Claim 1: Given an instance of the QoS partition (routing)
problem with general discrete cost functions, one can construct
a bi-criteria4 graph such that the cost of the restricted shortest
path problem in equals the cost of the QoS partition (routing)
problem.

Proof: We replace theth link by a set of parallel links,
each corresponds to a specific working point in the discrete cost
function. More formally, given an instance of the QoS partition
problem, we build the graph with nodes where nodes

and are connected by parallel links, with costs and
delays (see Fig. 3). Since any simple path from node 0 to
node must choose exactly one of the edges between nodes

and , a path with a delay bounded byand cost in
defines a set with delay bounded byand cost in the QoS
partition problem.

Note that the same reduction holds for the QoS routing
problem with general discrete cost functions, where the solu-
tion for the restricted shortest path problem determines both
the links and the appropriate partition (see Section VII).

There are two problems when applying Hassin’s algorithm in
this way. The first one is that the solution is complex and it is
difficult to implement. The more significant problem is that this
result does not translate to multicast trees. Thus, the reduction
does not hold for the QoS partition problems on trees. To this
end, we develop a different algorithm that can be generalized
to multicast trees. Note that although Hassin’s algorithm cannot

4A graph where each edge is associated with both a cost and a delay.
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Fig. 4. The transition from the QoS partition problem with general discrete
cost functions to the benefit discrete QoS partition problem.

Fig. 5. Algorithm pseudoplynomial.

be applied to multicast trees, there might be other dynamic pro-
gramming algorithms that solve this problem without the benefit
formulation we present in this paper.

We begin by defining a variant of the problem, called the ben-
efit discrete QoS partition problem, and proving that it has a
fully polynomial approximation algorithm. We then show how
to use this algorithm to achieve a fully polynomial approxima-
tion scheme for the QoS partition problem with general discrete
cost functions.

Definition 6: (The benefit discrete QoS partition problem.)
Given sets of objects, with specific
sizes and profits, and

, and a delay bound , find a subset of at most
objects, each from a different set, such that their total size is

bounded by , and the total profit is maximized.
The main idea here is that the total profit for a given delay
represents the amount of cost one can save by allowing

more units of delay along the path, starting with any feasible
(but maybe costly) initial solution (see Fig. 4). The objective is
thus to gain as much savings as possible for every unit of delay.
In the example of Fig. 1, the initial costly solution consists of
selecting the highest level of service in all the three DS domains
which results with an end-to-end delay bound of 70 ms at a cost
of 115 units. Reducing the service level by one in the backbone
network, for example, results in yet a feasible partition (with
delay bound of 90 ms), and saves 30 units.

First we show that the benefit discrete QoS partition problem
has a pseudopolynomial algorithm that uses dynamic program-
ming. Then we use this algorithm in order to achieve the poly-
nomial approximation scheme for the QoS partition problem.

Claim 2: Algorithm PP (Fig. 5) is a pseudopolynomial algo-
rithm for the benefit discrete QoS partition problem that works
in time, where .

Fig. 6. Algorithm benefit discrete.

Proof: Define , for , and
, to be the delay of the set with minimal delay that

has at most objects, each from a different set , with
benefit of exactly . is if no such set exists. Clearly,

Now, the largest such that is smaller than is the
optimal solution for the QoS partition problem. Since we need
to compute different values, and to compute ,
we need steps. The overall complexity of the algorithm is

.
Next we show how to use this algorithm in order to achieve

an -approximation in polynomial time. We assume that the size
of all elements is smaller than the bound, since elements with
bigger sizes cannot be used, and may as well be omitted.

Claim 3: Let be the profit outputted by algorithm ben-
efit discrete (see Fig. 6). Then

Proof: For every element , the profit considered by the
algorithm may be smaller than the actual profit divided by
(as defined in line 1 of Fig. 6), but by no more than 1, i.e.,

.
Let be the solution for the instance of
scaled by . Therefore, for any set of elements,

. The set computed
by the PP algorithm must have at least the same profit on the
scaled elements as any other set, including the set computed by
the optimal algorithm, . Therefore,

The first inequality is by line 4 of algorithm BD, and the second
inequality is due to the optimality of PP on the scaled elements.
Substituting , we get

Since ,

Since the running time of algorithm benefit discrete is
, Theorem 2 follows.

Theorem 2: Algorithm benefit discrete is a fully polynomial
approximation algorithm for the benefit discrete QoS partition
problem.
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Fig. 7. Algorithm general discrete.

Now we can describe the algorithm for the QoS partition
problem with general discrete cost functions. It works as follows
(see Fig. 7). Given an approximation parameter, we construct
a benefit discrete QoS partition problem that basically captures
the amount of “saving” one can get starting from an obvious
feasible solution. We find an -approximation to this value,
and compute the resulting cost. We then iteratively remove the
most expensive cost from one of the links and recompute the
best cost. At the end, we choose the best cost out of the (poly-
nomially many) costs that we may have. The following claim
follows immediately from the definitions.

Claim 4: For any feasible solution to the benefit discrete
QoS partition problem with , and , there exists a set

, which is a feasible solution for the original QoS parti-
tion problem with general discrete cost functions such that

.
This last claim proves that the algorithm finds a feasible set.

We have to show both that the cost found by the algorithm is an
-approximation of the optimal cost, and that the algorithm is

polynomial.
We already proved that the saving created by the algorithm is

almost as good as the saving created by any other algorithm. The
problem is that this does not give a full proof for the approxima-
tion ratio, as the optimal cost may be much smaller than the total
saving. However, if the optimal cost is at least , we
do have an -approximation since we used BD with .
If the optimal cost is smaller, we will show that the biggest step
in one of the links is not used in the optimal solution; hence,
we may delete it from the problem and start with a better upper
bound. Thus, one of the iterations of the algorithm will find a
solution which is an-approximation of the optimal cost. Since
all sets are feasible, and we choose the one with minimal cost,
the output of algorithm general discrete is within anfactor of
the optimal cost.

For the formal proof we need the following two lemmas.
Lemma 4: If , and is a set with

for the benefit discrete QoS parti-
tion problem with and , then

, for any constant .
Proof: By Claim 4, ,

therefore,

Replacing again by , we get

Using , we get

Lemma 5: If , then the element
with the maximal cost cannot be in the set that achieves optimal
cost.

Proof: Clearly,

Now, let be the set that achieves an optimal cost. Let
be the element with the maximal cost in. Since algorithm GD
deletes elements in order according to their cost values, there is
an iteration in which is the biggest element. By Lemma 5, in
this iteration, because the element
with the maximal cost is in the optimal set. By Lemma 4, with

, the cost found in this iteration is bounded by .
Since the algorithm chooses the best cost overall iteration its
output is at least as good.

The running time of algorithm general discrete is
bounded by since we run the BD al-
gorithm at most times, and the complexity of BD is

. However, we can
replace the exhaustive search for the best by a binary
search using Lemma 5. If , we
need to reduce ; and if there is no feasible solution, we
went too far and need to increase . This complicates the
description of the algorithm but reduces the running time to

. Altogether we have proven the following
theorem.

Theorem 3: Algorithm GD is a fully polynomial approxima-
tion algorithm for the QoS partition problem with general dis-
crete cost functions.

Going back to the example of Fig. 1,
, and for . In general,

the number of DS domains that a connection traverses in the
US is almost always below 5 [7]. Assuming a full utilization of
the DS field in the IP header enables us to support 256 service
classes, which translates to , we get for

. Although this is well within
the computing capabilities of today’s hardware, improving the
algorithm complexity is an important research direction.

VI. M ULTICAST

A. Exact Solutions

In this section we solve the QoS partitioning problem for a
collection of integer cost functions in a multicast tree. As in the
unicast case, the only requirement is that all these functions can
be defined on the same integer scale with no significant increase
in their representation. We do not impose any other require-
ments on the functions, in particular, they need not be convex.
We begin by presenting a polynomial dynamic programming so-
lution.
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Let be a link in the multicast tree such thatis the
parent of , and let be the group of tree links connected to

except , namely the group of links leading to’s children.
Remember that here denotes the number of tree links. Let

be the optimal cost of partitioning the QoS require-
ment in the subtree of nodeand the link . Clearly,
can be calculated by the following recursive formula

(2)

and the minimal cost for the partitioning of requirementin the
tree, , is given by calculating , where are
the set of links emanating from the tree root.

Theorem 4: The cost of calculating the QoS partitioning in
the case of general integer cost functions in a multicast tree is

, and the memory requirement is .
Proof: For the calculation we need to keep a table of

where and . This re-
quires a storage of numbers. The calculation of each
entry is done using (2). For each entry, the calculation cost
is at most , thus the overall calculation complexity is

.

B. Distributed Implementation

The dynamic program for general integer cost functions
(Section VI-A) can be easily distributed. The root floods the
tree with START messages. The START message carries in
each link it traverses the cost function of the immediate up-
stream parent. A leaf that receives the START message from
link calculates its entries and sends them on linkto
its parent. A node that receives the values from all its chil-
dren calculates its entries and sends them to its parent. When
the root receives the calculations from all its children, it
initiates the reservation phase by sending a BUDGET message.
This message carries the QoS remaining budget downstream.
A node that receives the BUDGET message uses the appro-
priate entry in the cost table it calculated before locating the
QoS parameter allocation in its upstream link. It asks its up-
stream neighbor to allocate this amount using the RESERVE
message, and sends a BUDGET message with the remainder of
the budget downstream.

The total number of messages is only, while the bit com-
plexity is . The storage requirement for each link is

, thus, for a node with children the storage require-
ment is . The time complexity is where is the tree
hight.

Figs. 8 and 9 give a formal description of the algorithm. Each
node has the following variables:the index of the parent link;

a vector with the optimal cost calculated by the node
downstream link; a vector with the results of the local
optimal cost calculation; a vector with the QoS param-
eter that gives the best cost; and a binary vector to mon-
itor the receipt of calculations from the child links. In ad-
dition, a node holds a discrete cost function, , for each of its
downstream links, and a list of its downstream links .

Fig. 8. Distributed multicast partitioning—a nonroot node algorithm.

Fig. 9. Distributed multicast partitioning—the root algorithm.

C. Approximations

As mentioned before, in the multicast tree case we cannot use
the reduction of Claim 1, since it will require finding a restricted
shortest tree rather than a restricted shortest path.5

Thus, in order to derive a fully polynomial approximation
scheme, we follow the steps we took in the path case: starting
from a feasible (but possibly costly) partition on the tree, we
try to use the extra delay we have in order to save as much cost
as possible. We use many of the notations from Section V, and
we assume that the multicast tree is a binary tree. It is easy to
verify that for any multicast tree , with nodes, there exists
a binary multicast tree , with at most nodes, with exactly
the same optimal cost.6 The amount of saving is expressed in
the following definition.

5To the best of our knowledge, approximating a restricted shortest tree for
graphs with costs and delays is an open problem.

6This is done by replacing the outgoing edges at any node that has more than
two children, by a binary tree in which these children are the leaves, and all the
links to internal nodes have both zero cost and zero delay.
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Fig. 10. Algorithm pseudoplynomial multicast.

Definition 7: (The benefit discrete QoS partition problem
on trees.) Given a tree , with nodes, sets

of objects, with specific sizes and profits,
and , and a

delay bound , find a subset of at most objects, ,
each from a different set, such that , for all
paths, , and is maximized.

Next we prove that the benefit discrete QoS partition problem
on trees has a pseudopolynomial algorithm that uses dynamic
programming. An algorithm similar to the dynamic program-
ming algorithm from Section VI-A is not good enough because
it is polynomial in the delay bound and not the maximal cost

. In the multicast tree case, the rules of the delay and the
cost (benefit) are not symmetric since the cost (benefit) is com-
puted over the entire tree while the delay bound is true for any
path in the tree. Recall that we assume that the multicast tree
is a binary tree. We also assume that nodeis the root of the
tree, and that and are the indices of the left and right chil-
dren of node .

Claim 5: Algorithm PPM is a pseudopolynomial algorithm
for the benefit discrete QoS partition problem on multicast trees,
that works in time, where .

Proof: Define , for , and
, to be iff there exists a QoS partition of the subtree

rooted at node with minimal delay bound and profit , and
no other partition of this subtree with benefithas a smaller
delay bound. is if no such partition exists. At node,
one can choose the amount of profit and delay from each of the
sets associated with the left and the right children of. One can
also choose not to choose any of these elements. In any case, the
relation defined by line 7 of Fig. 10 holds. Therefore, the value
of , is the best possible delay bound for the given tree
with profit , and the algorithm outputs the optimal value.

Since the computation of requires at most
steps, we need to compute it forvalues of and

values of . The computation complexity of line 7 of Fig. 10 is
. Thus, the overall complexity of the algorithm

is .
We now apply the rounding technique from Section V to

achieve an approximation scheme for this case. We use Algo-
rithm BD with a call to PPM rather than PP (this version is called
BDM7 ). This results in an-approximation algorithm that runs
in time .

Fig. 11 presents a slightly modified version of the GD al-
gorithms for the multicast trees case. Applying Claim 4 and
Lemmas 4 and 5 for GMD, we get the following theorem.

7The formal description of BDM is omitted.

Fig. 11. Algorithm general discrete for multicast trees.

Theorem 5: Algorithm general discrete multicast is a fully
polynomial approximation algorithm for the QoS partition
problem on multicast trees with general discrete cost functions.
It has time complexity of .

VII. T HE QOS REQUIREMENTSROUTING PROBLEM

In this section we formally define the QoS requirements
routing problem with discrete cost functions. We then show
that it is an NP-hard problem and show how to obtain a fully
polynomial approximation scheme for this problem.

Definition 8: (The QoS requirements routing problem with
discrete cost functions.) Given a graph , each edge
is associated with a discrete cost function, and a delay bound

, find a path , and a partition such that the delay along the
chosen path is bounded by, and the cost along this path is the
minimal possible.

Clearly this problem is NP-complete since the QoS partition
problem with general discrete cost functions is a special case
of it (when the graph is a line). Even the simpler problem of
finding the best path without specifying the QoS partition along
it is NP-complete. This follows from a straightforward reduction
to the restricted shortest path problem [8].

Claim 1 provides a constructive way to construct an instance
of the restricted shortest path problem from a given instance of
the QoS routing problem with general discrete cost functions.
Using it, and the approximation results from [8], we get the
following theorem.

Theorem 6: The QoS requirements routing problem with
discrete cost functions has a fully polynomial approximation
scheme.

VIII. G ENERAL COST FUNCTIONS

In this section we discuss general cost functions. That is, we
do not assume any properties such as monotonicity or convexity.
Such a function, which is defined for all cost values, is repre-
sented by a constant number of bytes. It computes the minimal
delay guarantee for a given cost in polynomial time in the rep-
resentation of the input number. Note that although the discrete
functions defined in Section II look similar to the general cost
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Fig. 12. Graphical view of our results in the problem domain.

functions, the representation of such a function is linear in the
number of points and not constant. For example, the function

is defined for every , but if we want to
represent it by a discrete function we would have to explicitly
give the cost value of each possible delay. To emphasize this
point we use here for the reverse function

; thus, for the above example, . For such
functions we can prove the following theorem.

Theorem 7: For a set of functions ,
such that for each such a function either , or a pair

, with is given, a graph , a delay bound ,
and an approximation parameter, one can do the following.

1) Given a path , find an -approximation algorithm for
the QoS partition problem.

2) Given a multicast tree , find an -approximation for the
QoS partition problem on multicast trees.

Proof: First observe that given the reverse function ,
one can compute , and use the pair .
These pairs define a feasible solution, both for the path and mul-
ticast tree problems with cost bounded by .
Therefore,nooptimalsolutionwill useanycostbigger than .
Observe now that the pseudopolynomial algorithms PP and PPM
work also if each step function has steps. Thus, one can
compute a discrete function for each link with points,
and therefore the results from Section V (unicast) and Section
VI-C (multicast) can be used, with .

A similar proof can be used to prove an-approximation
scheme for the routing problem with general cost functions.
However, it requires either to generalize our results from Sec-
tion V to the QoS routing problem, or to show that Hassin’s
algorithm can be used. This is beyond the scope of this paper.

IX. DISCUSSION

In this paper we studied QoS partition and routing problems.
We concentrated on discrete cost functions that are both theoret-
ically interesting and have practical applications in IP networks.

Fig. 12 depicts graphically the problem domain, where the en-
closing rectangle represents the domain of discrete integer cost
functions. Each subdomain holds the numbers of the sections
where it is discussed (multicast treatment is in italics), sections
with results that apply to the entire domain are placed above the
rectangle.

An interesting direction, with possible practical significance,
is studying a distributed implementation of the approximation
algorithms presented here (in the same spirit of the results of
Sections IV-C and VI-B). The main open problem, however,
remains the multicast trees routing problem.
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